Academic literature on the topic 'SnS2 NANOFILLER'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SnS2 NANOFILLER.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "SnS2 NANOFILLER"

1

Sai Prasanna, CM, and S. Austin Suthanthiraraj. "Improved zinc ion transportation in gel polymer electrolyte upon the addition of nano-sized SnO2." Polymers and Polymer Composites 28, no. 1 (July 21, 2019): 54–65. http://dx.doi.org/10.1177/0967391119858558.

Full text
Abstract:
Nanocomposite gel polymer electrolytes (NCGPEs) consisting of Zn(OTf)2 salt solution in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid (EMIMTFSI), entrapped in poly(vinyl chloride) (PVC)/poly(ethyl methacrylate) (PEMA) matrices, and dispersed with different concentrations of tin oxide (SnO2) nanofiller were prepared by simple solution casting method. The free-standing film of the composite gel polymer electrolyte (GPE) exhibited an optimum ionic conductivity value of 4.92 × 10−4 Scm−1 at ambient temperature. The gel composites developed predominant amorphous phase and porous morphologies, thus supporting the high ionic conduction as confirmed from X-ray diffraction (XRD) and scanning electron microscopic (SEM) studies. The complex formation properties of the materials were evaluated by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy technique. The dispersion of nanofillers in GPEs improved the thermal behavior of the composite system to 185°C, which was ascertained by thermogravimetric (TG) analysis. The electrochemical stability window of approximately 4.37 V with feasible plating/stripping process of zinc metal on stainless steel electrode was analyzed by voltammetric studies and all these features suggested the possibility of exploiting NCGPE films as electrolytes in batteries.
APA, Harvard, Vancouver, ISO, and other styles
2

Dhatarwal, Priyanka, Shobhna Choudhary, and R. J. Sengwa. "Effectively nanofiller concentration tunable dielectric properties of PVP/SnO2 nanodielectrics." Materials Letters 273 (August 2020): 127913. http://dx.doi.org/10.1016/j.matlet.2020.127913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ayeleru, Olusola Olaitan, Sisanda Dlova, Freeman Ntuli, Williams Kehinde Kupolati, and Peter Apata Olubambi. "Synthesis and characterization of SnO2 nanofiller from recycled expanded polystyrene." Procedia Manufacturing 30 (2019): 635–41. http://dx.doi.org/10.1016/j.promfg.2019.02.089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bhute, Monali V., Subhash B. Kondawar, and Pankaj Koinkar. "Fabrication of hybrid gel nanofibrous polymer electrolyte for lithium ion battery." International Journal of Modern Physics B 32, no. 19 (July 18, 2018): 1840066. http://dx.doi.org/10.1142/s0217979218400660.

Full text
Abstract:
Fibrous membranes are promising separators for high-performance lithium ion battery because of their high porosity and superior electrolyte uptake. In this paper, the fabrication of hybrid gel polymer electrolyte (HGPE) by introducing SnO2 nanoparticles in poly(vinylidine fluoride) by electrospinning technique and soaking the electrospun nanofibrous membranes in 1 M LiPF6 in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). The as-prepared electrospun HGPE with SnO2 nanofiller was characterized by scanning electron microscopy. The influence of SnO2 on the structure of polymer membrane, physical, and electrochemical properties is systematically investigated. HGPE shows significant high ionic conductivity 4.6 × 10[Formula: see text] S/cm at room-temperature and better cell performance such as discharge C-rate capability and cycle performance. The hybrid gel polymer nanofibrous membrane favors high uptake of lithium electrolyte so that electrolyte leakage is reduced. The gel polymer electrolyte with SnO2 filler was used for the fabrication of Li/PVdF-SnO2/LiFePO4 coin cell. The fabricated cell was evaluated at a current density of 0.2 C-rate and delivered stable and excellent cycle performance. This study revealed that the prepared HGPE can be employed as potential electrolyte for lithium ion batteries.
APA, Harvard, Vancouver, ISO, and other styles
5

Sengwa, R. J., and Priyanka Dhatarwal. "Nanofiller concentration-dependent appreciably tailorable and multifunctional properties of (PVP/PVA)/SnO2 nanocomposites for advanced flexible device technologies." Journal of Materials Science: Materials in Electronics 32, no. 7 (March 13, 2021): 9661–74. http://dx.doi.org/10.1007/s10854-021-05627-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dhatarwal, Priyanka, and R. J. Sengwa. "Poly(vinyl pyrrolidone) matrix and SiO2, Al2O3, SnO2, ZnO, and TiO2 nanofillers comprise biodegradable nanocomposites of controllable optical properties for optoelectronic applications." Optik 241 (September 2021): 167215. http://dx.doi.org/10.1016/j.ijleo.2021.167215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sengwa, R. J., and Priyanka Dhatarwal. "Polymer nanocomposites comprising PMMA matrix and ZnO, SnO2, and TiO2 nanofillers: A comparative study of structural, optical, and dielectric properties for multifunctional technological applications." Optical Materials 113 (March 2021): 110837. http://dx.doi.org/10.1016/j.optmat.2021.110837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Harshvardhan, Palkin Yadav, and Bharti Singh. "Systematic investigation of the effect of SnS2 nanofiller content on the piezoelectric performance of the PVDF-TrFE-based nanogenerator." Materials Today: Proceedings, June 2023. http://dx.doi.org/10.1016/j.matpr.2023.05.607.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "SnS2 NANOFILLER"

1

HARSHVARDHAN and PALKIN YADAV. "SYSTEMATIC INVESTIGATION OF THE EFFECT OF SnS2 NANOFILLER CONTENT ON THE PIEZOELECTRIC PERFORMANCE OF THE PVDF-TrFE-BASED NANOGENERATOR." Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19797.

Full text
Abstract:
In this work, SnS2 is used as a nanofiller material to improve the response of the polymer-based piezoelectric nanogenerator because of its better inherent piezoelectric properties in comparison to other 2D materials. For this, first, nanoflakes of tin sulfide (SnS2) were synthesized via the hydrothermal method, where the high purity of SnS2 powder is confirmed by Raman spectroscopy and X-ray diffraction studies. The obtained powder of SnS2 was then mixed with PVDF-TrFE in different weight percentages (0%, 1%, 3%, 5%, and 7%) of SnS2 to synthesize polymer composite film via the drop-casting method. These films are then characterized with XRD and FTIR spectrometers, which show enhancement in the electroactive beta phase of the nanocomposite films after doping with SnS2 powder, from 58.30% to 93.07%, which is in agreement with the polarization versus electric field (P-E) measurements that show increased remnant polarization after doping. These films are then used to fabricate a piezoelectric nanogenerator by adhering aluminum tape to both sides of the films. The piezoelectric nanogenerator's (PENG) output performance is analyzed by measuring the open-circuit voltage (Voc) and short-circuits (Isc) by tapping the nanogenerator with the help of a dynamic shaker, which shows that the output performance of Trifluoroethylene (PVDF-TrFE) based PENGs gets enhanced after the introduction of SnS2 powder. The maximum piezoelectric voltage corresponding to the PENG made with 5% SnS2 was 14.4 V, which was almost 1.5 times that of the PENG made with bare PVDF-TrFE. The output piezoelectric current followed a similar trend, with the 5% SnS2 PENG producing 3.9�A of current, which was roughly 1.62 times more than the output of the bare PVDF TrFE thin film. As a result, the present study demonstrates that adding SnS2 to the PVDF matrix can significantly improve energy harvesting technologies based on PVDF's piezoelectric properties.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography