To see the other types of publications on this topic, follow the link: Smash products.

Journal articles on the topic 'Smash products'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Smash products.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wu, Zhi Xiang. "Generalized Smash Products." Acta Mathematica Sinica, English Series 20, no. 1 (January 2004): 125–34. http://dx.doi.org/10.1007/s10114-003-0293-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chin, William. "Spectra of smash products." Israel Journal of Mathematics 72, no. 1-2 (February 1990): 84–98. http://dx.doi.org/10.1007/bf02764612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fang, Xiao-Li, and Blas Torrecillas. "Twisted Smash Products and L-R Smash Products for Biquasimodule Hopf Quasigroups." Communications in Algebra 42, no. 10 (May 14, 2014): 4204–34. http://dx.doi.org/10.1080/00927872.2013.806520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Wei, Nan Zhou, and Shuanhong Wang. "Semidirect products of weak multiplier Hopf algebras: Smash products and smash coproducts." Communications in Algebra 46, no. 8 (January 18, 2018): 3241–61. http://dx.doi.org/10.1080/00927872.2017.1407421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LYDAKIS, MANOS. "Smash products and Γ-spaces." Mathematical Proceedings of the Cambridge Philosophical Society 126, no. 2 (March 1999): 311–28. http://dx.doi.org/10.1017/s0305004198003260.

Full text
Abstract:
In this paper we construct a symmetric monoidal smash product of Γ-spaces modelling the smash product of connective spectra. For the corresponding theory of ring-spectra, we refer the reader to [Sch].
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Shuangjian, Xiaohui Zhang, Yuanyuan Ke, and Yizheng Li. "Enveloping actions and duality theorems for partial twisted smash products." Filomat 34, no. 10 (2020): 3217–27. http://dx.doi.org/10.2298/fil2010217g.

Full text
Abstract:
In this paper, we first generalize the theorem about the existence of an enveloping action to a partial twisted smash product. Then we construct a Morita context between the partial twisted smash product and the twisted smash product related to the enveloping action. Finally, we present versions of the duality theorems of Blattner-Montgomery for partial twisted smash products.
APA, Harvard, Vancouver, ISO, and other styles
7

Chuang, Chen-Lian, and Yuan-Tsung Tsai. "Smash products and differential identities." Transactions of the American Mathematical Society 364, no. 8 (August 1, 2012): 4155–68. http://dx.doi.org/10.1090/s0002-9947-2012-05454-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ribeiro Alvares, Edson, Marcelo Muniz Alves, and María Julia Redondo. "Cohomology of partial smash products." Journal of Algebra 482 (July 2017): 204–23. http://dx.doi.org/10.1016/j.jalgebra.2017.03.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bergen, Jeffrey, and S. Montgomery. "Smash products and outer derivations." Israel Journal of Mathematics 53, no. 3 (December 1986): 321–45. http://dx.doi.org/10.1007/bf02786565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siciliano, Salvatore, and Hamid Usefi. "Lie structure of smash products." Israel Journal of Mathematics 217, no. 1 (March 2017): 93–110. http://dx.doi.org/10.1007/s11856-017-1439-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Liu, Wei, Xiaoli Fang, and Blas Torrecillas. "Twisted BiHom-smash products and L-R BiHom-smash products for monoidal BiHom-Hopf algebras." Colloquium Mathematicum 159, no. 2 (2020): 171–93. http://dx.doi.org/10.4064/cm7695-12-2018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Osterburg, James. "Smash Products and G-Galois Actions." Proceedings of the American Mathematical Society 98, no. 2 (October 1986): 217. http://dx.doi.org/10.2307/2045687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Alonso Alvarez, J. N., J. M. Fernández Vilaboa, and R. González Rodríguez. "Smash (co)Products and skew pairings." Publicacions Matemàtiques 45 (July 1, 2001): 467–75. http://dx.doi.org/10.5565/publmat_45201_09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bergen, Jeffrey, and Piotr Grzeszczuk. "SMASH PRODUCTS SATISFYING A POLYNOMIAL IDENTITY." Communications in Algebra 33, no. 1 (January 26, 2005): 221–33. http://dx.doi.org/10.1081/agb-200040986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Caihong, and Shenglin Zhu. "Smash Products ofH-Simple Module Algebras." Communications in Algebra 41, no. 5 (May 20, 2013): 1836–45. http://dx.doi.org/10.1080/00927872.2011.651761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Brzeziński, Tomasz, and Zhengming Jiao. "R-smash products of Hopf quasigroups." Arabian Journal of Mathematics 1, no. 1 (March 24, 2012): 39–46. http://dx.doi.org/10.1007/s40065-012-0020-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yokogawa, Kenji. "Hopf-Galois extensions and smash products." Journal of Algebra 107, no. 1 (April 1987): 138–52. http://dx.doi.org/10.1016/0021-8693(87)90080-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lück, Wolfgang, Holger Reich, and Marco Varisco. "Commuting Homotopy Limits and Smash Products." K-Theory 30, no. 2 (October 2003): 137–65. http://dx.doi.org/10.1023/b:kthe.0000018387.87156.c4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Qingzhong, Ji, and Qin Hourong. "On Smash Products Of Hopf Algebras." Communications in Algebra 34, no. 9 (September 2006): 3203–22. http://dx.doi.org/10.1080/00927870600778365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Osterburg, James. "Smash products and $G$-Galois actions." Proceedings of the American Mathematical Society 98, no. 2 (February 1, 1986): 217. http://dx.doi.org/10.1090/s0002-9939-1986-0854022-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Baues, Hans-Joachim, and Fernando Muro. "Smash Products for Secondary Homotopy Groups." Applied Categorical Structures 16, no. 5 (October 2, 2007): 551–616. http://dx.doi.org/10.1007/s10485-007-9071-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Guo, Shuangjian. "On generalized partial twisted smash products." Czechoslovak Mathematical Journal 64, no. 3 (September 2014): 767–82. http://dx.doi.org/10.1007/s10587-014-0131-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cai, C. R., and H. X. Chen. "Coactions, Smash Products, and Hopf Modules." Journal of Algebra 167, no. 1 (July 1994): 85–99. http://dx.doi.org/10.1006/jabr.1994.1176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lü, Jiafeng, Panpan Wang, and Ling Liu. "On BiHom-L-R Smash Products." Algebra Colloquium 30, no. 02 (June 2023): 245–62. http://dx.doi.org/10.1142/s1005386723000202.

Full text
Abstract:
Let [Formula: see text] be a BiHom-Hopf algebra and [Formula: see text] be an [Formula: see text]-BiHom-bimodule algebra, where the maps [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] are bijective. We first prove the Maschke-type theorem for the BiHom-L-R smash product over a finite-dimensional semisimple BiHom-Hopf algebra. Next we give a Morita context between the BiHom-subalgebra [Formula: see text] and the BiHom-L-R smash product [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
25

Farinati, Marco. "Hochschild duality, localization, and smash products." Journal of Algebra 284, no. 1 (February 2005): 415–34. http://dx.doi.org/10.1016/j.jalgebra.2004.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

WANG, DINGGUO, and YUANYUAN KE. "THE CALABI–YAU PROPERTY OF TWISTED SMASH PRODUCTS." Journal of Algebra and Its Applications 13, no. 03 (October 31, 2013): 1350118. http://dx.doi.org/10.1142/s0219498813501181.

Full text
Abstract:
Let H be a finite-dimensional cocommutative semisimple Hopf algebra and A * H a twisted smash product. The Calabi–Yau (CY) property of twisted smash product is discussed. It is shown that if A is a CY algebra of dimension dA, a necessary and sufficient condition for A * H to be a CY Hopf algebra is given.
APA, Harvard, Vancouver, ISO, and other styles
27

Delvaux, Lydia. "SEMI-DIRECT PRODUCTS OF MULTIPLIER HOPF ALGEBRAS: SMASH PRODUCTS." Communications in Algebra 30, no. 12 (December 31, 2002): 5961–77. http://dx.doi.org/10.1081/agb-120016026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhang, Liangyun, Huixiang Chen, and Jinqi Li. "TWISTED PRODUCTS AND SMASH PRODUCTS OVER WEAK HOPF ALGEBRAS." Acta Mathematica Scientia 24, no. 2 (April 2004): 247–58. http://dx.doi.org/10.1016/s0252-9602(17)30381-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zhang, Liangyun, and Ruifang Niu. "MASCHKE-TYPE THEOREM FOR PARTIAL SMASH PRODUCTS." International Electronic Journal of Algebra 19, no. 19 (June 1, 2016): 49. http://dx.doi.org/10.24330/ieja.266192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ulbrich, K. H. "Smash products and comodules of linear maps." Tsukuba Journal of Mathematics 14, no. 2 (December 1990): 371–78. http://dx.doi.org/10.21099/tkbjm/1496161459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Cohen, Miriam. "Smash products, inner actions and quotient rings." Pacific Journal of Mathematics 125, no. 1 (November 1, 1986): 45–66. http://dx.doi.org/10.2140/pjm.1986.125.45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

GUO, SHUANGJIAN, SHENGXIANG WANG, and LONG WANG. "Partial representation of partial twisted smash products." Publicationes Mathematicae Debrecen 89, no. 1-2 (July 1, 2016): 23–41. http://dx.doi.org/10.5486/pmd.2016.7277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

LINCHENKO, V., S. MONTGOMERY, and L. W. SMALL. "STABLE JACOBSON RADICALS AND SEMIPRIME SMASH PRODUCTS." Bulletin of the London Mathematical Society 37, no. 06 (December 2005): 860–72. http://dx.doi.org/10.1112/s0024609305004662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Selick, Paul, and Jie Wu. "On functorial decompositions of self-smash products." manuscripta mathematica 111, no. 4 (August 1, 2003): 435–57. http://dx.doi.org/10.1007/s00229-002-0353-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Liangyun, Zhang. "L-R smash products for bimodule algebras*." Progress in Natural Science 16, no. 6 (June 1, 2006): 580–87. http://dx.doi.org/10.1080/10020070612330038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Childs, L. N. "Azumaya algebras which are not smash products." Rocky Mountain Journal of Mathematics 20, no. 1 (March 1990): 75–89. http://dx.doi.org/10.1216/rmjm/1181073160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bulacu, Daniel, Florin Panaite, and Freddy Van Oystaeyen. "Quasi-hopf algebra actions and smash products." Communications in Algebra 28, no. 2 (January 2000): 631–51. http://dx.doi.org/10.1080/00927870008826849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yu, Xiaolan, and Yinhuo Zhang. "The Calabi–Yau property of smash products." Journal of Algebra 358 (May 2012): 189–214. http://dx.doi.org/10.1016/j.jalgebra.2012.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhu, Bin. "Smash products of quasi-hereditary graded algebras." Archiv der Mathematik 72, no. 6 (June 1999): 433–37. http://dx.doi.org/10.1007/s000130050352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zheng, Lijing, Chonghui Huang, and Qianhong Wan. "On the representation dimension of smash products." Advances in Applied Clifford Algebras 27, no. 3 (April 19, 2017): 2885–97. http://dx.doi.org/10.1007/s00006-017-0783-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wang, Caihong, and Shenglin Zhu. "On smash products of transitive module algebras." Chinese Annals of Mathematics, Series B 31, no. 4 (June 21, 2010): 541–54. http://dx.doi.org/10.1007/s11401-010-0586-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Fang, Xiao-Li, and Tae-Hwa Kim. "(𝜃,ω)-Twisted Radford’s Hom-biproduct and ϖ-Yetter–Drinfeld modules for Hom-Hopf algebras." Journal of Algebra and Its Applications 19, no. 03 (March 2020): 2050046. http://dx.doi.org/10.1142/s0219498820500462.

Full text
Abstract:
To unify different definitions of smash Hom-products in a Hom-bialgebra [Formula: see text], we firstly introduce the notion of [Formula: see text]-twisted smash Hom-product [Formula: see text]. Secondly, we find necessary and sufficient conditions for the twisted smash Hom-product [Formula: see text] and the twisted smash Hom-coproduct [Formula: see text] to afford a Hom-bialgebra, which generalize the well-known Radford’s biproduct and the Hom-biproduct obtained in [H. Li and T. Ma, A construction of the Hom-Yetter–Drinfeld category, Colloq. Math. 137 (2014) 43–65]. Furthermore, we introduce the notion of the category of [Formula: see text]-Yetter-Drinfeld modules which unifies the ones of Hom-Yetter Drinfeld category appeared in [H. Li and T. Ma, A construction of the Hom-Yetter–Drinfeld category, Colloq. Math. 137 (2014) 43–65] and [A. Makhlouf and F. Panaite, Twisting operators, twisted tensor products and smash products for Hom-associative algebras, J. Math. Glasgow 513–538 (2016) 58]. Finally, we prove that the [Formula: see text]-twisted Radford’s Hom-biproduct [Formula: see text] is a Hom-bialgebra if and only if [Formula: see text] is a Hom-bialgebra in the category of [Formula: see text]-Yetter–Drinfeld modules [Formula: see text], generalizing the well-known Majid’s conclusion.
APA, Harvard, Vancouver, ISO, and other styles
43

Panaite, Florin. "Iterated crossed products." Journal of Algebra and Its Applications 13, no. 07 (May 2, 2014): 1450036. http://dx.doi.org/10.1142/s0219498814500364.

Full text
Abstract:
We define a "mirror version" of Brzeziński's crossed product and we prove that, under certain circumstances, a Brzeziński crossed product D ⊗R,σ V and a mirror version [Formula: see text] may be iterated, obtaining an algebra structure on W ⊗ D ⊗ V. Particular cases of this construction are the iterated twisted tensor product of algebras and the quasi-Hopf two-sided smash product.
APA, Harvard, Vancouver, ISO, and other styles
44

Shen, Bingliang, and Ling Liu. "The Maschke-Type Theorem and Morita Context for BiHom-Smash Products." Advances in Mathematical Physics 2021 (January 13, 2021): 1–10. http://dx.doi.org/10.1155/2021/6677332.

Full text
Abstract:
Let H , α H , β H , ω H , ψ H , S H be a BiHom-Hopf algebra and A , α A , β A be an H , α H , β H -module BiHom-algebra. Then, in this paper, we study some properties on the BiHom-smash product A # H . We construct the Maschke-type theorem for the BiHom-smash product A # H and form an associated Morita context A H , A H A A # H , A # H A A H , A # H .
APA, Harvard, Vancouver, ISO, and other styles
45

Mu, Qiang. "Smash product construction of modular lattice vertex algebras." Electronic Research Archive 30, no. 1 (2021): 204–20. http://dx.doi.org/10.3934/era.2022011.

Full text
Abstract:
<abstract><p>Motivated by a work of Li, we study nonlocal vertex algebras and their smash products over fields of positive characteristic. Through smash products, modular vertex algebras associated with positive definite even lattices are reconstructed. This gives a different construction of the modular vertex algebras obtained from integral forms introduced by Dong and Griess in lattice vertex operator algebras over a field of characteristic zero.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
46

Albuquerque, Helena, and Florin Panaite. "On Quasi-Hopf Smash Products and Twisted Tensor Products of Quasialgebras." Algebras and Representation Theory 12, no. 2-5 (March 5, 2009): 199–234. http://dx.doi.org/10.1007/s10468-009-9143-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jensen, Anders, and Soren Jondrup. "Smash products, group actions and group graded rings." MATHEMATICA SCANDINAVICA 68 (December 1, 1991): 161. http://dx.doi.org/10.7146/math.scand.a-12353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pirkovskii, A. Yu. "Arens-Michael enveloping algebras and analytic smash products." Proceedings of the American Mathematical Society 134, no. 9 (February 17, 2006): 2621–31. http://dx.doi.org/10.1090/s0002-9939-06-08251-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bergen, Jeffrey. "A note on smash products over frobenius algebras." Communications in Algebra 21, no. 11 (January 1993): 4021–24. http://dx.doi.org/10.1080/00927879308824780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pan, Qun-xing. "On L-R Smash Products of Hopf Algebras." Communications in Algebra 40, no. 10 (October 2012): 3955–73. http://dx.doi.org/10.1080/00927872.2011.576735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography