Journal articles on the topic 'Smoothed Finite Element'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Smoothed Finite Element.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nguyen, T. T., G. R. Liu, K. Y. Dai, and K. Y. Lam. "Selective smoothed finite element method." Tsinghua Science and Technology 12, no. 5 (October 2007): 497–508. http://dx.doi.org/10.1016/s1007-0214(07)70125-6.
Full textZhou, Liming, Ming Li, Guangwei Meng, and Hongwei Zhao. "An effective cell-based smoothed finite element model for the transient responses of magneto-electro-elastic structures." Journal of Intelligent Material Systems and Structures 29, no. 14 (June 12, 2018): 3006–22. http://dx.doi.org/10.1177/1045389x18781258.
Full textZhang, H. H., S. J. Liu, and L. X. Li. "On the smoothed finite element method." International Journal for Numerical Methods in Engineering 76, no. 8 (November 19, 2008): 1285–95. http://dx.doi.org/10.1002/nme.2460.
Full textSurendran, M., Sundararajan Natarajan, Stéphane P. A. Bordas, and G. S. Palani. "Linear smoothed extended finite element method." International Journal for Numerical Methods in Engineering 112, no. 12 (October 11, 2017): 1733–49. http://dx.doi.org/10.1002/nme.5579.
Full textThanh, Chau Dinh, Vo Ngoc Tuyen, and Nguyen Hoang Phuc. "A cell-based smoothed three-node plate finite element with a bubble node for static analyses of both thin and thick plates." Vietnam Journal of Mechanics 39, no. 3 (September 23, 2017): 229–43. http://dx.doi.org/10.15625/0866-7136/8809.
Full textKUMAR, V., and R. METHA. "IMPACT SIMULATIONS USING SMOOTHED FINITE ELEMENT METHOD." International Journal of Computational Methods 10, no. 04 (April 23, 2013): 1350012. http://dx.doi.org/10.1142/s0219876213500126.
Full textChristiansen, Snorre H., and Ragnar Winther. "Smoothed projections in finite element exterior calculus." Mathematics of Computation 77, no. 262 (December 20, 2007): 813–30. http://dx.doi.org/10.1090/s0025-5718-07-02081-9.
Full textLee, Chaemin, and Phill-Seung Lee. "The strain-smoothed MITC3+ shell finite element." Computers & Structures 223 (October 2019): 106096. http://dx.doi.org/10.1016/j.compstruc.2019.07.005.
Full textOh, Min-Han, and San Kim. "Strategy to Improve Edge-Based Smoothed Finite Element Solutions Using Enriched 2D Solid Finite Elements." Applied Sciences 11, no. 8 (April 13, 2021): 3476. http://dx.doi.org/10.3390/app11083476.
Full textLIU, S. J., H. WANG, and H. ZHANG. "SMOOTHED FINITE ELEMENTS LARGE DEFORMATION ANALYSIS." International Journal of Computational Methods 07, no. 03 (September 2010): 513–24. http://dx.doi.org/10.1142/s0219876210002246.
Full textPei, Yongjie, and Xiangyang Cui. "A Novel Triangular Prism Element Based on Smoothed Finite Element Method." International Journal of Computational Methods 15, no. 07 (October 12, 2018): 1850058. http://dx.doi.org/10.1142/s0219876218500585.
Full textLiu, G. R., K. Y. Dai, and T. T. Nguyen. "A Smoothed Finite Element Method for Mechanics Problems." Computational Mechanics 39, no. 6 (May 17, 2006): 859–77. http://dx.doi.org/10.1007/s00466-006-0075-4.
Full textLee, Chaemin, San Kim, and Phill-Seung Lee. "The strain-smoothed 4-node quadrilateral finite element." Computer Methods in Applied Mechanics and Engineering 373 (January 2021): 113481. http://dx.doi.org/10.1016/j.cma.2020.113481.
Full textKim, Hobeom, and Seyoung Im. "Polyhedral smoothed finite element method for thermoelastic analysis." Journal of Mechanical Science and Technology 31, no. 12 (December 2017): 5937–49. http://dx.doi.org/10.1007/s12206-017-1138-5.
Full textNguyen-Xuan, H., T. Rabczuk, Stéphane Bordas, and J. F. Debongnie. "A smoothed finite element method for plate analysis." Computer Methods in Applied Mechanics and Engineering 197, no. 13-16 (February 2008): 1184–203. http://dx.doi.org/10.1016/j.cma.2007.10.008.
Full textNguyen-Thanh, N., Timon Rabczuk, H. Nguyen-Xuan, and Stéphane P. A. Bordas. "A smoothed finite element method for shell analysis." Computer Methods in Applied Mechanics and Engineering 198, no. 2 (December 2008): 165–77. http://dx.doi.org/10.1016/j.cma.2008.05.029.
Full textLi, Eric, Z. C. He, X. Xu, and G. R. Liu. "Hybrid smoothed finite element method for acoustic problems." Computer Methods in Applied Mechanics and Engineering 283 (January 2015): 664–88. http://dx.doi.org/10.1016/j.cma.2014.09.021.
Full textCUI, X. Y., G. Y. LI, and G. R. LIU. "AN EXPLICIT SMOOTHED FINITE ELEMENT METHOD (SFEM) FOR ELASTIC DYNAMIC PROBLEMS." International Journal of Computational Methods 10, no. 01 (February 2013): 1340002. http://dx.doi.org/10.1142/s0219876213400021.
Full textPham, Quoc-Hoa, The-Van Tran, Tien-Dat Pham, and Duc-Huynh Phan. "An Edge-Based Smoothed MITC3 (ES-MITC3) Shell Finite Element in Laminated Composite Shell Structures Analysis." International Journal of Computational Methods 15, no. 07 (October 12, 2018): 1850060. http://dx.doi.org/10.1142/s0219876218500603.
Full textCui, Xiang Yang, Shu Chang, and Guang Yao Li. "A Two-Step Taylor Galerkin Smoothed Finite Element Method for Lagrangian Dynamic Problem." International Journal of Computational Methods 12, no. 04 (August 2015): 1540004. http://dx.doi.org/10.1142/s0219876215400046.
Full textONISHI, Yuki. "Implementation of the Smoothed Finite Element Method using 10-node Tetrahedral Elements into a General Purpose Finite Element Software." Proceedings of The Computational Mechanics Conference 2018.31 (2018): 171. http://dx.doi.org/10.1299/jsmecmd.2018.31.171.
Full textLee, Chan, Hobeom Kim, and Seyoung Im. "Polyhedral elements by means of node/edge-based smoothed finite element method." International Journal for Numerical Methods in Engineering 110, no. 11 (November 17, 2016): 1069–100. http://dx.doi.org/10.1002/nme.5449.
Full textLiu, Jun, Zhi-Qian Zhang, and Guiyong Zhang. "A Smoothed Finite Element Method (S-FEM) for Large-Deformation Elastoplastic Analysis." International Journal of Computational Methods 12, no. 04 (August 2015): 1540011. http://dx.doi.org/10.1142/s0219876215400113.
Full textRokach, Ihor. "Stress Intensity Factor Calculation by Smoothed Finite Element Method." Solid State Phenomena 250 (April 2016): 163–68. http://dx.doi.org/10.4028/www.scientific.net/ssp.250.163.
Full textKUMAR, V. "SMOOTHED FINITE ELEMENT METHODS FOR THERMO-MECHANICAL IMPACT PROBLEMS." International Journal of Computational Methods 10, no. 01 (February 2013): 1340010. http://dx.doi.org/10.1142/s0219876213400100.
Full textLiu, G. R., T. T. Nguyen, K. Y. Dai, and K. Y. Lam. "Theoretical aspects of the smoothed finite element method (SFEM)." International Journal for Numerical Methods in Engineering 71, no. 8 (2007): 902–30. http://dx.doi.org/10.1002/nme.1968.
Full textHe, Z. C., G. Y. Zhang, L. Deng, Eric Li, and G. R. Liu. "Topology Optimization Using Node-Based Smoothed Finite Element Method." International Journal of Applied Mechanics 07, no. 06 (December 2015): 1550085. http://dx.doi.org/10.1142/s1758825115500854.
Full textChoi, J. H., and B. C. Lee. "Rotation-free triangular shell element using node-based smoothed finite element method." International Journal for Numerical Methods in Engineering 116, no. 6 (August 12, 2018): 359–79. http://dx.doi.org/10.1002/nme.5928.
Full textLIU, G. R. "A GENERALIZED GRADIENT SMOOTHING TECHNIQUE AND THE SMOOTHED BILINEAR FORM FOR GALERKIN FORMULATION OF A WIDE CLASS OF COMPUTATIONAL METHODS." International Journal of Computational Methods 05, no. 02 (June 2008): 199–236. http://dx.doi.org/10.1142/s0219876208001510.
Full textNatarajan, Sundararajan, Stéphane PA Bordas, and Ean Tat Ooi. "Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods." International Journal for Numerical Methods in Engineering 104, no. 13 (July 21, 2015): 1173–99. http://dx.doi.org/10.1002/nme.4965.
Full textLi, Wei, Yingbin Chai, Xiangyu You, and Qifan Zhang. "An Edge-Based Smoothed Finite Element Method for Analyzing Stiffened Plates." International Journal of Computational Methods 16, no. 06 (May 27, 2019): 1840031. http://dx.doi.org/10.1142/s0219876218400315.
Full textCui, Xiang Yang, Xiao Bin Hu, Guang Yao Li, and Gui Rong Liu. "A Modified Smoothed Finite Element Method for Static and Free Vibration Analysis of Solid Mechanics." International Journal of Computational Methods 13, no. 06 (November 2, 2016): 1650043. http://dx.doi.org/10.1142/s0219876216500432.
Full textONISHI, Yuki, and Kenji AMAYA. "Large Deformation Analysis of Rubber using Smoothed Finite Element Method with Tetrahedral Elements." Proceedings of The Computational Mechanics Conference 2014.27 (2014): 446–48. http://dx.doi.org/10.1299/jsmecmd.2014.27.446.
Full textLi, Y. H., R. P. Niu, and G. R. Liu. "Highly accurate smoothed finite element methods based on simplified eight-noded hexahedron elements." Engineering Analysis with Boundary Elements 105 (August 2019): 165–77. http://dx.doi.org/10.1016/j.enganabound.2019.03.020.
Full textYang, Jian, Wei Xie, and Zhiwei Zhang. "Exploring three-dimensional edge-based smoothed finite element method based on polyhedral mesh to study elastic mechanics problems." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 39, no. 4 (August 2021): 747–52. http://dx.doi.org/10.1051/jnwpu/20213940747.
Full textOshiro, Kai, Hiroka Miyakubo, Masaki Fujikawa, and Chobin Makabe. "Hexahedral-Based Smoothed Finite Element Method Using Volumetric-Deviatoric Split for Contact Problem." Materials Science Forum 940 (December 2018): 84–88. http://dx.doi.org/10.4028/www.scientific.net/msf.940.84.
Full textLI, Y., M. LI, and G. R. LIU. "A MODIFIED TRIANGULATION ALGORITHM TAILORED FOR THE SMOOTHED FINITE ELEMENT METHOD (S-FEM)." International Journal of Computational Methods 11, no. 01 (September 2, 2013): 1350069. http://dx.doi.org/10.1142/s0219876213500692.
Full textJansari, Chintan, Sundararajan Natarajan, Lars Beex, and K. Kannan. "Adaptive smoothed stable extended finite element method for weak discontinuities for finite elasticity." European Journal of Mechanics - A/Solids 78 (November 2019): 103824. http://dx.doi.org/10.1016/j.euromechsol.2019.103824.
Full textYAO, Lingyun. "Smoothed Finite Element Method for Two-dimensional Acoustic Numerical Computation." Journal of Mechanical Engineering 46, no. 18 (2010): 115. http://dx.doi.org/10.3901/jme.2010.18.115.
Full textJankowiak, T., and T. Łodygowski. "Smoothed particle hydrodynamics versus finite element method for blast impact." Bulletin of the Polish Academy of Sciences: Technical Sciences 61, no. 1 (March 1, 2013): 111–21. http://dx.doi.org/10.2478/bpasts-2013-0009.
Full textShobeiri, Vahid. "Structural Topology Optimization Based on the Smoothed Finite Element Method." Latin American Journal of Solids and Structures 13, no. 2 (February 2016): 378–90. http://dx.doi.org/10.1590/1679-78252243.
Full textAtia, Khaled S. R., A. M. Heikal, and S. S. A. Obayya. "Efficient smoothed finite element time domain analysis for photonic devices." Optics Express 23, no. 17 (August 14, 2015): 22199. http://dx.doi.org/10.1364/oe.23.022199.
Full textBordas, Stéphane P. A., and Sundararajan Natarajan. "On the approximation in the smoothed finite element method (SFEM)." International Journal for Numerical Methods in Engineering 81, no. 5 (August 12, 2009): 660–70. http://dx.doi.org/10.1002/nme.2713.
Full textChen, L., J. Zhang, K. Y. Zeng, and P. G. Jiao. "An edge-based smoothed finite element method for adaptive analysis." Structural Engineering and Mechanics 39, no. 6 (September 25, 2011): 767–93. http://dx.doi.org/10.12989/sem.2011.39.6.767.
Full textZhang, Juan, Mingquan Zhou, Youliang Huang, Pu Ren, Zhongke Wu, Xuesong Wang, and Shi Feng Zhao. "A Smoothed Finite Element-Based Elasticity Model for Soft Bodies." Mathematical Problems in Engineering 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/1467356.
Full textLi, Eric, C. C. Chang, Z. C. He, Zhongpu Zhang, and Q. Li. "Smoothed finite element method for topology optimization involving incompressible materials." Engineering Optimization 48, no. 12 (April 6, 2016): 2064–89. http://dx.doi.org/10.1080/0305215x.2016.1153926.
Full textZhang, Wei, Beibing Dai, Zhen Liu, and Cuiying Zhou. "Modeling discontinuous rock mass based on smoothed finite element method." Computers and Geotechnics 79 (October 2016): 22–30. http://dx.doi.org/10.1016/j.compgeo.2016.05.020.
Full textMeng, Jingjing, Xue Zhang, Jinsong Huang, Hongxiang Tang, Hans Mattsson, and Jan Laue. "A smoothed finite element method using second-order cone programming." Computers and Geotechnics 123 (July 2020): 103547. http://dx.doi.org/10.1016/j.compgeo.2020.103547.
Full textLee, Changkye, Sundararajan Natarajan, Jack S. Hale, Zeike A. Taylor, Jurng-Jae Yee, and St閜hane P. A. Bordas. "Bubble-Enriched Smoothed Finite Element Methods for Nearly-Incompressible Solids." Computer Modeling in Engineering & Sciences 127, no. 2 (2021): 411–36. http://dx.doi.org/10.32604/cmes.2021.014947.
Full textXU, XU, YUANTONG GU, and GUIRONG LIU. "A HYBRID SMOOTHED FINITE ELEMENT METHOD (H-SFEM) TO SOLID MECHANICS PROBLEMS." International Journal of Computational Methods 10, no. 01 (February 2013): 1340011. http://dx.doi.org/10.1142/s0219876213400112.
Full text