Dissertations / Theses on the topic 'Smoothing problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 29 dissertations / theses for your research on the topic 'Smoothing problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Eichmann, Katrin. "Smoothing stochastic bang-bang problems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16799.
Full textMotivated by the problem of how to optimally execute a large stock position, this thesis considers a stochastic control problem with two special properties. First, the control problem has an exponential delay in the control variable, and so the present value of the state process depends on the moving average of past control decisions. Second, the coefficients are assumed to be linear in the control variable. It is shown that a control problem with these properties generates a mathematically challenging problem. Specifically, it becomes a stochastic control problem whose solution (if one exists) has a bang-bang nature. The resulting discontinuity of the optimal solution creates difficulties in proving the existence of an optimal solution and in solving the problem with numerical methods. A sequence of stochastic control problems with state processes is constructed, whose diffusion matrices are invertible and approximate the original degenerate diffusion matrix. The cost functionals of the sequence of control problems are convex approximations of the original linear cost functional. To prove the convergence of the solutions, the control problems are written in the form of forward-backward stochastic differential equations (FBSDEs). It is then shown that the solutions of the FBSDEs corresponding to the constructed sequence of control problems converge in law, at least along a subsequence. By assuming convexity of the coefficients, it is then possible to construct from this limit an admissible control process which, for an appropriate reference stochastic system, is optimal for our original stochastic control problem. In addition to proving the existence of an optimal (bang-bang) solution, we obtain a smooth approximation of the discontinuous optimal bang-bang solution, which can be used for the numerical solution of the problem. These results are then applied to the optimal execution problem in form of numerical simulations.
Herrick, David Richard Mark. "Wavelet methods for curve and surface estimation." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310601.
Full textXu, Song. "Non-interior path-following methods for complementarity problems /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5793.
Full textLowe, Matthew. "Extended and Unscented Kalman Smoothing for Re-linearization of Nonlinear Problems with Applications." Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-dissertations/457.
Full textEichmann, Katrin [Verfasser], Peter [Akademischer Betreuer] Imkeller, Ying [Akademischer Betreuer] Hu, and Michael [Akademischer Betreuer] Kupper. "Smoothing stochastic bang-bang problems : with application to the optimal execution problem / Katrin Eichmann. Gutachter: Peter Imkeller ; Ying Hu ; Michael Kupper." Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://d-nb.info/1041284543/34.
Full textKlann, Esther. "Regularization of linear ill-posed problems in two steps : combination of data smoothing and reconstruction methods." kostenfrei, 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=979913039.
Full textPadoan, Simone. "Computational methods for complex problems in extreme value theory." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3427194.
Full textRau, Christian, and rau@maths anu edu au. "Curve Estimation and Signal Discrimination in Spatial Problems." The Australian National University. School of Mathematical Sciences, 2003. http://thesis.anu.edu.au./public/adt-ANU20031215.163519.
Full textYilmaz, Asim Egemen. "Finite Element Modeling Of Electromagnetic Scattering Problems Via Hexahedral Edge Elements." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608587/index.pdf.
Full textAudiard, Corentin. "Problèmes aux limites dispersifs linéaires non homogènes, application au système d’Euler-Korteweg." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10261/document.
Full textThe main aim of this thesis is to obtain well-posedness results for boundary value problems especially with non-homogeneous boundary conditions. The approach that we chose here is to adapt technics from the classical theory of hyperbolic boundary value problems (for which we give a brief survey in the first chapter, and a slight generalization). In chapter 3 we delimitate a class of linear dispersive equations, and we obtain well-posedness results for corresponding boundary value problems in chapter 4.The leading thread of this memoir is the Euler-Korteweg model. The boundary value problem for a linearized version is investigated in chapter 2, and the Kato-smoothing effect is proved (also for the linearized model) in chapter 3. Finally, the numerical analysis of the model is made in chapter 5. To begin with, we use the previous abstract results to show a simple way of deriving the so-called transparent boundary conditions for the equations outlined in chapter 3, and those conditions are then used to numerically solve the semi-linear Euler-Korteweg model. This allow us to observe the stability and instability of solitons, as well as a finite time blow up
Heinrich, André. "Fenchel duality-based algorithms for convex optimization problems with applications in machine learning and image restoration." Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-108923.
Full textKempthorne, Daryl Matthew. "The development of virtual leaf surface models for interactive agrichemical spray applications." Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/84525/12/84525%28thesis%29.pdf.
Full textSanja, Rapajić. "Iterativni postupci sa regularizacijom za rešavanje nelinearnih komplementarnih problema." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2005. https://www.cris.uns.ac.rs/record.jsf?recordId=6022&source=NDLTD&language=en.
Full textIterative methods for nonlinear complementarity problems (NCP) are con-sidered in this doctoral dissertation. NCP problems appear in many math-ematical models from economy, engineering and optimization theory. Solv-ing NCP is very atractive in recent years. Among many numerical methods for NCP, we are interested in generalized Newton-type methods and Jaco-bian smoothing methođs. Several new methods for NCP are defined in this dissertation and their local or global convergence is proved. Theoretical results are tested on relevant numerical examples.
Chen, Jein-Shan. "Merit functions and nonsmooth functions for the second-order cone complementarity problem /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5782.
Full textWu, Di. "Cauchy problem for the incompressible Navier-Stokes equation with an external force and Gevrey smoothing effect for the Prandtl equation." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC194/document.
Full textThis thesis deals with equations of fluid dynamics. We consider the following two models: one is the Navier-Stokes equation in R3 with an external force, the other one is the Prandtl equation on the half plane. For the Navier-Stokes system, we focus on the local in time existence, uniqueness, long-time behavior and blowup criterion. For the Prandtl equation on the half-plane, we consider the Gevrey regularity. This thesis consists in four chapters. In the first chapter, we introduce some background on equations of fluid dynamics and recall the physical meaning of the above two models as well as some well-known mathematical results. Next, we state our main results and motivations briefly. At last we mention some open problems. The second chapter is devoted to the Cauchy problem for the Navier-Stokes equation equipped with a small rough external force in R3. We show the local in time existence for this system for any initial data belonging to a critical Besov space with negative regularity. Moreover we obtain three kinds of uniqueness results for the above solutions. Finally, we study the long-time behavior and stability of priori global solutions.The third chapter deals with a blow-up criterion for the Navier-Stokes equation with a time independent external force. We develop a profile decomposition for the forced Navier-Stokes equation. The decomposition enables us to connect the forced and the unforced equations, which provides the blow-up information from the unforced solution to the forced solution. In Chapter 4, we study the Gevrey smoothing effect of the local in time solution to the Prandtl equation in the half plane. It is well-known that the Prandtl boundary layer equation is unstable for general initial data, and is well-posed in Sobolev spaces for monotonic initial data. Under a monotonicity assumption on the tangential velocity of the outflow, we prove Gevrey regularity for the solution to Prandtl equation in the half plane with initial data belonging to some Sobolev space
Santos, Carlos Alberto Silva dos. "O problema de Cauchy para as equações KdV e mKdV." Universidade Federal de Alagoas, 2009. http://repositorio.ufal.br/handle/riufal/1040.
Full textFundação de Amparo a Pesquisa do Estado de Alagoas
Neste trabalho demonstraremos que o problema de Cauchy associado as equações de Korteweg-de Vries, denotada por KdV, e de Korteweg-de Vries modificada, denotada por mKdV, com dado inicial no espaço de Sobolev Hs(|R), é bem posto localmente em Hs(|R), com s>3/4 para a KdV e s≥1/4 para a mKdV, onde a noção de boa postura inclui a existência, unicidade, a propriedade de persistência da solução e dependência contínua da solução com relação ao dado inicial. Este resultado é baseado nos trabalhos de Kenig, Ponce e Vega. A técnica utilizada para obter tais resultados se baseia no Teorema do Ponto Fixo de Banach combinada com os efeitos regularizantes do grupo associado com a parte linear.
Hendrich, Christopher. "Proximal Splitting Methods in Nonsmooth Convex Optimization." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-149548.
Full textNilsson, Per Johan Fredrik. "Planning semi-autonomous drone photo missions in Google Earth." Thesis, Mittuniversitetet, Avdelningen för data- och systemvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-31473.
Full textCowling, Ann Margaret. "Some problems in kernel curve estimation." Phd thesis, 1995. http://hdl.handle.net/1885/138794.
Full textPrvan, Tania. "Some problems in recursive estimation." Phd thesis, 1987. http://hdl.handle.net/1885/138515.
Full textNeto, Diogo Mariano Simões. "Numerical Simulation of Frictional Contact Problems using Nagata Patches in Surface Smoothing." Doctoral thesis, 2014. http://hdl.handle.net/10316/26743.
Full textAll movements in the world involve contact and friction, from walking to car driving. The contact mechanics has application in many engineering problems, including the connection of structural members by bolts or screws, design of gears and bearings, sheet metal or bulk forming, rolling contact of car tyres, crash analysis of structures, as well as prosthetics in biomedical engineering. Due to the nonlinear and non-smooth nature of contact mechanics (contact area is not known a priori), such problems are currently solved using the finite element method within the field of computational contact mechanics. However, most of the commercial finite element software packages presently available are not entirely capable to solve frictional contact problems, demanding for efficient and robust methods. Therefore, the main objective of this study is the development of algorithms and numerical methods to apply in the numerical simulation of 3D frictional contact problems between bodies undergoing large deformations. The presented original developments are implemented in the in-house finite element code DD3IMP. The formulation of quasi-static frictional contact problems between bodies undergoing large deformations is firstly presented in the framework of the continuum mechanics, following the classical scheme used in solid mechanics. The kinematic description of the deformable bodies is presented adopting an updated Lagrangian formulation. The mechanical behaviour of the bodies is described by an elastoplastic constitutive law in conjunction with an associated flow rule, allowing to model a wide variety of contact problems arising in industrial applications. The frictional contact between the bodies is established by means of two conditions: the principle of impenetrability and the Coulomb’s friction law, both imposed to the contact interface. The augmented Lagrangian method is applied for solving the constrained minimization incremental problem resulting from the frictional contact inequalities, yielding a mixed functional involving both displacements and contact forces. The spatial discretization of the bodies is performed with isoparametric solid finite elements, while the discretization of the contact interface is carried out using the classical Node-to-Segment technique, preventing the slave nodes from penetrating on the master surface. The geometrical part of the contact elements, defined by a slave node and the closest master segment, is created by the contact search algorithm based on the selection of the closest point on the master surface, defined by the normal projection of the slave node. In the particular case of contact between a deformable body and a rigid obstacle, the master rigid surface can be described by smooth parameterizations typically used in CAD models. However, in the general case of contact between deformable bodies, the spatial discretization of both bodies with low order finite elements yields a piecewise bilinear representation of the master surface. This is the central source of problems in solving contact problems involving large sliding, since it leads to the discontinuity of the surface normal vector field. Thus, a surface smoothing procedure based on the Nagata patch interpolation is proposed to describe the master contact surfaces, which led to the development of the Node-to-Nagata contact element. The accuracy of the surface smoothing method using Nagata patches is evaluated by means of simple geometries. The nodal normal vectors required for the Nagata interpolation are evaluated from the CAD geometry in case of rigid master surfaces, while in case of deformable bodies they are approximated using the weighted average of the normal vectors of the neighbouring facets. The residual vectors and tangent matrices of the contact elements are derived coherently with the surface smoothing approach, allowing to obtain quadratic convergence rate in the generalized Newton method used for solving the nonlinear system of equations. The developed surface smoothing method and corresponding contact elements are validated through standard numerical examples with known analytical or semi-analytical solutions. More advanced frictional contact problems are studied, covering the contact of a deformable body with rigid obstacles and the contact between deformable bodies, including self-contact phenomena. The smoothing of the master surface improves the robustness of the computational methods and reduces strongly the non-physical oscillations in the contact force introduced by the traditional faceted description of the contact surface. The presented results are compared with numerical solutions obtained by other authors and experimental results, demonstrating the accuracy and performance of the implemented algorithms for highly nonlinear problems.
Todos os movimentos no mundo envolvem contato e atrito, desde andar até conduzir um carro. A mecânica do contacto tem aplicação em muitos problemas de engenharia, incluindo a ligação de elementos estruturais com parafusos, projeto de engrenagens e rolamentos, estampagem ou forjamento, contato entre os pneus e a estrada, colisão de estruturas, bem como o desenvolvimento de próteses em engenharia biomédica. Devido à natureza não-linear e não-suave da mecânica do contato (área de contato desconhecida a priori), tais problemas são atualmente resolvidos usando o método dos elementos finitos no domínio da mecânica do contato computacional. No entanto, a maioria dos programas comerciais de elementos finitos atualmente disponíveis não é totalmente capaz de resolver problemas de contato com atrito, exigindo métodos numéricos mais eficientes e robustos. Portanto, o principal objetivo deste estudo é o desenvolvimento de algoritmos e métodos numéricos para aplicar na simulação numérica de problemas de contato com atrito entre corpos envolvendo grandes deformações. Os desenvolvimentos apresentados são implementados no programa de elementos finitos DD3IMP. A formulação quasi-estática de problemas de contato com atrito entre corpos deformáveis envolvendo grandes deformações é primeiramente apresentada no âmbito da mecânica dos meios contínuos, seguindo o método clássico usado em mecânica dos sólidos. A descrição cinemática dos corpos deformáveis é apresentada adotando uma formulação Lagrangeana reatualizada. O comportamento mecânico dos corpos é descrito por uma lei constitutiva elastoplástica em conjunto com uma lei de plasticidade associada, permitindo modelar uma grande variedade de problemas de contacto envolvidos em aplicações industriais. O contacto com atrito entre os corpos é definido por duas condições: o princípio da impenetrabilidade e a lei de atrito de Coulomb, ambas impostas na interface de contato. O método do Lagrangeano aumentado é aplicado na resolução do problema de minimização com restrições resultantes das condições de contato e atrito, produzindo uma formulação mista envolvendo deslocamentos e forças de contato. A discretização espacial dos corpos é realizada com elementos finitos sólidos isoparamétricos, enquanto a discretização da interface de contacto é realizado utilizando a técnica Node-to-Segment, impedindo os nós slave de penetrar na superfície master. A parte geométrica do elemento de contacto, definida por um nó slave e o segmento master mais próximo, é criada pelo algoritmo de deteção de contacto com base na seleção do ponto mais próximo na superfície master, obtido pela projeção normal do nó slave. No caso particular de contato entre um corpo deformável e um obstáculo rígido, a superfície rígida master pode ser descrita por parametrizações normalmente utilizadas em modelos CAD. No entanto, no caso geral de contato entre corpos deformáveis, a discretização espacial dos corpos com elementos finitos lineares origina uma representação da superfície master por facetas. Esta é a principal fonte de problemas na resolução de problemas de contato envolvendo grandes escorregamentos, uma vez que a distribuição dos vetor normais à superfície é descontínua. Assim, é proposto um método de suavização para descrever as superfícies de contacto master baseado na interpolação Nagata, que conduziu ao desenvolvimento do elemento de contacto Node-to-Nagata. A precisão do método de suavização das superfícies é avaliada através de geometrias simples. Os vetores normais nodais necessários para a interpolação Nagata são avaliados a partir da geometria CAD no caso de superfícies rígidas, enquanto no caso de corpos deformáveis são aproximados utilizando a média ponderada dos vetores normais das facetas vizinhas. Tanto os vetores de segundo membro como as matrizes residuais tangentes dos elementos de contacto são obtidas de forma coerente com o método de suavização da superfície, permitindo obter convergência quadrática no método de Newton generalizado, o qual é utilizado para resolver o sistema de equações não lineares. O método de suavização das superfícies e os elementos de contacto desenvolvidos são validados através de exemplos com soluções analíticas ou semi-analíticas conhecidas. Também são estudados outros problemas de contato mais complexos, incluindo o contato de um corpo deformável com obstáculos rígidos e o contato entre corpos deformáveis, contemplando fenómenos de auto-contato. A suavização da superfície master melhora a robustez dos métodos computacionais e reduz fortemente as oscilações na força de contato, associadas à descrição facetada da superfície de contato. Os resultados são comparados com soluções numéricas de outros autores e com resultados experimentais, demonstrando a precisão e o desempenho dos algoritmos implementados para problemas fortemente não-lineares.
Fundação para a Ciência e Tecnologia - SFRH/BD/69140/2010
Jhong, Jhih-Syong, and 鍾智雄. "A Study of Gradient Smoothing Methods for Boundary Value Problems on Triangular Meshes." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/93662964677132066520.
Full textPina, Maria de Fátima Alves de. "Smoothing and Interpolation on the Essential Manifold." Doctoral thesis, 2020. http://hdl.handle.net/10316/95009.
Full textInterpolating data in non-Euclidean spaces plays an important role in different areas of knowledge. The main goal of this thesis is to present, in detail, two different approaches for solving interpolation problems on the Generalized Essential manifold Gk,n ×SO(n), consisting of the product of the Grassmann manifold of all k-dimensional subspaces of R^n and the Lie group of rotations in R^n. The first approach to be considered is a generalization to manifolds of the De Casteljau algorithm and the second is based on rolling motions. In order to achieve our objective, we first gather information of all the essential topics of Riemannian geometry and Lie theory necessary for a complete understanding of the geometry of the fundamental manifolds involved in this work, with particular emphasis on the Grassmann manifold and on the Normalized Essential manifold. To perform the De Casteljau algorithm in the manifold Gk,n×SO(n) we adapt a procedure already developed for connected and compact Lie groups and for spheres, and accomplish the implementation of that algorithm, first for the generation of geometric cubic polynomials in the Grassmann manifold Gk,n, and then extending it to generate cubic splines in the same manifold. New expressions for the velocity vector field along geometric cubic polynomials and for its covariant derivative are derived in order to obtain admissible curves that also fulfil appropriate boundary conditions. To solve the interpolation problem using the second approach, we propose an algorithm inspired in techniques that combine rolling/unrolling with unwrapping/wrapping, but accomplishing the objective using rolling motions only. Interpolating curves given in explicit form are obtained for the manifold Gk,n ×SO(n), which also prepares the ground for applications using the Normalized Essential manifold. The definition of rolling map is a crucial tool in this approach. We present a geometric interpretation of all the conditions present in that definition, including a refinement of the non-twist conditions which allows to prove interesting properties of rolling and, consequently, simplifies the study of rolling motions. In particular, the non-twist conditions are rewritten in terms of parallel vector fields, allowing for a clear connection between rolling and parallel transport. When specializing to the rolling manifold Gk,n ×SO(n) the definition of rolling map is adjusted in order to avoid destroying the matrix structure of that manifold. We also address controllability issues for the rolling motion of the Grassmann manifold Gk,n. In parallel with a theoretical proof, we present a constructive proof of the controllability of the kinematic equations that describe the pure rolling motions of the Grassmann manifold Gk,n over the affine tangent space at a point. We make connections with other known approaches to generate interpolating curves in manifolds and point out some directions for future work.
A interpolação de dados em espaços não Euclidianos desempenha um papel importante em diferentes áreas do conhecimento. O objetivo principal desta tese é apresentar, em detalhe, duas abordagens diferentes para resolver problemas de interpolação na variedade Essencial Generalizada Gk,n×SO(n), que consiste no produto cartesiano da variedade de Grassmann formada por todos os subespaços k-dimensionais de R^n e o grupo de Lie das rotações em R^n. A primeira abordagem a ser considerada é uma generalização para variedades do algoritmo de De Casteljau e a segunda é baseada em certos movimentos de rolamento. A fim de alcançar o nosso objetivo, primeiro reunimos informações de todos os tópicos essenciais de geometria Riemanniana e de teoria de Lie necessários para uma completa compreensão da geometria das variedades fundamentais envolvidas neste trabalho, com particular ênfase na variedade de Grassmann e na variedade Essencial Normalizada. Para implementar o algoritmo de De Casteljau na variedade Gk,n ×SO(n), adaptamos um procedimento já conhecido para grupos de Lie conexos e compactos e para esferas, e realizamos a implementação desse algoritmo, primeiro para a geração de polinómios geométricos cúbicos na variedade de Grassmann Gk,n, e depois estendemo-lo para gerar splines cúbicos na mesma variedade. São deduzidas novas expressões para o campo de vetores velocidade ao longo dessas curvas e para a sua derivada covariante, a fim de obter curvas admissíveis que também satisfaçam condições de fronteiras apropriadas. Para resolver o problema de interpolação utilizando a segunda abordagem, propomos um algoritmo inspirado em técnicas que combinam rolling/unrolling com unwrapping/wrapping, mas cumprindo o objetivo utilizando apenas movimentos de rolamento. As curvas de interpolação para a variedade Gk,n×SO(n) são obtidas de forma explícita, o que também prepara o terreno para aplicações utilizando a variedade Essencial Normalizada. A definição de aplicação rolamento é uma ferramenta crucial nesta abordagem. Apresentamos uma interpretação geométrica de todas as condições presentes nessa definição, incluindo um refinamento das condições de non-twist o que permite provar propriedades interessantes de rolamento e, consequentemente, simplifica o estudo dos movimentos de rolamento. Em particular, as condições de non-twist são reescritas em termos de campos vectoriais paralelos, permitindo uma ligação clara entre o rolamento e o transporte paralelo. Quando é especificada para a variedade de rolamento Gk,n×SO(n), a definição de aplicação rolamento é ajustada de forma a evitar destruir a estrutura matricial dessa variedade. Também abordamos questões de controlabilidade para o movimento de rolamento da variedade de Grassmann Gk,n. Em paralelo com uma prova teórica, apresentamos uma prova construtiva da controlabilidade das equações da cinemática que descrevem os movimentos de rolamento puro da variedade de Grassmann Gk,n sobre o espaço afim associado ao espaço tangente num ponto. Estabelecemos algumas relações com outras abordagens conhecidas para gerar curvas interpoladoras em variedades e apresentamos algumas direções para o trabalho futuro.
Klann, Esther [Verfasser]. "Regularization of linear ill-posed problems in two steps : combination of data smoothing and reconstruction methods / von Esther Klann." 2005. http://d-nb.info/979913039/34.
Full textRau, Christian. "Curve Estimation and Signal Discrimination in Spatial Problems." Phd thesis, 2003. http://hdl.handle.net/1885/48023.
Full text(5930024), Kshitij Mall. "Advancing Optimal Control Theory Using Trigonometry For Solving Complex Aerospace Problems." Thesis, 2019.
Find full textHeinrich, André. "Fenchel duality-based algorithms for convex optimization problems with applications in machine learning and image restoration." Doctoral thesis, 2012. https://monarch.qucosa.de/id/qucosa%3A19869.
Full textKaraman, Sadi. "Fixed point smoothing algorithm to the torpedo tracking problem." Thesis, 1986. http://hdl.handle.net/10945/21866.
Full textMassey, John Sirles. "Surface shape regions as manifestations of a socio-economic phenomenon : a solution to the choropleth mapping problem." Thesis, 2012. http://hdl.handle.net/2440/84536.
Full textThesis (M.Sc.(M&CS)) -- University of Adelaide, School of Mathematical Sciences, 2012