Academic literature on the topic 'Sn-based electrodeposited coatings'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sn-based electrodeposited coatings.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sn-based electrodeposited coatings"

1

Dharanendra, R. A., R. Bhavana, S. Sreenivasa, D. B. Aruna Kumar, and M. Shet Prakash. "Electrodeposition and corrosion behavior of Sn and Sn-reduced graphene oxide coatings on mild steel from the non-cyanide acid chloride bath solution." Research Journal of Chemistry and Environment 27, no. 8 (July 15, 2023): 1–7. http://dx.doi.org/10.25303/2708rjce0107.

Full text
Abstract:
Reduced graphene oxide (rGO) derived from graphite has received attention among researchers because of its special unique characteristic properties. Based on the studies, rGO-based coatings on stainless steel (SS) act as an anti-corrosive protective coating on stainless steel. Herein, we prepared a few layered rGO via graphite oxide by a simple thermal exfoliation of graphite oxide. Tin and Sn-rGO coatings have been electrodeposited on SS using an optimized acid chloride bath composition in the absence and presence of rGO respectively. The prepared specimens were subjected to an aggressive corrosive environment (aqueous 5% NaCl). The corrosion behavior of Sn and Sn-rGO composite coating has been examined by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) techniques. The potential shifted towards the negative region after polarization for Sn-rGO composite coating compared to pure Sn coating. Also, Sn-rGO composite coating exhibits more resistance when subjected to EIS measurements in 5% NaCl. The change in the surface morphology of coatings before and after exposure to corrosive environments has been observed by Scanning electron microscopy. After exposure to aqueous 5% NaCl, Sn coated specimen exhibited pores on the SS surface whereas fewer pore structures were observed on the SS surface for Sn-rGO coating. The results reveal a significant increase in anti-corrosion properties of Sn-rGO on SS compared to that of pure Sn coating.
APA, Harvard, Vancouver, ISO, and other styles
2

He, Zhen, Chen Yu, Jiaming Liu, Zengcheng Miao, and Yuxin Wang. "Effects of Preparation Parameters on the Structural and Morphologic Properties of SnO2-Sb Coatings." Coatings 13, no. 5 (May 3, 2023): 866. http://dx.doi.org/10.3390/coatings13050866.

Full text
Abstract:
Sb-doped SnO2 (SnO2-Sb) coatings show superiority in degrading toxic and refractory organic pollutants. SnO2-Sb coatings can be prepared by oxidizing electrodeposited Sn-Sb coatings through an annealing process. The properties and structure of SnO2-Sb coatings can be tailored by adjusting the preparation parameters. This study examines the effects of crucial preparation parameters on the performance of SnO2-Sb coatings, with the aim of enhancing their properties.Determining the coatings’ cross-sectional and surface characteristics was accomplished using various characterization techniques. A thorough investigation of the prepared samples’ phase and element components was also carried out. Based on the findings, the surface roughness of the prepared Sn-Sb precoating changed with increasing current density, yet the primary surface features of the SnO2-Sb coatings were hardly altered by the annealing process. Without lowering the coating thickness, the appropriate current density of 30 mA/cm2 produced a rough and active coating surface. Our study’s proper annealing temperature of 600 °C transformed Sn-Sb precoating into SnO2-Sb coating and achieved excellent coating quality.While changes in the Sb content affected the morphology of the prepared SnO2-Sb coatings, the mixed oxide coatings’ cassiterite SnO2 phase was unaffected. These results may provide insights into the optimized use of SnO2-Sb coatings in various applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Pereira, Nuno M., Célia T. Sousa, Carlos M. Pereira, João P. Araújo, and A. Fernando Silva. "Enhanced Properties of Co–Sn Coatings Electrodeposited from Choline Chloride-Based Deep Eutectic Solvents." Crystal Growth & Design 17, no. 10 (September 18, 2017): 5208–15. http://dx.doi.org/10.1021/acs.cgd.7b00703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bhattacharya, Sumit, Ashutosh Sharma, Siddhartha Das, and Karabi Das. "Synthesis and Properties of Pulse Electrodeposited Lead-Free Tin-Based Sn/ZrSiO4 Nanocomposite Coatings." Metallurgical and Materials Transactions A 47, no. 3 (January 5, 2016): 1292–312. http://dx.doi.org/10.1007/s11661-015-3313-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rosolymou, Eleni, Stella Spanou, Caterina Zanella, Dimitris S. Tsoukleris, Susanne Köhler, Peter Leisner, and Evangelia A. Pavlatou. "Electrodeposition of Photocatalytic Sn–Ni Matrix Composite Coatings Embedded with Doped TiO2 Particles." Coatings 10, no. 8 (August 9, 2020): 775. http://dx.doi.org/10.3390/coatings10080775.

Full text
Abstract:
Direct current electrodeposited Sn–Ni/TiO2 nanostructured coatings were produced by embedding two different doped types of TiO2 particles within the alloy matrix, a commercially available doped carbon-based and doped N,S-TiO2 particles. The structural characteristics of the composite coatings have been correlated with the effect of loading, type of particles in the electrolytic bath, and the applied current density. Regardless of the type of doped particles TiO2, increasing values of applied current density resulted in a reduction of the co-deposition percentage of TiO2 particles and an increase of Tin content into the alloy matrix. The application of low current density values accompanied by a high load of particles in the bath led to the highest codeposition percentage (~3.25 wt.%) achieved in the case of embedding N,S-TiO2 particles. X-ray diffraction data demonstrated that in composite coatings the incorporation of the different types of TiO2 particles in the alloy metal matrix modified significantly the nano-crystalline structure in comparison with the pure coatings. The best photocatalytic behavior under visible irradiation was revealed for the composite coatings with the highest co-deposition percentage of doped N,S-TiO2 particles, that also exhibited enhanced wear resistance and slightly reduced microhardness compared to pure ones.
APA, Harvard, Vancouver, ISO, and other styles
6

Rosoiu, Sabrina Patricia, Aida Ghiulnare Pantazi, Aurora Petica, Anca Cojocaru, Stefania Costovici, Caterina Zanella, Teodor Visan, Liana Anicai, and Marius Enachescu. "Comparative Study of Ni-Sn Alloys Electrodeposited from Choline Chloride-Based Ionic Liquids in Direct and Pulsed Current." Coatings 9, no. 12 (November 29, 2019): 801. http://dx.doi.org/10.3390/coatings9120801.

Full text
Abstract:
This work presents, for the first time, the electrodeposition of Ni-Sn alloys in pulse current, from deep eutectic solvents (choline chloride: ethylene glycol eutectic mixture). Additionally, in this study, we report a comparison of the electrodeposition methods known as pulse and direct current. The elemental composition of the films, evaluated from EDX, remained almost constant independently on the electrodeposition parameters. The XRD data revealed the presence of the NiSn metastable phase, which has been confirmed by DSC analysis. This phase shows a nanocrystalline structure with crystallite sizes between 12 and 20 nm. The use of pulse current electrodeposition method has led to an improvement of alloys’ mechanical properties. Moreover, by controlling the electrodeposition parameters, we succeeded in tuning the mechanical properties of the coatings prepared through the PC method. We showed that the hardness parameters exhibited by the Ni-Sn alloys are strongly dependent on their crystallite sizes.
APA, Harvard, Vancouver, ISO, and other styles
7

Giurlani, Walter, Martina Vizza, Stefano Mauro Martinuzzi, Andrea Comparini, Marco Bonechi, Margherita Verrucchi, Andrea Caneschi, and Massimo Innocenti. "New Frontiers in Electrodeposition for More Sustainable Electroplating Processes." ECS Meeting Abstracts MA2022-02, no. 23 (October 9, 2022): 956. http://dx.doi.org/10.1149/ma2022-0223956mtgabs.

Full text
Abstract:
Although technological and processing advancements occurred in the past forty years, industrial firms are still struggling to provide solutions to corrosion protection as well as reduction of toxic wastes. Specifically, large-scale industrialization of electroplating techniques will continue to be limited by strict environmental regulations. Moreover, price volatility of the highly demanding electroplated materials like gold, palladium, copper and nickel will heavily impact the market in the next years. In that respect, alloy plating offers better answers in terms of economic growth and environmental sustainability due to fine tuning composition, morphology and crystallinity [1]. The main categories of alloy compounds are presented and the most important properties for the manufacturing process discussed. Particular attention is devoted to advances in industrial quality control and viable solutions for the reduction of precious metal content in electroplated accessories as well as replacement of cyanide and nickel baths with non-toxic compounds, also considering the commercial needs of wear resistance and aesthetic characteristics of gloss. The electrodeposition of Cu-Sn alloys (bronze) has earned considerable interest thanks to the chemical-physical properties of this alloy, which make it a valid substitute for nickel in fashion industry. Generally, most of the bronze coatings are electroplated starting from baths containing cyanides, and the metal precursors are selected as cyanide compounds. Free cyanide is a well-known problem in the galvanic production cycle both in terms of toxicity for the workers as well as for the environment, and in terms of costs associated with its disposal. The aim of this study is to develop an electroplating bath totally cyanide-free, therefore formulated in an innovative way and which, in addition to being free from this dangerous species, has an eco-friendly support electrolyte. To achieve this goal, methanesulfonic acid (MSA) was chosen as electrolyte, which is biodegradable as part of the natural sulfur cycle. We've studied different formulations in terms of metal precursors, organic additives and their concentrations [2-3]. The same cyanide issue is present also in for the electrodeposition of silver, for this reason the influence of polyethyleneimine (PEI) as additive for cyanide-free silver bath, in combination with 5,5-dimethylhydantoin (DMH) as complexing agent, was studied [4]. Chronoamperometry was used to investigate the electrodeposition mechanism, which is found to be a three-dimensional diffusion-controlled nucleation and growth mechanism, according to the Scharifker–Mostany’s model. Smoother, brighter and blue colored silver deposits are obtained in the presence of PEI in a Hull’s cell test, at low density current. Eventually, the influence of nitrate anion is also investigated. The presence of nitrate increases the range of current density allowing for an effective Ag deposition. We also investigated the use of modulated currents to increase the throwing power of electroplating, obtaining a more uniform deposition and reducing the amount of metals but maintaining the required characteristics. Pulsed current justifies its practical application mainly through its ability to influence the mechanisms of electrocrystallisation, which in turn control the mechanical and physical properties of the deposited metal. By simply adjusting the amplitude and length of the pulses, it is possible to control not only the composition and thickness, in atomic order, of the deposits, but to improve their characteristics such as grain size, porosity and homogeneity [5]. The authors acknowledge Regione Toscana POR CreO FESR 2014-2020 – azione 1.1.5 sub-azione a1 – Bando 1 “Progetti Strategici di ricerca e sviluppo” which made possible the projects “A.C.A.L. 4.0” (CUP 3553.04032020.158000165_1385), “A.M.P.E.R.E.” (CUP 3553.04032020.158000223_1538) and “GoodGalv” (3647.04032020.157000060). References [1] Giurlani, W.; Zangari, G.; Gambinossi, F.; Passaponti, M.; Salvietti, E.; Di Benedetto, F.; Caporali, S.; Innocenti, M. Electroplating for Decorative Applications: Recent Trends in Research and Development. Coatings 2018, 8, 260, doi:10.3390/coatings8080260. [2] Fabbri, L.; Sun, Y.; Piciollo, E.; Salvietti, E.; Zangari, G.; Passaponti, M.; Innocenti, M. Electrodeposition of White Bronzes on the Way to CZTS Absorber Films. J. Electrochem. Soc. 2020 , 167, 022513, doi: 10.1149/1945-7111/ab6c59. [3] Fabbri, L.; Giurlani, W.; Mencherini, G.; De Luca, A.; Passaponti, M.; Piciollo, E.; Fontanesi, C.; Caneschi, A.; Innocenti, M. Optimisation of Thiourea Concentration in a Decorative Copper Plating Acid Bath Based on Methanesulfonic Electrolyte. Coatings 2022, 12, 376, doi:10.3390/coatings12030376. [4] Pizzetti, F.; Salvietti, E.; Giurlani, W.; Emanuele, R.; Fontanesi, C.; Innocenti, M. Cyanide-free silver electrodeposition with polyethyleneimine and 5,5-dimethylhydantoin as organic additives for an environmentally friendly formulation. J. Electroanal. Chem. 2022, 911, 116196, doi:10.1016/j.jelechem.2022.116196. [5] Popov, K.I.; Nikolić, N.D. General Theory of Disperse Metal Electrodeposits Formation. In; Djokić, S.S., Ed.; Modern Aspects of Electrochemistry; Springer US: Boston, MA, 2012; Vol. 54, pp. 1–62 ISBN 978-1-4614-2379-9.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Sn-based electrodeposited coatings"

1

Jagtap, Piyush. "Whisker Growth from Electrodeposited Sn Coatings - Developing Materials Science and Mechanics Based Insights." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/3592.

Full text
Abstract:
Pure Sn and Sn-alloys are widely used in electrical and microelectronic devices as protective layer to prevent oxidation of Cu conductors and also as a component of Pb-free, Sn-based solders. Sn coatings, typically 0.5-10 μm thick, deposited on substrates, e.g., Cu, brass, etc., are prone to spontaneous growth (i.e., without any external stimuli) of Sn whiskers under ambient conditions. The growth of whiskers from Sn plating has caused numerous failures in micro-electronic devices, mainly due to short-circuiting, leading to failure of components or devices. Whisker growth is, thus especially very critical in aviation, space and defines applications, where the electronic components are designed for longer life span. Furthermore, due to miniaturization of electronic devices, the spacing between adjacent conductors or interconnects can be as small as a few hundred nanometres to a few micrometres, making them more prone to whisker induced short-circuiting. Minor alloying of Sn with Pub was the principle way for mitigating the whisker growth in Sn plated components; however, due to the recent worldwide acceptance of European Union’s Restriction of Hazardous Substances (RoHS) act, enforcing Pub-free manufacturing, whisker growth has re-emerged as a reliability issue in Pub-free solders and the Sn plating finishes. Even after decades of research, a universal whisker growth mechanism and hence effective mitigation technique is still not available in the public domain. This is mainly due to the fact that large number of factors that affect the whisker growth directly or indirectly, making it difficult to devise an experimental procedure, which allows studying effect of one factor at a time while keeping other factors constant. Although many mechanistic models for Sn whispering have been proposed in the past, the experimental evidences to support them are lacking. For example, recrystallization of whisker grain was proposed by various researchers; however, a direct observation confirming whisker grain is indeed a recrystallized grain has never been reported. Nevertheless, it is well understood that whisker growth is a form of stress relaxation process and diffusion plays important role in the formation of whiskers. Since Sn is extremely anisotropic with tetragonal crystal structure, the stress state of Sn coatings, as well as the diffusion needed for mass transport of atoms, varies drastically depending upon the direction of interest. Therefore, it is important to study the role of crystallographic texture (both macroscopic and microscopic) on whisker propensity by systematically varying the crystallographic texture of Sn coating while keeping thickness, grain size, substrate material, and post-deposition storage conditions the same. Better understanding of role of macro- and micro- texture is very crucial before any whispering mechanism can be proposed. Furthermore, recent studies indicate that role of stresses in Sn coatings driving whisker growth is not fully understood. It is generally accepted that compressive stress in Sn coating is the main factor that drives the whisker growth. However, whiskers were also observed when Sn coating was under tensile stress, making the role of stress controversial. Again, the stresses in Sn have multiple origins and need a systematic approach to understand their origin, quantify them and then relate it to whisker growth. Such systematic approach was never adopted in previous works. Hence, the current thesis aims to address the role of macro- and micro- crystallographic texture, stress regeneration mechanism, nature (i.e., magnitude and sign) of stress and stress gradient in the Sn coatings via systematic variation of texture, post-deposition storage conditions and substrate composition, including deposition of an interlayer in between Sn coating and the brass or Cu substrate. Whisker growth was studied from electro-deposited Sn coatings. The deposition parameters were optimized for producing different thickness and grain orientations. X-Ray diffraction (XRD) techniques were used to extract macro-texture of the coatings. The macro-texture measurement using XRD and micro-texture measurement using electron backscatter diffraction (EBSD) showed the same dominant and the second dominant orientations. It was observed that current density and deposition temperature, which are the two main electro-deposition parameters, significantly influence the crystallographic orientation of the grains. Thus, the global or macro-texture can be manipulated by changing the deposition parameters systematically. It was observed that whisker propensity increases drastically by growth of low index planes, such as (100) and (110), during deposition. Hence, proper selection of deposition parameters that lead to growth of high index planes can be used to suppress the whisker growth. Furthermore, micro-texture surrounding whisker grain was studied using EBSD technique by observing the same set of grains surrounding a whisker grain before and after whispering. Orientation imaging microscopy (OIM) maps of several whisker regions clearly indicate that whiskers preferentially grow from low index planes, such as (100), etc. Furthermore, using orientation dependent stiffness mapping (in-plane and out-of-plane), it was noticed that whiskers preferentially grew from regions of soft oriented grains (low modulus) surrounded by hard orientations. In addition, grain boundary disorientation analysis revealed presence of high fraction of high angle grain boundaries (HAGBs) in the vicinity of whisker grain. It was observed that overall fraction of HAGBs in the whispering region was 0.7 while the fraction of HAGBs surrounding and leading to whisker grain was 0.85. In addition, it was observed that whisker grew from pre-existing grain and not from the recrystallized grain. Also, grain boundary sliding was not observed as a pre-requisite for whisker growth in Sn coatings on brass substrate. The local stress field around the whisker grain also plays a crucial role in whisker growth. Therefore, local stress field around whisker site was simulated using crystal plasticity simulation by incorporating grid resolved spatial description of orientation in terms of Euler’s angles. The crystal plasticity model included slip systems of Sn and other material parameters, such as anisotropic elastic stiffness constants, critical resolved shear stresses for different slip systems, etc. Thus, the slip in individual grain was accounted following homogenization to maintain compatibility at grain boundaries. The simulated stress field shows that both in-plane and out-of-plane stresses were highly inhomogeneous without any unique condition around whisker grain. It has been observed that high compressive hydrostatic stresses develop in the vicinity of the whisker grain, while whisker grain is slightly tensile. Therefore, the gradient of hydrostatic stress around the whisker suggests whisker growth is mainly controlled by vacancy transport phenomenon. The stress in Sn coatings may originate from many factors, such as residual stress inherent to electro-deposition, diffusion of substrate atoms (Cu, Zn, etc.) into the coating, formation of interfacial intermetallic compound (IMC) layer, segregation of impurities at Sn grain boundaries, formation of surface oxide layer, and coefficient of thermal expansion (CTE) mismatch between in Sn and substrate as well as between differently orientated grains of Sn. Therefore, it is important to understand the dominant stress regeneration mechanism responsible for whisker growth. To identify dominant mechanism, which can continuously regenerate the compressive stress in Sn, samples deposited under fixed electro-deposition conditions were exposed to different post-deposition storage conditions, such as isothermal aging at room temperature, 50 °C, 150 °C, and thermal cycling from -25 to 85 °C with and without hold time at the highest temperature. It has been observed that Cu6Sn5 IMC growth due to the inter-diffusion of Cu and Sn atoms is the dominant mechanism responsible for whisker growth. Both growth kinetics and morphology of IMC have a significant impact on whisker growth. The role of CTE mismatch in regenerating compressive stresses in Sn coatings on brass substrate for whisker growth is highly limited. The substrate composition as well as the under layer metallization affects the inter-diffusion between Sn and the substrate atoms and therefore IMC growth, which is mainly responsible for whisker growth in Sn coatings on brass or Cu substrates. The effects of substrate composition on whisker growth was studied by using pure Cu, brass (65 wt. % Cu 35 wt. % Zn) and Ni (bulk and electro-deposited under layer) as substrate. Whisker growth was more rapid if brass substrate was used instead of pure Cu. Whiskers were not observed when Sn was deposited on either bulk Ni or when Ni under layer was electro-deposited on brass or Cu substrates prior to Sn deposition. Ni under layer effectively stops the diffusion of Cu into Sn, thus avoiding the growth of Cu6Sn5 (which places Sn coatings under compressive stress). Thus, it is clear that continuous formation of Cu6Sn5 at the interface provides the long-term driving force for whisker growth. Since the whisker growth is a stress driven phenomenon, it is important to understand the stress evolution in Sn coatings. Stress state of the Sn coatings was studied using custom-built laser curvature set-up with multi-beam optical stress sensor (MOSS). This allowed monitoring of curvature change of the coating-substrate system in real time and the bulk average stress was calculated using Stoney’s equation. For multi-layer system such as Sn deposited on pre-deposited Ni under layer on brass substrate modified Stoney’s equation was used. In case of Sn deposited on brass without any under layer, it is known that the Cu6Sn5 IMC do not form a continuous layer at the interface between Sn and substrate under aging at ambient conditions, therefore, the curvature change due to IMC can be neglected. In addition, glancing angle X-ray diffraction was employed to analyse stress in the top surface region of the coating. The variation of glancing angle allowed probing strain at different penetration depths. Both the bulk stress and the stress in only near surface region evolve with time. The residual bulk stresses in Sn coatings are tensile immediately after deposition. The residual stresses relax very quickly upon room temperature aging and become compressive. The bulk of Sn coatings on brass substrate progressively become more compressive upon continued aging. However, stresses in Sn coatings deposited on brass substrate with Ni under layer saturate quickly at low compressive stress. Surprisingly, stress in the top-most region of Sn coating measured using XRD evolve differently. The surface of Sn coating deposited on brass substrate is compressive initially and progressively become more tensile (less compressive), while the initial compressive stress in the sample with Ni under layer saturated at a higher compressive stress than the bulk stress value recorded from curvature measurement. Therefore, the surface of the Sn coatings with Ni under layer is always more compressive than the bulk stress in the Sn coating. Therefore, a negative stress gradient for the diffusion of Sn atoms towards surface is never established and whiskers do not grow in these Sn coatings. Interestingly, through thickness voids are observed in the Sn coatings on Ni. Contrarily, in Sn coatings without Ni under layer after 170 h of aging, the surface stress becomes more tensile than the bulk of the Sn coating, favouring continuous migration of atoms from the highly compressed region near Cu6Sn5 IMC layer to the stress-free whisker root. Aforementioned observation indicates the crucial role of negative stress gradient in the mass transport of atoms required for whispering. The importance of stress and stress gradient was further studied by analysing the effect of externally imposing stress and stress gradient on whisker growth. The stresses were applied using a three-point bend setup. It has been observed that externally applied stress accelerates the whisker growth. This is mainly because applied stress alters the diffusion kinetics and growth of Cu6Sn5 IMC at the interface. However, the coating under tensile stress shows more whisker growth as compared to the coating under high compressive stress. This is attributed to the fact the coating under tensile stress is under higher negative stress gradient. Therefore, it is proposed that out-of-plane stress gradient is more important rather than the sign and the magnitude of stress in determining the propensity of whisker growth in Sn coatings.
APA, Harvard, Vancouver, ISO, and other styles
2

Jagtap, Piyush. "Whisker Growth from Electrodeposited Sn Coatings - Developing Materials Science and Mechanics Based Insights." Thesis, 2016. http://etd.iisc.ernet.in/2005/3592.

Full text
Abstract:
Pure Sn and Sn-alloys are widely used in electrical and microelectronic devices as protective layer to prevent oxidation of Cu conductors and also as a component of Pb-free, Sn-based solders. Sn coatings, typically 0.5-10 μm thick, deposited on substrates, e.g., Cu, brass, etc., are prone to spontaneous growth (i.e., without any external stimuli) of Sn whiskers under ambient conditions. The growth of whiskers from Sn plating has caused numerous failures in micro-electronic devices, mainly due to short-circuiting, leading to failure of components or devices. Whisker growth is, thus especially very critical in aviation, space and defines applications, where the electronic components are designed for longer life span. Furthermore, due to miniaturization of electronic devices, the spacing between adjacent conductors or interconnects can be as small as a few hundred nanometres to a few micrometres, making them more prone to whisker induced short-circuiting. Minor alloying of Sn with Pub was the principle way for mitigating the whisker growth in Sn plated components; however, due to the recent worldwide acceptance of European Union’s Restriction of Hazardous Substances (RoHS) act, enforcing Pub-free manufacturing, whisker growth has re-emerged as a reliability issue in Pub-free solders and the Sn plating finishes. Even after decades of research, a universal whisker growth mechanism and hence effective mitigation technique is still not available in the public domain. This is mainly due to the fact that large number of factors that affect the whisker growth directly or indirectly, making it difficult to devise an experimental procedure, which allows studying effect of one factor at a time while keeping other factors constant. Although many mechanistic models for Sn whispering have been proposed in the past, the experimental evidences to support them are lacking. For example, recrystallization of whisker grain was proposed by various researchers; however, a direct observation confirming whisker grain is indeed a recrystallized grain has never been reported. Nevertheless, it is well understood that whisker growth is a form of stress relaxation process and diffusion plays important role in the formation of whiskers. Since Sn is extremely anisotropic with tetragonal crystal structure, the stress state of Sn coatings, as well as the diffusion needed for mass transport of atoms, varies drastically depending upon the direction of interest. Therefore, it is important to study the role of crystallographic texture (both macroscopic and microscopic) on whisker propensity by systematically varying the crystallographic texture of Sn coating while keeping thickness, grain size, substrate material, and post-deposition storage conditions the same. Better understanding of role of macro- and micro- texture is very crucial before any whispering mechanism can be proposed. Furthermore, recent studies indicate that role of stresses in Sn coatings driving whisker growth is not fully understood. It is generally accepted that compressive stress in Sn coating is the main factor that drives the whisker growth. However, whiskers were also observed when Sn coating was under tensile stress, making the role of stress controversial. Again, the stresses in Sn have multiple origins and need a systematic approach to understand their origin, quantify them and then relate it to whisker growth. Such systematic approach was never adopted in previous works. Hence, the current thesis aims to address the role of macro- and micro- crystallographic texture, stress regeneration mechanism, nature (i.e., magnitude and sign) of stress and stress gradient in the Sn coatings via systematic variation of texture, post-deposition storage conditions and substrate composition, including deposition of an interlayer in between Sn coating and the brass or Cu substrate. Whisker growth was studied from electro-deposited Sn coatings. The deposition parameters were optimized for producing different thickness and grain orientations. X-Ray diffraction (XRD) techniques were used to extract macro-texture of the coatings. The macro-texture measurement using XRD and micro-texture measurement using electron backscatter diffraction (EBSD) showed the same dominant and the second dominant orientations. It was observed that current density and deposition temperature, which are the two main electro-deposition parameters, significantly influence the crystallographic orientation of the grains. Thus, the global or macro-texture can be manipulated by changing the deposition parameters systematically. It was observed that whisker propensity increases drastically by growth of low index planes, such as (100) and (110), during deposition. Hence, proper selection of deposition parameters that lead to growth of high index planes can be used to suppress the whisker growth. Furthermore, micro-texture surrounding whisker grain was studied using EBSD technique by observing the same set of grains surrounding a whisker grain before and after whispering. Orientation imaging microscopy (OIM) maps of several whisker regions clearly indicate that whiskers preferentially grow from low index planes, such as (100), etc. Furthermore, using orientation dependent stiffness mapping (in-plane and out-of-plane), it was noticed that whiskers preferentially grew from regions of soft oriented grains (low modulus) surrounded by hard orientations. In addition, grain boundary disorientation analysis revealed presence of high fraction of high angle grain boundaries (HAGBs) in the vicinity of whisker grain. It was observed that overall fraction of HAGBs in the whispering region was 0.7 while the fraction of HAGBs surrounding and leading to whisker grain was 0.85. In addition, it was observed that whisker grew from pre-existing grain and not from the recrystallized grain. Also, grain boundary sliding was not observed as a pre-requisite for whisker growth in Sn coatings on brass substrate. The local stress field around the whisker grain also plays a crucial role in whisker growth. Therefore, local stress field around whisker site was simulated using crystal plasticity simulation by incorporating grid resolved spatial description of orientation in terms of Euler’s angles. The crystal plasticity model included slip systems of Sn and other material parameters, such as anisotropic elastic stiffness constants, critical resolved shear stresses for different slip systems, etc. Thus, the slip in individual grain was accounted following homogenization to maintain compatibility at grain boundaries. The simulated stress field shows that both in-plane and out-of-plane stresses were highly inhomogeneous without any unique condition around whisker grain. It has been observed that high compressive hydrostatic stresses develop in the vicinity of the whisker grain, while whisker grain is slightly tensile. Therefore, the gradient of hydrostatic stress around the whisker suggests whisker growth is mainly controlled by vacancy transport phenomenon. The stress in Sn coatings may originate from many factors, such as residual stress inherent to electro-deposition, diffusion of substrate atoms (Cu, Zn, etc.) into the coating, formation of interfacial intermetallic compound (IMC) layer, segregation of impurities at Sn grain boundaries, formation of surface oxide layer, and coefficient of thermal expansion (CTE) mismatch between in Sn and substrate as well as between differently orientated grains of Sn. Therefore, it is important to understand the dominant stress regeneration mechanism responsible for whisker growth. To identify dominant mechanism, which can continuously regenerate the compressive stress in Sn, samples deposited under fixed electro-deposition conditions were exposed to different post-deposition storage conditions, such as isothermal aging at room temperature, 50 °C, 150 °C, and thermal cycling from -25 to 85 °C with and without hold time at the highest temperature. It has been observed that Cu6Sn5 IMC growth due to the inter-diffusion of Cu and Sn atoms is the dominant mechanism responsible for whisker growth. Both growth kinetics and morphology of IMC have a significant impact on whisker growth. The role of CTE mismatch in regenerating compressive stresses in Sn coatings on brass substrate for whisker growth is highly limited. The substrate composition as well as the under layer metallization affects the inter-diffusion between Sn and the substrate atoms and therefore IMC growth, which is mainly responsible for whisker growth in Sn coatings on brass or Cu substrates. The effects of substrate composition on whisker growth was studied by using pure Cu, brass (65 wt. % Cu 35 wt. % Zn) and Ni (bulk and electro-deposited under layer) as substrate. Whisker growth was more rapid if brass substrate was used instead of pure Cu. Whiskers were not observed when Sn was deposited on either bulk Ni or when Ni under layer was electro-deposited on brass or Cu substrates prior to Sn deposition. Ni under layer effectively stops the diffusion of Cu into Sn, thus avoiding the growth of Cu6Sn5 (which places Sn coatings under compressive stress). Thus, it is clear that continuous formation of Cu6Sn5 at the interface provides the long-term driving force for whisker growth. Since the whisker growth is a stress driven phenomenon, it is important to understand the stress evolution in Sn coatings. Stress state of the Sn coatings was studied using custom-built laser curvature set-up with multi-beam optical stress sensor (MOSS). This allowed monitoring of curvature change of the coating-substrate system in real time and the bulk average stress was calculated using Stoney’s equation. For multi-layer system such as Sn deposited on pre-deposited Ni under layer on brass substrate modified Stoney’s equation was used. In case of Sn deposited on brass without any under layer, it is known that the Cu6Sn5 IMC do not form a continuous layer at the interface between Sn and substrate under aging at ambient conditions, therefore, the curvature change due to IMC can be neglected. In addition, glancing angle X-ray diffraction was employed to analyse stress in the top surface region of the coating. The variation of glancing angle allowed probing strain at different penetration depths. Both the bulk stress and the stress in only near surface region evolve with time. The residual bulk stresses in Sn coatings are tensile immediately after deposition. The residual stresses relax very quickly upon room temperature aging and become compressive. The bulk of Sn coatings on brass substrate progressively become more compressive upon continued aging. However, stresses in Sn coatings deposited on brass substrate with Ni under layer saturate quickly at low compressive stress. Surprisingly, stress in the top-most region of Sn coating measured using XRD evolve differently. The surface of Sn coating deposited on brass substrate is compressive initially and progressively become more tensile (less compressive), while the initial compressive stress in the sample with Ni under layer saturated at a higher compressive stress than the bulk stress value recorded from curvature measurement. Therefore, the surface of the Sn coatings with Ni under layer is always more compressive than the bulk stress in the Sn coating. Therefore, a negative stress gradient for the diffusion of Sn atoms towards surface is never established and whiskers do not grow in these Sn coatings. Interestingly, through thickness voids are observed in the Sn coatings on Ni. Contrarily, in Sn coatings without Ni under layer after 170 h of aging, the surface stress becomes more tensile than the bulk of the Sn coating, favouring continuous migration of atoms from the highly compressed region near Cu6Sn5 IMC layer to the stress-free whisker root. Aforementioned observation indicates the crucial role of negative stress gradient in the mass transport of atoms required for whispering. The importance of stress and stress gradient was further studied by analysing the effect of externally imposing stress and stress gradient on whisker growth. The stresses were applied using a three-point bend setup. It has been observed that externally applied stress accelerates the whisker growth. This is mainly because applied stress alters the diffusion kinetics and growth of Cu6Sn5 IMC at the interface. However, the coating under tensile stress shows more whisker growth as compared to the coating under high compressive stress. This is attributed to the fact the coating under tensile stress is under higher negative stress gradient. Therefore, it is proposed that out-of-plane stress gradient is more important rather than the sign and the magnitude of stress in determining the propensity of whisker growth in Sn coatings.
APA, Harvard, Vancouver, ISO, and other styles
3

Gupta, Abhay. "Microstructure and texture engineering strategies to enhance the corrosion resistance of tin based coatings." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5558.

Full text
Abstract:
Coating corrosion-prone material with metal/alloy and passivated oxide layers is the primary protection method in the ever-evolving corrosion protection area. To improve the corrosion resistance of the coatings, the coating matrix is often blended to form a composite with nanomaterials like nanofibers, nanosheets, and nanoparticles. Sn and its alloys have been widely used as a corrosion-resistant material for coating applications in the electronic and canning industries due to their protective and non-toxic nature. This thesis discusses various strategies employed to enhance the corrosion protection efficiency of the Sn-based electrodeposited coatings. The first part of the thesis concerns with the investigation of the micro-texture changes in the Sn and SnCu alloy coatings with the change in the electrodeposition parameters (deposition temperature, current density, and alloy composition) and its implication on corrosion resistance. Increasing the electrodeposition current density from 5 mA.cm−2 to 80 mA.cm−2 changed the predominant crystallographic orientation from (100) to (110) while changing the electrodeposition temperature from 15˚C to 80˚C changed the dominant crystallographic orientation from (100) to (001). Electrodeposition at 70˚C and 20 mA.cm−2 led to the highest corrosion protection efficiency in the Sn electrodeposits, which also exhibited the highest fraction of low energy (031)[01 ̅3] twin boundaries. The second part of the thesis work discusses the morphological, microstructural, and macrotexture changes and their implications over the corrosion protection ability of Sn and Sn-based alloy coatings when graphene oxide (GO) is incorporated into the coating matrix as a secondary phase. Four systems were studied: (i) Sn electrodeposit, (ii) Sn-Cu electrodeposit, (iii) Sn-Bi electrodeposit, and (iv) Sn-Co electrodeposit. In the Sn-GO system, the corrosion rate first decreased to a certain GO volume fraction range and increased continuously. The Sn coating with high GO volume fractions exhibited an even higher corrosion rate than the pristine Sn coating. Thus, an optimum GO volume fraction for maximum corrosion resistance is established for the Sn-GO coating system. A high GO volume fraction led to high corrosion rates in Sn-GO composite coatings because of the galvanic coupling phenomenon between the anodic Sn matrix and the cathodic GO sheets. SEM analysis revealed that incorporation of GO led to uniform and compact coating morphology in the SnCu-GO composite coatings. XRD analysis revealed a shift in preferred growth texture low index orientations like (020) and (220) in the Sn-rich phase. Morphological improvements and the impervious nature of the dispersed GO sheets towards the corrosive Cl− ion medium improved the corrosion resistance of the SnCu-GO coating matrix. In the SnBi-GO system, the incorporation of GO affected the purity of the Sn-rich and Bi-rich phases. Uniformly dispersed GO in the SnBi-GO coating matrix led to the enrichment of the Sn-rich phase and subsequently increased the corrosion resistance of the SnBi-GO coatings. High GO volume fractions led to GO agglomeration within the coating which led to the formation of micro-cracks and pinholes in the coating matrix and thus decreased the corrosion resistance. In the SnCo-GO system, the higher absorption affinity of Sn compared to that of Co led to an increase in Sn content with an increase in GO volume fraction. TEM analysis revealed that GO incorporation led to a transition towards a layered microstructure where the electrochemically inert Co3Sn2 phase shielded the Co2Sn phase and thus increased the corrosion resistance in the SnCo-GO coatings. In the later part of the thesis, Cu was increasingly incorporated into the electrodeposited Sn coatings (0 at. % Cu to 33.0 at.% Cu). For the SnCu electrodeposits, the SnCu coating with ~21.2 at.% Cu exhibited the lowest corrosion rate while the SnCu coating with ~9.9 at.% Cu exhibited the highest corrosion rate. It was observed that the incorporation of Cu into the Sn electrodeposits changed the predominant growth texture from (001) to (100). The corrosion rate dependence on the distribution of the Cu6Sn5 phase within the coating matrix was also explored. The corrosion mechanism for all the systems was modeled using an equivalent electrical circuit.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography