Dissertations / Theses on the topic 'Sodium channels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Sodium channels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Thompson, Andrew J. "Actions of pyrethroid on sodium channels." Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243690.
Full textMahdavi, Somayeh. "Computational Study of Mammalian Sodium Channels." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/13883.
Full textMcNair, William Parkhill. "Clinical and functional characterization of an SCN5A mutation associated with dilated cardiomyopathy /." Connect to abstract via ProQuest. Full text is not available online, 2008.
Find full textFjell, Hjelmström Jenny. "Tetrodotoxin-resistant sodium channels in neuropathic pain /." Stockholm, 2000. http://diss.kib.ki.se/2000/91-628-4181-5/.
Full textSmall, T. K. "Drug action on voltage-gated sodium channels." Thesis, University College London (University of London), 2010. http://discovery.ucl.ac.uk/19492/.
Full textBrowne, Liam Edward. "Drug binding sites on Nat1.8 sodium channels." Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/3258/.
Full textLee, So Ra. "Pharmacological and biophysical characterization of a prokaryotic voltage-gated sodium channel." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1477.
Full textRobins, Gerard George. "Second messenger regulation of human epithelial sodium channels." Thesis, University of Newcastle Upon Tyne, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402198.
Full textBaines, Deborah Louise. "Voltage dependent sodium channels of nerve and muscle." Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335553.
Full textEkberg, Jenny. "Novel peptide toxin and protein modulators of voltage-gated ion channels /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe20102.pdf.
Full textNilsson, Johanna. "Molecular mechanisms of local anaesthetic action on voltage-gated ion channels /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-748-7/.
Full textDautova, Yana. "Atrial arrhythmias in murine hearts modelling sodium channelopathies." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609529.
Full textDeGraff, David J. "Implications for the androgenic regulation of IGFBP-2 in the development of metastatic and androgen independent prostate cancer." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 160 p, 2008. http://proquest.umi.com/pqdweb?did=1459919011&sid=13&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textRadford, Matthew. "Purification structure and stability of voltage-gated sodium channels." Thesis, Birkbeck (University of London), 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535845.
Full textMeng, Guangsi. "Computational Design of Selective Toxin Blockers of Sodium Channels." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27255.
Full textRahman, Mohammed Mostafizur. "Bistability and Hysteresis of Sodium Channels at Neuromuscular Junction." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422123.
Full textI movimenti volontari nel muscolo di mammifero sono controllati dal cervello tramite una sinapsi specializzata: la giunzione neuro-muscolare (NMJ). Al fine di comprendere nel dettaglio le origini fisiopatologiche di disfunzioni di questa giunzione (ad es. Miastenia Gravis, Sindrome miastenica di Lambert-Eaton) e per favorire l’ingegnerizzazione di raffinate neuroprotesi a scopo riabilititativo, è necessario approfondire le nostre conoscenze sull’esatto meccanismo di comunicazione tra neurone e muscolo a livello dell NMJ. La NMJ è la sede in cui il terminale assonico di un motoneurone e la membrana post-sinaptica della fibra muscolare si giustappongono per creare una sinapsi. L’impulso inviato dal neurone pre-sinaptico causa un rilascio del neurotrasmettitore, l’acetilcolina, nella fessura sinaptica che, a sua volta, induce un potenziale intracellulare post-sinaptico nella fibra muscolare. Il potenziale extracellulare nello spazio sinaptico è influenzato dalla corrente ionica generata dall’apertura di canali del sodio voltaggio-dipendenti localizzati nelle pieghe post-giunzionali della NMJ (v. dopo). Di conseguenza, il gating voltaggio-dipendente degli stessi canali può essere influenzato dal voltaggio extracellulare. Questo fenomeno in cui correnti che passano attraverso canali del sodio diminuendo il potenziale extracellulare e attivando i canali con meccanismo a feed-back positivo, viene chaimato “self-gating”. Secondo questa ipotesi, applicata alla NMJ, la caduta del voltaggio extracellulare potrebbe modificare il potenziale transmemebrana a livello della fibra e aumentare la probabilità di apertura dei canali del sodio. Negli ultimi decenni sono stati proposti alcuni modelli matematici della NMJ, ma nessuno ha considerato il potenziale ruolo del potenziale extracellulare nello spazio sinaptico della giunzione. Il modello proposato in questa tesi prende in considerazione questo effetto, simulando il comportamento della NMJ nel caso del ratto e della rana. Nel simulare la NMJ, si è presa in considerazione una fibra di forma tubulare (diametro 50 µm e longhezza 500 µm). La sinapsi è costituita da un terminale assonico che si affaccia sulla membrana della fibra muscolare con una distanza di 50 nm. Il potenziale della giunzione (Vj) è calcolato usando la conduttanza del sodio della membrana post-sinaptica (conduttanza globale) e la resitenza della fessura sinaptica. La corrente del sodio nella membrana post-sinaptica (EPINa) è calcolata usando il ptenziale della giunzione e la conduttanza globale. Il recettore per l’acetilcolina (AChR) assieme con la EPINa agisce come corrente di stimolo per la fibra che viene simulata, da un punto di vista elettrico, mediante un modello di tipo Hodgkin-Huxley. La conduttanza associata ai canali voltaggio dipendenti dipende dalla caduta di potenziale tra l’esterno e l’interno della membrana post-sinaptica. Il potenziale nello spazio sinaptico della NMJ calcolato per diversi potenziali di membrana dimostra che la conduttanza dei canali voltaggio dipendenti del sodio ha un comportamento compatibile con un effetto di self-gating. Abbiamo studiato l’attivazione, l’inattivazione e il recupero dall’inattivazione (e dei parametri Hodgkin-Huxley ad essi legati) in condizioni normali (di self-gating) e assumendo uno spazio sinaptico con distanza infinita (condizioni di non self-gating). In tal modo, abbiamo verificato l’effetto del potenziale extracellulare sul gating dei canali e sulla trasmissione sinaptica focalizzandoci su parametri del potenziale d’azione generato nella fibra muscolare quali l’overshoot, la massima velocità di salita e la frequenza di firing. E’ stato anche introdotto un fattore Raggio-Conduttanza per rendere più chiara e immediata la relazione tra la dimensione del raggio del terminale assonico del motoneurone, la conduttanza massima del sodio e la corrente di stimolo dovuta agli AChR. La dipendenza dal raggio della bistabilità dei canali è stata simulata. Il modello di trasmissione proposto, considerando il contributo dei canali del sodio nelle pieghe post-giunzionali e il potenziale extracellulare nella fessura sinaptica, dimostra la capacità della trasmissione neuromuscolare di rimanere efficace in varie condizioni fisiologiche e di stress, con un fattore di sicurezza (safety-factor) del 15%. In condizioni di self-gating si può notare un comportamento di switching della conduttanza del sodio: da bassa a alta, durante la depolarizzazione e da alta a bassa durante la ripolarizzazione della fibra. Durante questo processo, si evidenziano bistabilità ed isteresi dei canali del sodio. Le terapie per diverse patologie della NMJ (ad es. Miastenia Gravis, sindorme miastenica di Lambert-Eaton) sono limitate da incompleta caratterizzazione dei meccanismi che governano la trasmissione tra motoneurone e muscolo. Il modello qui proposto esplora il meccanismo di trasmissione nella NMJ e potrebbe essere usato in futuro per migliorare le terapie di queste patologie. Tuttavia, ulteriori validazioni sperimentali dovranno essere condotte. Inoltre, il modello potrebbe ispirare nuove e più efficienti neuroprotesi per pazienti con disabilità motorie.
Zhang, Hongling. "Sigma Receptors Modulation of Voltage-gated Ion Channels in Rat Autonomic Neurons." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001183.
Full textSpafford, John David. "The evolution of voltage-gated sodium channels as interpreted from a study of sodium currents and channels from the hydrozoan jellyfish, Polyorchis penicillatus." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ34840.pdf.
Full textKonstas, Angelos Aristeidis. "The regulation and functional interaction of the epilethial sodium channel (ENaC) and renal potassium channels." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249463.
Full textChang, Chi-Chun, and n/a. "Interaction between delta epithelial sodium channel ([delta]ENaC) and COMMD1." University of Otago. Department of Physiology, 2008. http://adt.otago.ac.nz./public/adt-NZDU20080512.123318.
Full textTibbs, Victoria Celestine. "Characterization of A-kinase anchoring proteins associated with the type IIA sodium channel /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6303.
Full textHui, Kwokyin. "Molecular determinants of mu-conotoxin block of single sodium channels." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0018/NQ54789.pdf.
Full textMalek, Julie Anne. "Voltage-gated sodium channels and nerve regeneration in the leech." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410686.
Full textHynes, Judith Audrey. "Trafficking of voltage-gated sodium channels involved in pain perception." Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590477.
Full textFERREIRA, ANDREA DE LIMA. "STUDY OF SODIUM AND POTASSIUM ION CHANNELS VIA STOCHASTIC DYNAMIC." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=18111@1.
Full textPROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
O presente trabalho apresenta uma revisão sobre os Canais Iônicos de Sódio e de Potássio fazendo uma relacão com os aspectos biofísicos, computacionais e matemáticos. Estudamos os canais iônicos, sob o ponto de vista da Mecânica Estatìstica, mais precisamente, considerando os canais iônicos como um processo markoviano. O objetivo principal deste trabalho é representar a dinâmica dos canais iônicos utilizando a caminhada aleatória e elaborar programas computacionais que simulem o funcionamento dos mesmos. Para tanto, estudamos a partida de íons do início do canal (fonte) e a sua chegada em um sítio final (sorvedouro) a uma distância D. Para a simulacão dos Canais de Sódio e de Potássio foram consideradas as massas atômicas dos referentes elementos químicos, não foram levados em consideracão, a dinâmica de ativacão e inativacão dos canais, assim como, a estrutura celular. A importância do presente trabalho está em generalizar o estudo dos canais iônicos e assim, buscar parâmetros que possam diferenciálos. Consideramos também o parâmetro do tempo, pois entendemos a sua importãncia para a compreensão do comportamento dos sistemas biológicos. Por fim, a dissertacão é encerrada com alguns resultados da simulacão do Canal de Sódio e de Potássio além de propor ao leitor alguns trabalhos futuros.
This dissertation work presents an overview of ion channels for sodium and potassium for making a relationship with the biophysical, computational and mathematical. Studied in a qualitative way ion channels from the point of view of statistical mechanics, more precisely, considering the ion channel as a Markov process. The main objective of this work is to represent the dynamics of ion channels using the random walk and develop computer programs that simulate the operation thereof. We studied the departure of ions from the beginning of the channel (source) and its final arrival at a site (sink) a distance D. For the simulation of the channels for sodium and potassium were considered for the atomic masses of related chemicals, were not taken into account, the dynamic activation and inactivation of the channels, as well as the cellular structure. The importance of this work is to generalize the study of ion channels and thus seek parameters that could differentiate them. We also consider the importance of time, because we understand that real-time analysis is an important tool for understanding the behavior of biological systems. Finally, the essay ends with some simulation results of the channel for sodium and potassium to the reader and propose some future work.
Ji, Hong-Long. "Fibrinolytic regulation of pulmonary epithelial sodium channels : a critical review." Thesis, University of Kent, 2015. https://kar.kent.ac.uk/57157/.
Full textLam, Tai-chung. "Genetic and environmental factors of hypertension." Click to view the E-thesis via HKUTO, 2003. http://sunzi.lib.hku.hk/hkuto/record/B31980946.
Full textAllen, Samantha M. "Characterization of beta subunits of voltage sensitive sodium channels in the LNCaP progression model and in the normal mouse prostate." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 114 p, 2007. http://proquest.umi.com/pqdweb?did=1253509351&sid=1&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textLam, Tai-chung, and 林泰忠. "Genetic and environmental factors of hypertension." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B31980946.
Full textLopreato, Gregory Francis. "A PCR-based census of sodium channel genes in the genome of the weakly electric teleost, Sternopygus macrurus : evolutionary implications /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004322.
Full textGawenis, Lara Renee. "Calcium and sodium absorption across the small intestine of cystic fibrosis mice /." free to MU campus, to others for purchase, 2001. http://wwwlib.umi.com/cr/mo/fullcit?p3012969.
Full textWiemuth, Dominik, and n/a. "Regulation of the epithelial sodium channel (ENac) by ubiquitination." University of Otago. Department of Physiology, 2006. http://adt.otago.ac.nz./public/adt-NZDU20061127.162243.
Full textMiyamoto, Kazuhide. "Studies on Solution Structures for Inactivation Gate Peptides of Sodium Channels." 京都大学 (Kyoto University), 2001. http://hdl.handle.net/2433/150908.
Full textTan, Chong Da. "Metabolic regulation of epithelial sodium channels in human airway epithelial cells." Thesis, St George's, University of London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546781.
Full textWhitaker, William Richard James. "The distribution of voltage-gated sodium channels in the human brain." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621736.
Full textChernoff, Daniel Michael. "Kinetics of local anesthetic binding to sodium channels : role of pKa̳." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/29203.
Full textOn t.p. "a" is subscript.
Includes bibliographical references (leaves 165-175).
by Daniel Michael Chernoff.
Ph.D.
Cusdin, Fiona Susan. "Mutational studies on the β3 subunit of voltage-gated sodium channels." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611610.
Full textGlenn, L. Lee, and Jeff Knisley. "Transients in Branching Multipolar Neurons With Tapering Dendrites and Sodium Channels." Digital Commons @ East Tennessee State University, 2005. https://dc.etsu.edu/etsu-works/7523.
Full textRichardson, Jessica Lindsay. "The structure of function of voltage-dependant potassium and sodium channels." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1693029641&sid=8&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textBaquero, Gonzalez Arian F. "The Regulation of Epithelial Sodium Channels in Mammalian Taste Receptor Cells." DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/418.
Full textMolinarolo, Steven. "Biochemical techniques for the study of voltage-gated sodium channel auxiliary subunits." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6217.
Full textZhang, Ao. "Role of the Neurofascins in targeting voltage-gated sodium channels in myelinated nerves." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8821.
Full textTatulian, Lucine. "Sodium and potassium ion channels as targets for the control of epilepsy." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252275.
Full textAlves, Simoes Marta. "Targeting SNARE proteins and the trafficking of sodium channels in inflammatory pain." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/20767/.
Full textGlenn, L. Lee, and Jeffrey R. Knisley. "Voltage Transients in Branching Multipolar Neurons With Tapering Dendrites and Sodium Channels." Digital Commons @ East Tennessee State University, 2005. https://dc.etsu.edu/etsu-works/7537.
Full textPetitprez, Séverine. "Cardiac and muscle channelopathies : roles and regulation of voltage-gated sodium channels." Paris 7, 2009. http://www.theses.fr/2009PA077257.
Full textThe contraction of muscles cells is due to the propagation of an electrical influx called action potential (AP). It results from the sequential opening of ion channels generating currents through the cell membranes. The voltage-gated sodium channels (Nav) are responsible for the rising phase of the AP. Nav1. 4 and Nav1. 5 are respectively the main skeletal muscle and cardiac sodium channels. Mutations in their encoding genes (SCN4A and SCN5A) lead respectively to neuromuscular disorders or cardiac arrhythmias. The general aim of my PhD has been to study channelopathies. I first characterized the effects of two mutations. I used HEK293 cells to express wild-type or mutant channels and study their biophysical properties. We found that the SCN4A mutation produced complex alterations of Nav1. 4 function, explaining the myotonic phenotype described in patients carrying the mutation. In the second study, the index case carried a SCN5A mutation that leads to a "loss of function" of the channel. The decreased sodium current (lNa) measured at 37°C with mutated Nav1. 5 channels could explain the observed Brugada syndrome. The last project aimed at identifying a new potential protein interacting with the cardiac sodium channel. We found that SAP97 binds the three last amino-acids (SIV) of the C-terminus of Nav1. 5. Silencing the expression of SAP97 as well as the truncating the SIV motif, decreased 1Na. These preliminary results suggest that SAP97 is implicated in the regulation of sodium channel directly or indirectly. These studies reveal that cardiac and muscle diseases may result from ion channel mutations but also from regulatory proteins affecting their regulation
Stocker, Patrick J. "Sialic Acid Modulation of Cardiac Voltage-Gated Sodium Channel Gating Throughout the Developing Myocardium." [Tampa, Fla] : University of South Florida, 2005. http://purl.fcla.edu/usf/dc/et/SFE0001304.
Full textFarrag, Khalid Gamal. "A study of the physiology and pharmacology of voltage-gated sodium channels in normal and modified channel states." Thesis, King's College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399295.
Full textJarecki, Brian W. "GATING OF THE SENSORY NEURONAL VOLTAGE-GATED SODIUM CHANNEL NAv1.7: ANALYSIS OF THE ROLE OF D3 AND D4 / S4-S5 LINKERS IN TRANSITION TO AN INACTIVATED STATE." Thesis, Connect to resource online, 2010. http://hdl.handle.net/1805/2119.
Full textTitle from screen (viewed on April 1, 2010). Department of Pharmacology and Toxicology, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Theodore R. Cummins, Grant D. Nicol, Gerry S. Oxford, Andy Hudmon, John H. Schild. Includes vitae. Includes bibliographical references (leaves 232-266).
Lucas, Brooke. "The Role of the Defective Nav1.4 Channels in the Mechanism of Hyperkalemic Periodic Paralysis." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20550.
Full text