Academic literature on the topic 'Smoothed functional algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Smoothed functional algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Smoothed functional algorithms"
Bhatnagar, Shalabh. "Adaptive Newton-based multivariate smoothed functional algorithms for simulation optimization." ACM Transactions on Modeling and Computer Simulation 18, no. 1 (December 2007): 1–35. http://dx.doi.org/10.1145/1315575.1315577.
Full textBhatnagar, Shalabh, and Vivek S. Borkar. "Multiscale Chaotic SPSA and Smoothed Functional Algorithms for Simulation Optimization." SIMULATION 79, no. 10 (October 2003): 568–80. http://dx.doi.org/10.1177/0037549703039988.
Full textGhoshdastidar, Debarghya, Ambedkar Dukkipati, and Shalabh Bhatnagar. "Smoothed Functional Algorithms for Stochastic Optimization Using q -Gaussian Distributions." ACM Transactions on Modeling and Computer Simulation 24, no. 3 (May 2, 2014): 1–26. http://dx.doi.org/10.1145/2628434.
Full textGhoshdastidar, Debarghya, Ambedkar Dukkipati, and Shalabh Bhatnagar. "Newton-based stochastic optimization using q-Gaussian smoothed functional algorithms." Automatica 50, no. 10 (October 2014): 2606–14. http://dx.doi.org/10.1016/j.automatica.2014.08.021.
Full textPrasad, H. L., L. A. Prashanth, Shalabh Bhatnagar, and Nirmit Desai. "Adaptive Smoothed Functional Algorithms for Optimal Staffing Levels in Service Systems." Service Science 5, no. 1 (March 2013): 29–55. http://dx.doi.org/10.1287/serv.1120.0035.
Full textLakshmanan, K., and Shalabh Bhatnagar. "Quasi-Newton smoothed functional algorithms for unconstrained and constrained simulation optimization." Computational Optimization and Applications 66, no. 3 (September 15, 2016): 533–56. http://dx.doi.org/10.1007/s10589-016-9875-4.
Full textNOROUZZADEH, P., B. RAHMANI, and M. S. NOROUZZADEH. "FORECASTING SMOOTHED NON-STATIONARY TIME SERIES USING GENETIC ALGORITHMS." International Journal of Modern Physics C 18, no. 06 (June 2007): 1071–86. http://dx.doi.org/10.1142/s0129183107011133.
Full textKostjukov, V. A., M. Y. Medvedev, and V. Kh Pshikhopov. "Algorithms for Planning Smoothed Individual Trajectories of Ground Robots." Mekhatronika, Avtomatizatsiya, Upravlenie 23, no. 11 (November 3, 2022): 585–95. http://dx.doi.org/10.17587/mau.23.585-595.
Full textVijayan, Nithia, and Prashanth L.A. "Smoothed functional-based gradient algorithms for off-policy reinforcement learning: A non-asymptotic viewpoint." Systems & Control Letters 155 (September 2021): 104988. http://dx.doi.org/10.1016/j.sysconle.2021.104988.
Full textCheng, Chuen-Sheng, Pei-Wen Chen, and Yu-Tang Wu. "Phase I Analysis of Nonlinear Profiles Using Anomaly Detection Techniques." Applied Sciences 13, no. 4 (February 7, 2023): 2147. http://dx.doi.org/10.3390/app13042147.
Full textDissertations / Theses on the topic "Smoothed functional algorithms"
Sällberg, Gustav, and Pontus Söderbäck. "Thesis - Optimizing Smooth Local Volatility Surfaces with Power Utility Functions." Thesis, Linköpings universitet, Produktionsekonomi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120090.
Full textBarajas, Leandro G. "Process Control in High-Noise Environments Using A Limited Number Of Measurements." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/7741.
Full textVestin, Albin, and Gustav Strandberg. "Evaluation of Target Tracking Using Multiple Sensors and Non-Causal Algorithms." Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160020.
Full textLakshmanan, K. "Online Learning and Simulation Based Algorithms for Stochastic Optimization." Thesis, 2012. http://hdl.handle.net/2005/3245.
Full textBooks on the topic "Smoothed functional algorithms"
Moerder, Daniel D. Constrained minimization of smooth functions using a genetic algorithm. Hampton: National Aeronautics and Space Administration, Langley Research Center, 1994.
Find full textN, Pamadi Bandu, and Langley Research Center, eds. Constrained minimization of smooth functions using a genetic algorithm. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Find full textFitting Smooth Functions to Data. American Mathematical Society, 2020.
Find full textBook chapters on the topic "Smoothed functional algorithms"
Bhatnagar, S., H. Prasad, and L. Prashanth. "Smoothed Functional Gradient Schemes." In Stochastic Recursive Algorithms for Optimization, 77–102. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4285-0_6.
Full textBhatnagar, S., H. Prasad, and L. Prashanth. "Newton-Based Smoothed Functional Algorithms." In Stochastic Recursive Algorithms for Optimization, 133–48. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4285-0_8.
Full textLakshmanan, K., and Shalabh Bhatnagar. "Smoothed Functional and Quasi-Newton Algorithms for Routing in Multi-stage Queueing Network with Constraints." In Distributed Computing and Internet Technology, 175–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19056-8_12.
Full textBläser, Markus, Bodo Manthey, and B. V. Raghavendra Rao. "Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals." In Lecture Notes in Computer Science, 110–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22300-6_10.
Full textJ. Zaslavski, Alexander. "Gradient Algorithm with a Smooth Objective Function." In Convex Optimization with Computational Errors, 127–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37822-6_4.
Full textZaslavski, Alexander J. "Gradient Algorithm with a Smooth Objective Function." In Springer Optimization and Its Applications, 59–72. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30921-7_4.
Full textMok, RenHao, and Mohd Ashraf Ahmad. "Power Production Optimization of Model-Free Wind Farm Using Smoothed Functional Algorithm." In Lecture Notes in Electrical Engineering, 679–89. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8690-0_60.
Full textGiesl, Peter. "Towards Calculating the Basin of Attraction of Non-Smooth Dynamical Systems Using Radial Basis Functions." In Approximation Algorithms for Complex Systems, 205–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16876-5_9.
Full textCruttwell, Geoffrey S. H., Bruno Gavranović, Neil Ghani, Paul Wilson, and Fabio Zanasi. "Categorical Foundations of Gradient-Based Learning." In Programming Languages and Systems, 1–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99336-8_1.
Full textBredies, Kristian. "Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty." In Efficient Algorithms for Global Optimization Methods in Computer Vision, 44–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54774-4_3.
Full textConference papers on the topic "Smoothed functional algorithms"
Ghoshdastidar, Debarghya, Ambedkar Dukkipati, and Shalabh Bhatnagar. "q-Gaussian based Smoothed Functional algorithms for stochastic optimization." In 2012 IEEE International Symposium on Information Theory - ISIT. IEEE, 2012. http://dx.doi.org/10.1109/isit.2012.6283013.
Full textSegeth, Karel. "Multivariate smooth interpolation that employs polyharmonic functions." In Programs and Algorithms of Numerical Mathematics 19. Institute of Mathematics, Czech Academy of Sciences, 2019. http://dx.doi.org/10.21136/panm.2018.15.
Full textKhamisov, O. V. "Optimization with quadratic support functions in nonconvex smooth optimization." In NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA–2016): Proceedings of the 2nd International Conference “Numerical Computations: Theory and Algorithms”. Author(s), 2016. http://dx.doi.org/10.1063/1.4965331.
Full textMohanty, Amit, and Bin Yao. "Indirect Adaptive Robust Control of Uncertain Systems With Unknown Asymmetric Input Deadband Using a Smooth Inverse." In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2771.
Full textJuan Geng, Lai-Sheng Wang, Ai-Min Fu, and Qi-Qing Song. "A smoothed rank function algorithm based Hyperbolic Tangent function for matrix completion." In 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6359558.
Full textZhifu Cui, Hang Zhang, and Wei Lu. "An improved smoothed l0-norm algorithm based on multiparameter approximation function." In 2010 12th IEEE International Conference on Communication Technology (ICCT). IEEE, 2010. http://dx.doi.org/10.1109/icct.2010.5688553.
Full textShadloo, Mostafa Safdari, Amir Zainali, and Mehmet Yildiz. "Fluid-Structure Interaction Simulation by Smoothed Particle Hydrodynamics." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31137.
Full textBorup, Liana, and Alan Parkinson. "Comparison of Four Non-Derivative Optimization Methods on Two Problems Containing Heuristic and Analytic Knowledge." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0114.
Full textVenkataraman, P. "Determining the Ordinary Differential Equation From Noisy Data." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47658.
Full textXiao, Yichi, Zhe Li, Tianbao Yang, and Lijun Zhang. "SVD-free Convex-Concave Approaches for Nuclear Norm Regularization." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/436.
Full text