Journal articles on the topic 'Sodium Air Battery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Sodium Air Battery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chawla, Neha, and Meer Safa. "Sodium Batteries: A Review on Sodium-Sulfur and Sodium-Air Batteries." Electronics 8, no. 10 (October 22, 2019): 1201. http://dx.doi.org/10.3390/electronics8101201.
Full textBi, Xuanxuan, Rongyue Wang, Yifei Yuan, Dongzhou Zhang, Tao Zhang, Lu Ma, Tianpin Wu, Reza Shahbazian-Yassar, Khalil Amine, and Jun Lu. "From Sodium–Oxygen to Sodium–Air Battery: Enabled by Sodium Peroxide Dihydrate." Nano Letters 20, no. 6 (May 19, 2020): 4681–86. http://dx.doi.org/10.1021/acs.nanolett.0c01670.
Full textMcCormick, Colin. "Energy Focus: Rechargeable room-temperature sodium-air battery involves sodium superoxide." MRS Bulletin 38, no. 2 (February 2013): 119. http://dx.doi.org/10.1557/mrs.2013.30.
Full textYang, Sheng, and Donald J. Siegel. "Intrinsic Conductivity in Sodium–Air Battery Discharge Phases: Sodium Superoxide vs Sodium Peroxide." Chemistry of Materials 27, no. 11 (May 20, 2015): 3852–60. http://dx.doi.org/10.1021/acs.chemmater.5b00285.
Full textXu, Xiaolong, Kwan San Hui, Duc Anh Dinh, Kwun Nam Hui, and Hao Wang. "Recent advances in hybrid sodium–air batteries." Materials Horizons 6, no. 7 (2019): 1306–35. http://dx.doi.org/10.1039/c8mh01375f.
Full textKondori, Alireza, Mohammadreza Esmaeilirad, Ahmad mosen Harzandi, and Mohammad Asadi. "A Reachable Sodium-Oxygen Battery Based on Sodium Superoxide Chemistry." ECS Meeting Abstracts MA2022-02, no. 2 (October 9, 2022): 132. http://dx.doi.org/10.1149/ma2022-022132mtgabs.
Full textAdelhelm, Philipp, Pascal Hartmann, Conrad L. Bender, Martin Busche, Christine Eufinger, and Juergen Janek. "From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries." Beilstein Journal of Nanotechnology 6 (April 23, 2015): 1016–55. http://dx.doi.org/10.3762/bjnano.6.105.
Full textRanmode, Vaibhav, and Jishnu Bhattacharya. "Macroscopic modelling of the discharge behaviour of sodium air flow battery." Journal of Energy Storage 25 (October 2019): 100827. http://dx.doi.org/10.1016/j.est.2019.100827.
Full textSun, Qian, Hossein Yadegari, Mohammad N. Banis, Jian Liu, Biwei Xiao, Xia Li, Craig Langford, Ruying Li, and Xueliang Sun. "Toward a Sodium–“Air” Battery: Revealing the Critical Role of Humidity." Journal of Physical Chemistry C 119, no. 24 (June 5, 2015): 13433–41. http://dx.doi.org/10.1021/acs.jpcc.5b02673.
Full textLi, Yaqiong, Jingling Ma, Guangxin Wang, Fengzhang Ren, Yujie Zhu, and Yongfa Song. "Investigation of Sodium Phosphate and Sodium Dodecylbenzenesulfonate as Electrolyte Additives for AZ91 Magnesium-Air Battery." Journal of The Electrochemical Society 165, no. 9 (2018): A1713—A1717. http://dx.doi.org/10.1149/2.0581809jes.
Full textBaek, Myung-Jin, Jieun Choi, Tae-Ung Wi, Hyeong Yong Lim, Min Hoon Myung, Chanoong Lim, Jinsu Sung, et al. "Strong interfacial energetics between catalysts and current collectors in aqueous sodium–air batteries." Journal of Materials Chemistry A 10, no. 9 (2022): 4601–10. http://dx.doi.org/10.1039/d2ta00329e.
Full textSenthilkumar, Baskar, Ahamed Irshad, and Prabeer Barpanda. "Cobalt and Nickel Phosphates as Multifunctional Air-Cathodes for Rechargeable Hybrid Sodium-Air Battery Applications." ACS Applied Materials & Interfaces 11, no. 37 (August 20, 2019): 33811–18. http://dx.doi.org/10.1021/acsami.9b09090.
Full textWang, Lei, Chenglong Yang, Shuo Dou, Shuangyin Wang, Jintao Zhang, Xian Gao, Jianmin Ma, and Yan Yu. "Nitrogen-doped hierarchically porous carbon networks: synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery." Electrochimica Acta 219 (November 2016): 592–603. http://dx.doi.org/10.1016/j.electacta.2016.10.050.
Full textYang, Qingyun, Yanjin Liu, Hong Ou, Xueyi Li, Xiaoming Lin, Akif Zeb, and Lei Hu. "Fe-Based metal–organic frameworks as functional materials for battery applications." Inorganic Chemistry Frontiers 9, no. 5 (2022): 827–44. http://dx.doi.org/10.1039/d1qi01396c.
Full textJia, Shipeng, Jonathan Counsell, Michel Adamič, Antranik Jonderian, and Eric McCalla. "High-throughput design of Na–Fe–Mn–O cathodes for Na-ion batteries." Journal of Materials Chemistry A 10, no. 1 (2022): 251–65. http://dx.doi.org/10.1039/d1ta07940a.
Full textPeled, E., D. Golodnitsky, H. Mazor, M. Goor, and S. Avshalomov. "Parameter analysis of a practical lithium- and sodium-air electric vehicle battery." Journal of Power Sources 196, no. 16 (August 2011): 6835–40. http://dx.doi.org/10.1016/j.jpowsour.2010.09.104.
Full textLiu, Wen, Qian Sun, Yin Yang, Jing-Ying Xie, and Zheng-Wen Fu. "An enhanced electrochemical performance of a sodium–air battery with graphene nanosheets as air electrode catalysts." Chemical Communications 49, no. 19 (2013): 1951. http://dx.doi.org/10.1039/c3cc00085k.
Full textOh, Jin An Sam, Zhihan Zeng, and Li Lu. "Thin Nasicon Sodium-Ions Solid State Electrolyte By Tape Casting Method." ECS Meeting Abstracts MA2022-01, no. 3 (July 7, 2022): 499. http://dx.doi.org/10.1149/ma2022-013499mtgabs.
Full textVaghefinazari, Bahram, Darya Snihirova, Cheng Wang, Linqian Wang, Min Deng, Daniel Höche, Sviatlana Lamaka, and Mikhail Zheludkevich. "Boosting Mg-Air Primary Battery Performance Via Addition of Complexing Agents in the Electrolyte: A Mechanistic View on the Effect of EDTA." ECS Meeting Abstracts MA2022-02, no. 1 (October 9, 2022): 3. http://dx.doi.org/10.1149/ma2022-0213mtgabs.
Full textMa, Jingling, Guangxin Wang, Yaqiong Li, Wuhui Li, and Fengzhang Ren. "Influence of Sodium Silicate/Sodium Alginate Additives on Discharge Performance of Mg–Air Battery Based on AZ61 Alloy." Journal of Materials Engineering and Performance 27, no. 5 (April 2, 2018): 2247–54. http://dx.doi.org/10.1007/s11665-018-3327-5.
Full textSaini, Amit. "Investigation of the Performance of Different Battery Technologies for Electronic Devices." Mathematical Statistician and Engineering Applications 71, no. 2 (March 6, 2022): 637–46. http://dx.doi.org/10.17762/msea.v71i2.2193.
Full textSenthilkumar, Baskar, Ziyauddin Khan, Sangmin Park, Inseok Seo, Hyunhyub Ko, and Youngsik Kim. "Exploration of cobalt phosphate as a potential catalyst for rechargeable aqueous sodium-air battery." Journal of Power Sources 311 (April 2016): 29–34. http://dx.doi.org/10.1016/j.jpowsour.2016.02.022.
Full textZhou, Ya-Nan, Peng-Fei Wang, Xu-Dong Zhang, Lin-Bo Huang, Wen-Peng Wang, Ya-Xia Yin, Sailong Xu, and Yu-Guo Guo. "Air-Stable and High-Voltage Layered P3-Type Cathode for Sodium-Ion Full Battery." ACS Applied Materials & Interfaces 11, no. 27 (June 11, 2019): 24184–91. http://dx.doi.org/10.1021/acsami.9b07299.
Full textDiwakar, K., P. Rajkumar, R. Subadevi, P. Arjunan, and M. Sivakumar. "A study on high rate and high stable sodium vanadium phosphate electrode for sodium battery alongside air exposure treatment." Journal of Materials Science: Materials in Electronics 32, no. 11 (May 18, 2021): 14186–93. http://dx.doi.org/10.1007/s10854-021-05969-5.
Full textSalkuti, Surender Reddy. "Electrochemical batteries for smart grid applications." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 3 (June 1, 2021): 1849. http://dx.doi.org/10.11591/ijece.v11i3.pp1849-1856.
Full textZhao, He, Jianzhong Li, Weiping Liu, Haoyuan Xu, Xuanwen Gao, Junjie Shi, Kai Yu, and Xueyong Ding. "Integrated titanium-substituted air stable O3 sodium layered oxide electrode via a complexant assisted route for high capacity sodium-ion battery." Electrochimica Acta 388 (August 2021): 138561. http://dx.doi.org/10.1016/j.electacta.2021.138561.
Full textWu, Xiaohan, Hui Liu, Jiaxi Zhang, Juemin Song, Jiefeng Huang, Wanli Xu, Yang Yan, and Kun Yu. "Synthesis of Ag-La0.8Sr0.2MnO3 (LSM-Ag) Composite Powder and Its Application in Magnesium Air Battery." Metals 11, no. 4 (April 13, 2021): 633. http://dx.doi.org/10.3390/met11040633.
Full textZhu, Jianhui, Amr Abdelkader, Denisa Demko, Libo Deng, Peixin Zhang, Tingshu He, Yanyi Wang, and Licong Huang. "Electrocatalytic Assisted Performance Enhancement for the Na-S Battery in Nitrogen-Doped Carbon Nanospheres Loaded with Fe." Molecules 25, no. 7 (March 30, 2020): 1585. http://dx.doi.org/10.3390/molecules25071585.
Full textClaus, Ana, Alexandra Berkova, Osama Awadallah, and Bilal El-Zahab. "Seawater Battery: Strategies to Enable High Performance." ECS Meeting Abstracts MA2022-02, no. 64 (October 9, 2022): 2330. http://dx.doi.org/10.1149/ma2022-02642330mtgabs.
Full textKang, Yao, Shuo Wang, Siqi Zhu, Haixing Gao, Kwan San Hui, Cheng-Zong Yuan, Hong Yin, et al. "Iron-modulated nickel cobalt phosphide embedded in carbon to boost power density of hybrid sodium–air battery." Applied Catalysis B: Environmental 285 (May 2021): 119786. http://dx.doi.org/10.1016/j.apcatb.2020.119786.
Full textDeng, Jianqiu, Wen-Bin Luo, Xiao Lu, Qingrong Yao, Zhongmin Wang, Hua-Kun Liu, Huaiying Zhou, and Shi-Xue Dou. "High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode." Advanced Energy Materials 8, no. 5 (October 9, 2017): 1701610. http://dx.doi.org/10.1002/aenm.201701610.
Full textNagy, Tibor, Lajos Nagy, Zoltán Erdélyi, Eszter Baradács, György Deák, Miklós Zsuga, and Sándor Kéki. "“In Situ” Formation of Zn Anode from Bimetallic Cu-Zn Alloy (Brass) for Dendrite-Free Operation of Zn-Air Rechargeable Battery." Batteries 8, no. 11 (November 3, 2022): 212. http://dx.doi.org/10.3390/batteries8110212.
Full textRahayu, Theresia Evila Purwanti Sri, Mohammad Nurhilal, and Rosita Dwityaningsih. "Analisis Proksimat dan Bilangan Yodium Sebagai Kajian Awal Aarang Tempurung Nipah Sebagai Bahan Intermediate Karbon Keras." Jurnal Rekayasa Hijau 6, no. 3 (January 16, 2023): 248–60. http://dx.doi.org/10.26760/jrh.v6i3.248-260.
Full textLv, Chaonan, Qi Zhang, Yuxin Zhang, Zefang Yang, Pengfei Wu, Dan Huang, Huanhuan Li, Haiyan Wang, and Yougen Tang. "Synergistic regulating the aluminum corrosion by ellagic acid and sodium stannate hybrid additives for advanced aluminum-air battery." Electrochimica Acta 417 (June 2022): 140311. http://dx.doi.org/10.1016/j.electacta.2022.140311.
Full textLiu, B. H., Z. P. Li, and L. L. Chen. "Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH4-air battery." Journal of Power Sources 180, no. 1 (May 2008): 530–34. http://dx.doi.org/10.1016/j.jpowsour.2008.02.058.
Full textMostert, Clemens, Berit Ostrander, Stefan Bringezu, and Tanja Kneiske. "Comparing Electrical Energy Storage Technologies Regarding Their Material and Carbon Footprint." Energies 11, no. 12 (December 3, 2018): 3386. http://dx.doi.org/10.3390/en11123386.
Full textMongird, Kendall, Vilayanur Viswanathan, Patrick Balducci, Jan Alam, Vanshika Fotedar, Vladimir Koritarov, and Boualem Hadjerioua. "An Evaluation of Energy Storage Cost and Performance Characteristics." Energies 13, no. 13 (June 28, 2020): 3307. http://dx.doi.org/10.3390/en13133307.
Full textDeng, Jianqiu, Wen-Bin Luo, Xiao Lu, Qingrong Yao, Zhongmin Wang, Hua-Kun Liu, Huaiying Zhou, and Shi-Xue Dou. "Sodium-Ion Batteries: High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode (Adv. Energy Mater. 5/2018)." Advanced Energy Materials 8, no. 5 (February 2018): 1870019. http://dx.doi.org/10.1002/aenm.201870019.
Full textAstuti, Fahmi, Bobby Refokry Oeza, Eka Septi Rahmawati, and Darminto Darminto. "NaFePO<sub>4</sub> Particles as a Cathode of Sodium Ion-Battery via Sol-Gel Method: A Review on Synthesis." Key Engineering Materials 950 (July 31, 2023): 17–24. http://dx.doi.org/10.4028/p-as34nm.
Full textXiao, Yao, Tao Wang, Yan-Fang Zhu, Hai-Yan Hu, Shuang-Jie Tan, Shi Li, Peng-Fei Wang, et al. "Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery." Research 2020 (October 19, 2020): 1–16. http://dx.doi.org/10.34133/2020/1469301.
Full textXie, Geng, Fuwei Wen, Qichao Wu, Xiang You, Geng Xie, and Lingzi Sang. "In-Situ Characterization of Molecular Processes at the Anode/Na3SbS4 Electrolyte Interface in All-Solid-State Sodium Batteries." ECS Meeting Abstracts MA2022-01, no. 4 (July 7, 2022): 541. http://dx.doi.org/10.1149/ma2022-014541mtgabs.
Full textSalvini, Coriolano, and Ambra Giovannelli. "Techno-Economic Comparison of Utility-Scale Compressed Air and Electro-Chemical Storage Systems." Energies 15, no. 18 (September 11, 2022): 6644. http://dx.doi.org/10.3390/en15186644.
Full textSu, Fengmei, Xuechao Qiu, Feng Liang, Manabu Tanaka, Tao Qu, Yaochun Yao, Wenhui Ma, et al. "Preparation of Nickel Nanoparticles by Direct Current Arc Discharge Method and Their Catalytic Application in Hybrid Na-Air Battery." Nanomaterials 8, no. 9 (September 1, 2018): 684. http://dx.doi.org/10.3390/nano8090684.
Full textGao, Haixing, Siqi Zhu, Yao Kang, Duc Anh Dinh, Kwan San Hui, Feng Bin, Xi Fan, et al. "Zeolitic Imidazolate Framework-Derived Co-Fe@NC for Rechargeable Hybrid Sodium–Air Battery with a Low Voltage Gap and Long Cycle Life." ACS Applied Energy Materials 5, no. 2 (February 2, 2022): 1662–71. http://dx.doi.org/10.1021/acsaem.1c03073.
Full textWang, Lei, Jianxing Hu, Yajuan Yu, Kai Huang, and Yuchen Hu. "Lithium-air, lithium-sulfur, and sodium-ion, which secondary battery category is more environmentally friendly and promising based on footprint family indicators?" Journal of Cleaner Production 276 (December 2020): 124244. http://dx.doi.org/10.1016/j.jclepro.2020.124244.
Full textHadi, Abdul, Iskandar Idris Yaacob, and Cheah Seok Gaik. "Synthesis of Nanocrystalline CeO2 Using Mechanochemical Method: The Effect of Milling Time on the Particle Size." Materials Science Forum 517 (June 2006): 105–10. http://dx.doi.org/10.4028/www.scientific.net/msf.517.105.
Full textSengupta, Abhinanda, Ajit Kumar, Aakash Ahuja, Gayatree Barik, Harshita Lohani, Pratima Kumari, and Sagar Mitra. "Nano-Crystallites of P2-Type Layered Transition Metal Oxide High Voltage Cathode for Sodium-Ion Battery." ECS Meeting Abstracts MA2022-02, no. 64 (October 9, 2022): 2332. http://dx.doi.org/10.1149/ma2022-02642332mtgabs.
Full textDemchenko, V. G., A. S. Trubachev, V. J. Falko, and S. S. Hron. "MOBILE ACCUMULATORS FOR DISCRETE SYSTEMS HEAT-COLD SUPPLIES. Part 2." Industrial Heat Engineering 40, no. 3 (September 7, 2018): 57–69. http://dx.doi.org/10.31472/ihe.3.2018.08.
Full textMa, Cheng, Yuehong Shu, and Hongyu Chen. "Leaching of Spent Lead Paste by Oxalate and Sodium Oxalate Solution and Prepared Leady Oxide Powder in Nitrogen and Air for Lead Acid Battery." Journal of The Electrochemical Society 163, no. 10 (2016): A2240—A2247. http://dx.doi.org/10.1149/2.0501610jes.
Full textChen, Ting-Ru, Tian Sheng, Zhen-Guo Wu, Jun-Tao Li, En-Hui Wang, Chun-Jin Wu, Hong-Tai Li, et al. "Cu2+ Dual-Doped Layer-Tunnel Hybrid Na0.6Mn1–xCuxO2 as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability." ACS Applied Materials & Interfaces 10, no. 12 (March 5, 2018): 10147–56. http://dx.doi.org/10.1021/acsami.8b00614.
Full text