Academic literature on the topic 'Social networks – Mathematical models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Social networks – Mathematical models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Social networks – Mathematical models"
Anderson, Brian D. O., and Mengbin Ye. "Mathematical Models of Self-Appraisal in Social Networks." Journal of Systems Science and Complexity 34, no. 5 (October 2021): 1604–33. http://dx.doi.org/10.1007/s11424-021-1193-y.
Full textLavenant, H., and B. Maury. "Opinion propagation on social networks: a mathematical standpoint." ESAIM: Proceedings and Surveys 67 (2020): 285–335. http://dx.doi.org/10.1051/proc/202067016.
Full textJelassi, Mariem, Kayode Oshinubi, Mustapha Rachdi, and Jacques Demongeot. "Epidemic dynamics on social interaction networks." AIMS Bioengineering 9, no. 4 (2022): 348–61. http://dx.doi.org/10.3934/bioeng.2022025.
Full textNasution, Mahyuddin K. M., Rahmad Syah, and Marischa Elveny. "Social Network Analysis: Towards Complexity Problem." Webology 18, no. 2 (December 23, 2021): 449–61. http://dx.doi.org/10.14704/web/v18i2/web18332.
Full textAssunção, Diana, Isabel Pedrosa, Rui Mendes, Fernando Martins, João Francisco, Ricardo Gomes, and Gonçalo Dias. "Social Network Analysis: Mathematical Models for Understanding Professional Football in Game Critical Moments—An Exploratory Study." Applied Sciences 12, no. 13 (June 24, 2022): 6433. http://dx.doi.org/10.3390/app12136433.
Full textGabdrakhmanova, Nailia, and Maria Pilgun. "Intelligent Control Systems in Urban Planning Conflicts: Social Media Users’ Perception." Applied Sciences 11, no. 14 (July 17, 2021): 6579. http://dx.doi.org/10.3390/app11146579.
Full textGovindankutty, Sreeraag, and Shynu Padinjappurathu Gopalan. "SEDIS—A Rumor Propagation Model for Social Networks by Incorporating the Human Nature of Selection." Systems 11, no. 1 (December 29, 2022): 12. http://dx.doi.org/10.3390/systems11010012.
Full textBonato, Anthony, Noor Hadi, Paul Horn, Paweł Prałat, and Changping Wang. "Models of Online Social Networks." Internet Mathematics 6, no. 3 (January 2009): 285–313. http://dx.doi.org/10.1080/15427951.2009.10390642.
Full textSaunders, Clare. "Unblocking the Path to Effective Block Modeling in Social Movement Research." Mobilization: An International Quarterly 16, no. 3 (September 1, 2011): 283–302. http://dx.doi.org/10.17813/maiq.16.3.a70276715p171144.
Full textTsocheva, Ksenia Ivova. "Mathematical Analysis of Some Reaction Networks Inducing Biological Growth/Decay Functions." Biomath Communications 7, no. 1 (July 17, 2020): 14. http://dx.doi.org/10.11145/bmc.2020.07.067.
Full textDissertations / Theses on the topic "Social networks – Mathematical models"
Tang, Hon Cheong 1980. "Gravity-based trust model for web-based social networks." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112366.
Full textCorley, Courtney David. "Social Network Simulation and Mining Social Media to Advance Epidemiology." Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc11053/.
Full textSharabati, Walid. "Multi-mode and evolutionary networks." Fairfax, VA : George Mason University, 2008. http://hdl.handle.net/1920/3384.
Full textVita: p. 214-215. Thesis director: Edward J. Wegman, Yasmin H. Said Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computational Sciences and Informatics. Title from PDF t.p. (viewed Mar. 9, 2009). Includes bibliographical references (p. 209-213). Also issued in print.
Bao, Qing. "Inferring diffusion models with structural and behavioral dependency in social networks." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/305.
Full textRäisänen, Janne. "Random graphs as model of Peer-to-Peer social networks." Thesis, Uppsala universitet, Matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-176609.
Full textJunuthula, Ruthwik Reddy. "Modeling, Evaluation and Analysis of Dynamic Networks for Social Network Analysis." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1544819215833249.
Full textBotha, Leendert W. "Modeling online social networks using Quasi-clique communities." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/17859.
Full textENGLISH ABSTRACT: With billions of current internet users interacting through social networks, the need has arisen to analyze the structure of these networks. Many authors have proposed random graph models for social networks in an attempt to understand and reproduce the dynamics that govern social network development. This thesis proposes a random graph model that generates social networks using a community-based approach, in which users’ affiliations to communities are explicitly modeled and then translated into a social network. Our approach explicitly models the tendency of communities to overlap, and also proposes a method for determining the probability of two users being connected based on their levels of commitment to the communities they both belong to. Previous community-based models do not incorporate community overlap, and assume mutual members of any community are automatically connected. We provide a method for fitting our model to real-world social networks and demonstrate the effectiveness of our approach in reproducing real-world social network characteristics by investigating its fit on two data sets of current online social networks. The results verify that our proposed model is promising: it is the first community-based model that can accurately reproduce a variety of important social network characteristics, namely average separation, clustering, degree distribution, transitivity and network densification, simultaneously.
AFRIKAANSE OPSOMMING: Met biljoene huidige internet-gebruikers wat deesdae met behulp van aanlyn sosiale netwerke kommunikeer, het die analise van hierdie netwerke in die navorsingsgemeenskap toegeneem. Navorsers het al verskeie toevalsgrafiekmodelle vir sosiale netwerke voorgestel in ’n poging om die dinamika van die ontwikkeling van dié netwerke beter te verstaan en te dupliseer. In hierdie tesis word ’n nuwe toevalsgrafiekmodel vir sosiale netwerke voorgestel wat ’n gemeenskapsgebaseerde benadering volg, deurdat gebruikers se verbintenisse aan gemeenskappe eksplisiet gemodelleer word, en dié gemeenskapsmodel dan in ’n sosiale netwerk omskep word. Ons metode modelleer uitdruklik die geneigdheid van gemeenskappe om te oorvleuel, en verskaf ’n metode waardeur die waarskynlikheid van vriendskap tussen twee gebruikers bepaal kan word, op grond van hulle toewyding aan hulle wedersydse gemeenskappe. Vorige modelle inkorporeer nie gemeenskapsoorvleueling nie, en aanvaar ook dat alle lede van dieselfde gemeenskap vriende sal wees. Ons verskaf ’n metode om ons model se parameters te pas op sosiale netwerk datastelle en vertoon die vermoë van ons model om eienskappe van sosiale netwerke te dupliseer. Die resultate van ons model lyk belowend: dit is die eerste gemeenskapsgebaseerde model wat gelyktydig ’n belangrike verskeidenheid van sosiale netwerk eienskappe, naamlik gemiddelde skeidingsafstand, samedromming, graadverdeling, transitiwiteit en netwerksverdigting, akkuraat kan weerspieël.
Kolgushev, Oleg. "Influence of Underlying Random Walk Types in Population Models on Resulting Social Network Types and Epidemiological Dynamics." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc955128/.
Full textDanchev, Valentin. "Spatial network structures of world migration : heterogeneity of global and local connectivity." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:81704dfc-4221-4ef4-81cf-35d89dfc364a.
Full textMorales, Matamoros Javier. "On-line norm synthesis for open Multi-Agent systems." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396133.
Full textEls sistemes Multi-Agent (MAS) són sistemes computeritzats composats d’agents autònoms que interaccionen per resoldre problemes complexos. A un MAS, els agents requereixen algun mecanisme per a coordinar les seves activitats. A la literatura en Sistemes Multi-Agent, les normes han estat àmpliament utilitzades per coordinar les activitats dels agents. Per tant, donat un MAS, un dels majors reptes d’investigació és el de sintetizar el sistema normatiu, és a dir, la col·lecció de normes, que suporti la coordinació dels agents. Aquesta tesi es centra en la síntesi automàtica de normes per sistemes Multi-Agent oberts. A un MAS obert, la població d’agents pot canviar amb el temps, els agents poden ésser desenvolupats per terceres parts, i els comportaments dels agents són desconeguts per endavant. Aquestes condicions particulars fan especialment complicat sintetizar el sistema normatiu que reguli un sistema Multi-Agent obert. En general, la literatura en Sistemes Multi-Agent ha investigat dues aproximacions a la síntesi de normes: disseny off-line, i síntesi on-line. La primera aproximació consisteix a sintetizar un sistema normatiu en temps de disseny. Amb aquest propòsit, aquesta aproximació assumeix que l’espai d’estats d’un MAS és conegut en temps de disseny i no canvia en temps d’execució. Això va contra la natura dels sistemes Multi-Agent oberts, i per tant el disseny off-line no és apropiat per a sintetitzar les seves normes. Com a alternativa, la síntesi on-line considera que les normes són sintetizades en temps d’execució. La majoria de recerca en síntesi on-line s’ha centrat en la emergència de normes, que considera que els agents sintetizen les seves pròpies normes, per tant assumint que tenen la capacitat de sintetitzar-les. Aquestes condicions tampoc no es poden assumir en un MAS obert. Donat això, aquesta tesi introdueix un marc computacional per la síntesi on-line de normes en sistemes Multi-Agent oberts. Primer, aquest marc proveeix un model computacional per sintetizar normes per un MAS en temps d’execució. Aquest model computacional no requereix ni coneixement sobre els comportaments dels agents per endavant ni la seva participación en la síntesi de normes. En canvi, considera que una entitat reguladora observa les interaccions dels agents en temps d’execució, identificant situacions indesitjades per la coordinació i sintetizant normes que regulen aquestes situacions. El nostre model computacional ha estat dissenyat per a ésser de propòsit general per tal que pugui ser utilitzat a la síntesi de normes en un ampli ventall de dominis d’aplicació proporcionant només información clau sobre el domini. Segon, el nostre marc proveeix una arquitectura abstracta per implementar aquesta entitat reguladora, anomenada Màquina de Síntesi, que observa un MAS en temps d’execució i executa una estratègia de síntesi que s’encarrega de sintetizar normes. Tercer, el nostre marc incorpora una familia d’estratègies de síntesi destinades a ésser executades per una màquina de síntesi. En general, aquesta familia d’estratègies soporta la síntesi multi-objectiu i on-line de normes. La nostra primera estratègia, anomenada BASE, està dissenyada per sintetitzar sistemes normatius eficaços que evitin de manera satisfactòria situacions indesitjades per la coordinació d’un sistema Multi-Agent. Després, dues estratègies de síntesi, anomenades IRON i SIMON, van més enllà de la eficàcia i també consideren la compacitat com a objectiu de síntesi. IRON i SIMON prenen aproximacions alternatives a la síntesi de sistemes normatius compactes que, a més d’aconseguir la coordinació de manera efectiva, siguin tant sintètics com fos possible. Això permet a aquestes estratègies reduir els esforços computacionals dels agents a l’hora de raonar sobre les normes. Una quarta estratègia, anomenada LION, va més enllà de la eficàcia i la compacitat per considerar també la liberalitat com a objectiu de síntesi. Lion sintetitza sistemes normatius que són eficaços i compactes mentre preserven la llibertat dels agents tant com sigui possible. La nostra última estratègia és desmon, que és capaç de sintetizar normes considerant diferents graus de reactivitat. desmon permet ajustar la quantitat d’informació necessària per decidir si una norma cal que sigui o no inclosa a un sistema normatiu. DESMON pot sintetizar normes essent reactiu (considerant poca informació), o essent més deliberatiu (considerant més informació). En aquesta tesi presentem avaluacions empíriques de les nostres estratègies de síntesi en dos dominis d’aplicació: el domini del tràfic, i el domini de les comunitats on-line. En aquest primer domini, utilitzem les nostres estratègies per a sintetizar sistemes normatius eficaços, compactes i liberals que eviten colisions entre cotxes. Al segon domini, les nostres estratègies sintetizen sistemes normatius basant-se en les queixes dels usuaris de la comunitat sobre continguts inapropiats. D’aquesta manera, les nostres estratègies implementen un mecanisme de regulació que sintetiza normes quan hi ha suficient consens entre els usuaris sobre la necessitat de normes. Aquesta tesi avança en l’estat de l’art en síntesi de normes al proporcionar un novedós model computacional, una arquitectura abstracta i una familia d’estratègies per la síntesi on-line de normes per sistemes Multi-Agent oberts.
Books on the topic "Social networks – Mathematical models"
Pattison, Philippa. Algebraic models for social networks. Cambridge [England]: Cambridge University Press, 1993.
Find full text1946-, Carrington Peter J., Scott John, and Wasserman Stanley, eds. Models and methods in social network analysis. Cambridge: Cambridge University Press, 2005.
Find full textDutta, Bhaskar. Networks and groups: Models of strategic formation. Berlin: Springer, 2003.
Find full textKesidis, George. An introduction to models of online peer-to-peer social networking. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool, 2011.
Find full textSääskilahti, Pekka. Essays on the economics of networks and social relations. [Helsinki]: Helsinki School of Economics, 2005.
Find full textExponential random graph models for social networks: Theories, methods, and applications. Cambridge: Cambridge University Press, 2012.
Find full textGarson, G. David. Neural networks: An introductory guide for social scientists. London: Sage, 1998.
Find full textCapecchi, Vittorio. Applications of mathematics in models, artificial neural networks and arts: Mathematics and society. Dordrecht: Springer, 2010.
Find full textBoyd, John Paul. Social semigroups: A unified theory of scaling and blockmodelling as applied to social networks. Fairfax, Va: George Mason University Press, 1991.
Find full textUn mondo piccolo ma lento: Dalla fisica ai social network. Ariccia (RM): Aracne editrice int.le S.r.l., 2015.
Find full textBook chapters on the topic "Social networks – Mathematical models"
Wang, Haiyan, Feng Wang, and Kuai Xu. "Ordinary Differential Equation Models on Social Networks." In Surveys and Tutorials in the Applied Mathematical Sciences, 3–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38852-2_2.
Full textTreur, Jan. "Mathematical Details of Specific Difference and Differential Equations and Mathematical Analysis of Emerging Network Behaviour." In Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models, 375–403. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31445-3_15.
Full textDe Sanctis, Luca, and Stefano Ghirlanda. "Shared Culture Needs Large Social Networks." In Applications of Mathematics in Models, Artificial Neural Networks and Arts, 113–22. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8581-8_5.
Full textSarti, Simone, and Marco Terraneo. "An Application of the Multilevel Regression Technique to Validate a Social Stratification Scale." In Applications of Mathematics in Models, Artificial Neural Networks and Arts, 147–61. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8581-8_8.
Full textBomba, Andriy, Natalija Kunanets, Volodymyr Pasichnyk, and Yuriy Turbal. "Mathematical and Computer Models of Message Distribution in Social Networks Based on the Space Modification of Fermi-Pasta-Ulam Approach." In Advances in Intelligent Systems and Computing, 257–66. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97885-7_26.
Full textAggrawal, Niyati, and Adarsh Anand. "Network Models." In Social Networks, 37–52. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003088066-3.
Full textSerovajsky, Simon. "Mathematical models in social sciences." In Mathematical Modelling, 149–64. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003035602-9.
Full textDuggan, Jim. "Diffusion Models." In Lecture Notes in Social Networks, 97–121. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34043-2_5.
Full textBersano-Méndez, Nicolás Ignacio, Satu Elisa Schaeffer, and Javier Bustos-Jiménez. "Metrics and Models for Social Networks." In Computational Social Networks, 115–42. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4048-1_5.
Full textZheleva, Elena, Evimaria Terzi, and Lise Getoor. "Models of Information Sharing." In Privacy in Social Networks, 56–61. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-01901-2_7.
Full textConference papers on the topic "Social networks – Mathematical models"
Balagura, Kyrill, Helen Kazakova, Daliant Maximus, and Victoria Turygina. "Mathematical models of cognitive interaction identification in the social networks." In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114453.
Full textSimsek, Mustafa, Ibrahim Delibalta, Lemi Baruh, and Suleyman S. Kozat. "Mathematical model of causal inference in Social Networks." In 2016 24th Signal Processing and Communication Application Conference (SIU). IEEE, 2016. http://dx.doi.org/10.1109/siu.2016.7495952.
Full textLeung, Carson K., and Sehaj P. Singh. "A mathematical model for friend discovery from dynamic social graphs." In ASONAM '21: International Conference on Advances in Social Networks Analysis and Mining. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3487351.3489473.
Full textStojanov, Z., J. Stojanov, G. Jotanovic, and D. Dobrilovic. "Weighted networks in socio-technical systems: Concepts and challenges." In The International Workshop on Information, Computation, and Control Systems for Distributed Environments. Crossref, 2020. http://dx.doi.org/10.47350/iccs-de.2020.24.
Full textLIÑÁN Ruiz, Roberto José, Jorge Pérez Aracil, and Víctor Cabrera Cañizares. "Mathematical optimization for planning and design of cycle paths." In CIT2016. Congreso de Ingeniería del Transporte. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/cit2016.2016.4089.
Full textZhukov, Dmitry, and Julia Perova. "A Model for Analyzing User Moods of Self-organizing Social Network Structures Based on Graph Theory and the Use of Neural Networks." In 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). IEEE, 2021. http://dx.doi.org/10.1109/summa53307.2021.9632203.
Full textTuarob, Suppawong, and Conrad S. Tucker. "Discovering Next Generation Product Innovations by Identifying Lead User Preferences Expressed Through Large Scale Social Media Data." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34767.
Full textCosta, Gianni, and Riccardo Ortale. "Overlapping Communities and Roles in Networks with Node Attributes: Probabilistic Graphical Modeling, Bayesian Formulation and Variational Inference (Extended Abstract)." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/796.
Full textDavidson, Jacob D., and N. C. Goulbourne. "Connecting Chain Chemistry and Network Topology With the Large Deformation Mechanical Response of Elastomers." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88551.
Full textEshghi, Soheil, Grace-Rose Williams, Gualtiero B. Colombo, Liam D. Turner, David G. Rand, Roger M. Whitaker, and Leandros Tassiulas. "Mathematical models for social group behavior." In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2017. http://dx.doi.org/10.1109/uic-atc.2017.8397423.
Full textReports on the topic "Social networks – Mathematical models"
Gelenbe, Erol. Mathematical Models by Quality of Service Driven Routing in Networks. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada436700.
Full textGelenbe, Erol. Mathematical Models for Quality of Service Driven Routing in Networks. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada441501.
Full textSaito, Kazumi. Dynamic Trust Models between Users over Social Networks. Fort Belvoir, VA: Defense Technical Information Center, March 2016. http://dx.doi.org/10.21236/ada636879.
Full textTarakanov, Alexander O. Development of Mathematical Models of Immune Networks Intended for Information Security Assurance. Fort Belvoir, VA: Defense Technical Information Center, February 2006. http://dx.doi.org/10.21236/ada454473.
Full textChandrasekhar, Arun, Horacio Larreguy, and Juan Pablo Xandri. Testing Models of Social Learning on Networks: Evidence from a Lab Experiment in the Field. Cambridge, MA: National Bureau of Economic Research, August 2015. http://dx.doi.org/10.3386/w21468.
Full textTucker-Blackmon, Angelicque. Engagement in Engineering Pathways “E-PATH” An Initiative to Retain Non-Traditional Students in Engineering Year Three Summative External Evaluation Report. Innovative Learning Center, LLC, July 2020. http://dx.doi.org/10.52012/tyob9090.
Full textSemerikov, Serhiy, Illia Teplytskyi, Yuliia Yechkalo, Oksana Markova, Vladimir Soloviev, and Arnold Kiv. Computer Simulation of Neural Networks Using Spreadsheets: Dr. Anderson, Welcome Back. [б. в.], June 2019. http://dx.doi.org/10.31812/123456789/3178.
Full textSemerikov, Serhiy O., Illia O. Teplytskyi, Yuliia V. Yechkalo, and Arnold E. Kiv. Computer Simulation of Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot. [б. в.], November 2018. http://dx.doi.org/10.31812/123456789/2648.
Full textShabelnyk, Tetiana V., Serhii V. Krivenko, Nataliia Yu Rotanova, Oksana F. Diachenko, Iryna B. Tymofieieva, and Arnold E. Kiv. Integration of chatbots into the system of professional training of Masters. [б. в.], June 2021. http://dx.doi.org/10.31812/123456789/4439.
Full textKlymenko, Mykola V., and Andrii M. Striuk. Development of software and hardware complex of GPS-tracking. CEUR Workshop Proceedings, March 2021. http://dx.doi.org/10.31812/123456789/4430.
Full text