Academic literature on the topic 'Smarth energy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Smarth energy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Smarth energy"

1

Babu, A. Narendra, Ch V. L. D. Kavya, A. Praneetha, T. T. Sai Dhanush, T. V. Ramanaiah, K. Nidheesh, and P. S. Brahmanandam. "Smart Energy Meter." Indian Journal Of Science And Technology 15, no. 29 (August 5, 2022): 1451–57. http://dx.doi.org/10.17485/ijst/v15i29.1241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ryu, Sung Uk, Hwang Bae, Jin Hwa Yang, Byong Guk Jeon, Eun Koo Yun, Jaemin Kim, Yoon Gon Bang, Myung Joon Kim, Sung-Jae Yi, and Hyun-Sik Park. "An Experimental Study on Flow Distributor Performance with Single-Train Passive Safety System of SMART-ITL." Journal of Energy Engineering 25, no. 4 (December 30, 2016): 124–32. http://dx.doi.org/10.5855/energy.2016.25.4.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tharuka Lulbadda, Kushan, and K. T. M. U. Hemapala. "The additional functions of smart inverters." AIMS Energy 7, no. 6 (2019): 971–88. http://dx.doi.org/10.3934/energy.2019.6.971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aleksandrovich, Panfilov Stepan. "Energy Efficient System "Smart House"." Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (July 25, 2020): 260–62. http://dx.doi.org/10.5373/jardcs/v12sp7/20202106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shinde, Mrs Sandhya, Mr Yogesh Yadav, and Miss Bharti Sontakke Miss Pratiksha Zapake. "IoT Based Smart Energy Meter." International Journal of Trend in Scientific Research and Development Volume-1, Issue-6 (October 31, 2017): 1151–53. http://dx.doi.org/10.31142/ijtsrd5761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Joshi, Dr Shreedhar A., Srijay Kolvekar, Y. Rahul Raj, and Shashank Singh Singh. "IoT Based Smart Energy Meter." Bonfring International Journal of Research in Communication Engineering 6, Special Issue (November 30, 2016): 89–91. http://dx.doi.org/10.9756/bijrce.8209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kavousi-Fard, Abdollah, and Amin Khodaei. "Multi-objective optimal operation of smart reconfigurable distribution grids." AIMS Energy 4, no. 2 (2016): 206–21. http://dx.doi.org/10.3934/energy.2016.2.206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

D’Alpaos, Chiara, and Michele Moretto. "Do Smart grids innovation affect real estate market values?" AIMS Energy 7, no. 2 (2019): 141–50. http://dx.doi.org/10.3934/energy.2019.2.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

K., Dr Shanthi. "IoT based Smart Energy Theft Detection System in Smart Home." Journal of Advanced Research in Dynamical and Control Systems 12, SP8 (July 30, 2020): 605–13. http://dx.doi.org/10.5373/jardcs/v12sp8/20202561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Solovey, V., V. Filenko, F. Tinti, A. Shevchenko, and M. Zipunnikov. "Smart PV-H2 grid energy complex." Journal of Mechanical Engineering 20, no. 3 (September 30, 2017): 49–53. http://dx.doi.org/10.15407/pmach2017.03.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Smarth energy"

1

Nydahl, Helena, and Annica Marmolin. "Smarta elnät med fokus på energilager; en lösning till hållbar tryckluftsförsörjning inom industrin : Simulering och optimering av energilager för utjämning av intermittenta energikällor." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-37060.

Full text
Abstract:
Världens energibehov förväntas ökar samtidigt som miljökraven blir allt hårdare. För att komma till rätta med klimatförändringarna och utsläppen av växthusgaser måste användningen av fossila bränslen minska samtidigt som energieffektiviseringar och förnybara energikällor måste öka. En större andel intermittenta förnybara energikällor på elmarknaden medför utmaningar. Finns det inget elbehov då det exempelvis blåser eller när solen skiner går den producerade elen förlorad, detta leder till att produktion och konsumtion av elektricitet måste ske samtidigt. För att förnybar energi ska kunna expandera men också effektiviseras måste samhället utveckla smarta elnät. Det finns olika uppfattningar vad som krävs för att skapa smarta elnät men elektrisk energilagersystem återkommer ofta i litteraturen. Det finns forskare som anser att satsning på intermittenta förnybara energikällor inte är ett alternativ om inte energin går att lagra. Compressed air energy storage är ett energilager som använder komprimerad luft för att lagra energin tills det finns ett behov. Industrin i Sverige står för drygt en tredjedel av den totala energianvändningen. Över 90 % av tillverkningsindustrin använder tryckluft. Det finns stora och små förbrukare av tryckluft beroende på användningsområde.  I denna studie kommer en internationell nulägesbeskrivning ges i utvecklingen av smarta elnät med fokus på elektriska energilagersystem. Syftet är att studien ska vara ett diskussionsunderlag, en informationsbärare och idéskapare. Den internationella nulägesbeskrivningen baseras på studiebesök, litteratursammanställning samt intervjuer. Resultatet från den internationella nulägesbeskrivningen visar att intresset för elektriska energilagersystem ökar då det är en central del i utvecklingen av smarta elnät.  Mellan 2011-2013 ökade investeringarna i elektriska energilager med 521 %. En anledning till denna ökning är den internationella trenden med microgrids och mindre decentraliserade kraftverk. Med ökad efterfrågan på energilagringssystem kommer nya energilagringssystem skapas och befintliga system utvecklas. Syftet med studien är även att undersöka om energilager är en lösning till hållbar tryckluftsförsörjning inom industrin. Målet är att dimensionera ett luftningssystem bestående av vindkraftverk och energilager, med en viss volym och maxtryck, för en stor- och liten tryckluftsförbrukare. I studien kommer även kostnadsbesparingen för den stora förbrukaren optimeras genom arbitrage. Dimensioneringen görs utifrån simuleringar i Simulink och optimering görs i MATLAB. Dimensionerat luftningssystemet för den stora tryckluftsförbrukaren består av ett vindkraftverk, ett energilager på 200 m3 med maxtryck på 10 bar. Täckningsgraden, det vill säga andelen av luftbehovet som kan täckas med vindkraft tillsammans med ett energilager, är 26 % för det dimensionerade luftningssystemet. Resultatet ger då 48 % mindre energiförbrukning, cirka 1,2 miljoner kronor i kostnadsbesparing och en miljövinning motsvarande 532 ton CO2-ekvivalenter. Kostnadsbesparing, då el köps via arbitrage, för den stora förbrukaren optimeras till maximalt 1,2 miljoner kronor. Generatorn har då en verkningsgrad på 85 % och kompressorn 90 %. Dimensionerat luftningssystemet för den mindre tryckluftsförbrukaren består av en vindsnurra, ett energilager på 20 m3 med maxtryck på 30 bar. Täckningsgraden, det vill säga andelen av luftbehovet som kan täckas med vindsnurra tillsammans med ett energilager, är 61 % för det dimensionerade luftningssystemet. Resultatet ger då 93 % mindre energiförbrukning, cirka 26 tusen kronor i kostnadsbesparing och en miljövinningen motsvarande 10,7 ton CO2-ekvivalenter. Skillnaden mellan en vindsnurra och ett vindkraftverk är att vindsnurran inte producerar el utan använder rörelseenergin direkt. Ett system bestående av energilager som drivs av energi från vinden lämpar sig bättre för ett mindre tryckluftsbehov där det går att nå upp i högre täckningsgrad. Övergången till smarta elnät är nödvändigt för att tillgodose alla aspekter av hållbar utveckling. Det är ingen del av smarta elnät som är viktigare än någon annan. En hållbar tryckluftanvändning inom industrin är en del av smarta elnät och för att göra det möjligt har energilager en avgörande roll. Nulägesbeskrivningen visar att det i dagsläget finns ett ökat intresse för EES internationellt men att det inte finns ett EES som ensamt kommer lösa integrationen av förnybar energi. Tekniken för energilagring finns idag och växer imorgon.
The world’s energy demand is expected to increase and at the same time the environmental requirements are becoming stricter. To deal with the climate change and the greenhouse gas emissions, the use of fossil fuel need to decrease, while the energy efficiency and renewable energy production must increase. A greater share of intermittent renewable energy on the electricity market entails challenges. If there is no need for electricity when the wind is blowing or when the sun is shining the electricity is lost, this leads to production and consumption of electricity must occur simultaneously. To expand the renewable energy and make it more efficient, society must develop a smart grid. There are different opinions about what it takes to create smart grids, but electrical energy storage, EES, reappears frequently in the literature. There are even scientists who believe that investment in intermittent renewable energy sources is not an option unless energy can be stored. Compressed air energy storage is a technique that uses compressed air to store energy until there is a demand.   The Swedish industry accounts for over a third of total energy consumption in the country. Over 90 % of the all manufacturing industry uses compressed air. There are big and small users of compressed air depending on the industry.  In this study, an international status description is given in the development of smart grids with a focus on electrical energy storage systems. The aim of this study is to be an information carrier that creates discussion and new ideas. The international status description is based on field visits, literature surveys and interviews. The results from the international status description shows that interest in electric energy storage systems is increasing since it is a central part in the development of smart grids. Between 2011 and 2013 the investments increased in electrical energy storage with 521 %. One reason for this increase is the international trend of micro grids and small decentralized power plants. With the increased demand for energy storage, new energy storage systems are created and existing systems evolve. The purpose of the study is also to examine if energy storage is a solution for a sustainable supply of compressed air in the industry. The goal is to design a compressed air system consisting of wind turbines and energy storage with a certain volume and maximum pressure, for a large and a small compressed air consumer. The study will also determine the cost saving for the big users is an optimized through arbitrage. The design is based on simulations in Simulink and the optimization is done in MATLAB. The selected compressed air system for the large consumer is based on one wind turbine, energy storage of 200 m3 with a maximum pressure of 10 bar. The coverage ratio, i.e. the proportion of the air need that is covered by wind energy with energy storage, is 26 %. An investment in this system would give reduced energy consumption by 48 % leading to a cost reduction of about 1.2 million SEK and a reduced environmental impact equivalent to 532 tons of CO2-equivalents. The generator then has an efficiency of 85 %, and the compressor has 90 %. The selected compressed air system for the smaller consumer achieves a coverage rate of 61 % with the following dimensions; one windmill, energy storage of 20 m3 and maximum pressure of 30 bar. An investment in this system would give a reduced energy consumption by 93 %, leading to a cost reduction of about 26 000 SEK and a reduced environmental impact equivalent to 10.7 ton of CO2 equivalents. The difference between a windmill and a wind turbine is that the windmill does not produce electricity instead it uses kinetic energy directly. A system consisting of energy storage driven by energy from the wind is more suited for smaller air requirements where it is possible to achieve greater coverage. The transition to smart grids is necessary to be able to meet all aspects of sustainable development. There is no part of smart grids that is more important. Sustainable use of compressed air in industry is a part of smart grids and to make it possible energy storage is crucial. The international status description shows that there is a growing international interest in EES but there isn’t one EES alone that will solve the integration of renewable energy. The techniques for energy storage are existing today and are growing tomorrow.
APA, Harvard, Vancouver, ISO, and other styles
2

OSMAN, NADA, and IBRAHIM ELNOUR. "Smart Energy Solutions as TechnologicalConfigurations : Implications on theOrganizational Strategy." Thesis, KTH, Hållbarhet och industriell dynamik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199082.

Full text
Abstract:
Den länge stabila elbolagssindustrin genomgår stora förändringar. Regelverk, miljömässiga problem, framsteg inom förnybar generering och ICT har orsakat allvarliga tryck på affärsmodellerna för konventionella elbolag. Konsekvenserna på dessa elbolag är; vinstmarginalerna har minskat avsevärt, stora elkraftverk fasas ut och det finns ett stort behov av att generera investeringar för att uppfylla regulatoriska krav. På jakt efter nya affärsmöjligheter utforskar elbolag nya affärsområden så som "Smart Energy Solutions" området. "Smart Energy Solutions" utgör en växande marknad med outnyttjad potential. Uppdragsgivaren för denna rapport är det svenska elbolaget Vattenfall AB. Där uppdraget är att identifiera marknadsmöjligheter för Vattenfall "Smart Energy Solutions" för målgruppen små och medelstora företag (SME). Syftet med denna forskning har varit att undersöka anpassningen som krävs mellan organisationen, "Smart Energy Solutions" och SME marknaden. Resultaten av denna forskning användes för att föreslå en strategi för utveckling av smarta energilösningar med inriktning på SME marknaden. Vid analys av egenskaperna hos "Smart Energy Solutions" och egenskaperna hos SME konstaterandes tre resultat. "Smart Energy Solutions" identifieras som "teknisk konfiguration". SME är heterogena till sin natur och kan därför inte mötas med enhetliga lösningar. Samt det tredje resultatet, baserat på de tidigare två resultaten, en strategi för hur framgångsrika innovationen "Smart Energy Solutions" ska rikta in sig i SME marknaden.
The long-stable eletric utility industry is undergoing major transformations. Regulatory frameworks, enviromental concerns, advancements in the renewable genration and ICT have caused severe pressure on the business model of conventional electric utilites. For these utilities; profit margins have declined considerably, large generation assests are being phased-out,and there is a pressing need to generate investments to meet the regulatory requirements. In search for new business opportunities, electric utilties are exploring new business areas, Smart Energy Solutions represent an emerging market, with untapped potentials. This research was commissioned by the Swedish electric utility Vattenfall AB, to identify market opportunities for Vattenfall Smart Energy Solutions, targetting the small and medium size enterprises SMEs. The purpose of this research has been to investigate the required alignment between the organization, Smart Energy Solutions and the SMEs market; the findings were used to propose a strategy for the development of Smart Energy Solutions targeting the SMEs. Upon analyzing the characteristics of Smart Energy Solutions and the characteristics of SMEs, the finding of this research are: first, Smart Energy Solutions is identified as "Technological Configuration", second: the SMEs are heterogeneous in nature; thereby they can’t be targeted through uniform solutions, third: based on the previous two findings; and considering the organizational context; a strategy was proposed for the successful innovation of Smart Energy Solutions targeting the SMEs.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Jianing. "Shared smart energy storage system for smart homes and smart buildings." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6728/.

Full text
Abstract:
In recent years, energy crisis and climate changes have raised a significant attention globally. There’s an increasing awareness of maximising the utilisation of distributed energy resources to ease local network congestion, reduce carbon emissions and even support the grid. This thesis presents a shared energy storage system across multiple apartments to reduce investment and operation costs. Both hardware integration solution and software Cloud connected energy management system are designed and implemented. The solution has been deployed and trialled in residential building block running for two years in a pilot project. The performance of is evaluated through data analytics from the deployed systems. The business model for the above system is proposed and explored. The optimisation is enhanced with various energy services based on fuzzy logic rules to manage controllable loads and incorporate with grid tariffs are designed and evaluated. The feasibility and performance of the proposed energy services is validated through simulation platform with load and generation data profiles extracted from the deployed systems. An aggregated energy management services for apartment buildings is proposed. Business models with incentive scheme are exploited to minimise the operation cost. Its performance is conducted in case studies through various scenarios.
APA, Harvard, Vancouver, ISO, and other styles
4

Villa-Arrieta, Manuel. "Energy sustainability of smart cities." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/671008.

Full text
Abstract:
The increase in the energy consumption of cities forecasted for the coming years makes these urban areas tend to be representative of the energy sustainability of their countries. In this sense, on the basis of the analysis of the management model and technological development "Smart City", the objective of this Thesis is to study the scalability from buildings to country level of the reduction in the energy consumption and the increase of the photovoltaic self-consumption . The contribution of this Thesis is based on its relevance in the process of energy transition towards a decarbonised economy, more specifically,in the study of the flexibilization of the functioning of the electrical system through the empowerment of the consumer. Thus ,through its six chapters ,this Thesis addresses broad research focused on identifying the relationship between energy sustainability and "Smart Cities", based on the study of active demand management and the evaluation of the technical-economic performance of buildings and cities with almost zero energy consumption. Chapter 1 serves as a preface to the research of the Thesis describing the relationship between the study of climate change, energy sustainability and the energy transition under the "Smart City" concept. In Chapter 2,"Contribution of Cities to Transition and Energy Sustainability" presents an analysis of the relationship between both concepts. The main contribution of this chapter is the presentation of the hypothesis of the representativeness of the energy sustainability of cities in the energy sustainability of their countries. In Chapter 3, "Electricity strategic conservation through Smart Meters and Demand Side Response: A review", the contribution of the consumer to the flexibilization of the operation of the electrical system is studied. Based on a systematic review of references ,this chapter analyzes the results of the empirical works on the reduction of electricity consumption in households through the feedback of energy information. Chapter 4,"A model for an economic evaluation of energy systems using TRNSYS", contributes with the description and validation of the economic calculation methodology of a model proposed to evaluate "Nearly Zero Energy Buildings " and distributed generation systems. Continuing with this contribution, in Chapter 5 "Economic evaluation of Nearly Zero Energy Cities", the economic evaluation model is applied to a simulation model of the energy performance of the urban energy self­ consumption, performance which is based on the distribution of energy among consumers, prosumers and energy producers and the increase in the consumption of local renewable energy resources to the detriment of the consumption of external sources. Both of these two Chapters 4 and 5 were published in the scientific journal Applied Energy (Q1). Finally,Chapter 6 presents the conclusions of the research, highlighting among them that to maintain the balance of the security of electricity supply,equity in access to energy and environmental sustainability of the city-country, the evaluation of energy sustainability should be addressed from the effectiveness of the electric systems of "Smart Cities". The research covered in this Thesis opens the possibility of addressing the following three research works in the future. 1) Designing a methodology to assess the energy sustainability of cities, which links the evaluation of the effectiveness of "Smart Energy Systems" with the evaluation of local and national climate targets. 2) Expanding the application of the "Nearly Zero Energy City" model to convert its results into an indicator of the flexibility of urban electrical systems. And 3) evaluating other cities in the world with this model, and including electrical storage systems and urban wind generation .
El aumento del consumo energético de las ciudades previsto para los próximos años hace que estas urbes tiendan a ser representativas de la sostenibilidad energética de sus países. En este sentido, en base al análisis del modelo de gestión y desarrollo tecnológico para áreas urbanas "Smart City", el objetivo de esta Tesis es estudiar la escalabilidad desde edificios hasta el nivel de país, de la reducción del consumo energético y el aumento del autoconsumo fotovoltaico. La contribución de esta Tesis se basa en su relevancia en el proceso de transición energética hacia una economía descarbonizada. Específicamente, en el estudio de la flexibilización del funcionamiento del sistema eléctrico a través del empoderamiento del consumidor. Así, dividida en seis capítulos, esta Tesis aborda un amplio trabajo de investigación centrado en identificar la relación entre la sostenibilidad energética y las "Smart Cities", en base al estudio de la gestión activa de la demanda y la evaluación del desempeño técnico-económico de edificios y ciudades de consumo energético casi nulo. El Capítulo 1 sirve de prefacio a la investigación de la Tesis describiendo la relación entre el estudio del cambio climático, la sostenibilidad energética y la transición energética bajo el concepto "Smart City". En el capítulo 2, "Contribution of Cities to Transition and Energy Sustainability", se presenta el análisis de la relación entre ambos conceptos . La principal contribución de este capitulo es la presentación de la hipótesis de la representatividad de la sostenibilidad energética de las ciudades en la sostenibilidad energética de sus países. En el capítulo 3, "Electricity strategic conservation through Smart Meters and Demand Side Response: A review", se estudia la contribución del consumidor a la flexibilización de la operación del sistema eléctrico. Basado en una revisión sistemática de referencias, este capítulo analiza los resultados de los trabajos empíricos sobre la reducción del consumo eléctrico en los hogares a través de la retroalimentación de la información energética. El Capítulo 4, "A model for an economic evaluation of energysystems using TRNSYS", contribuye con la descripción y validación de la metodología de cálculo económico de un modelo propuesto para evaluar "Nearly Zero Energy Buildings" y sistemas de generación distribuida. Continuando con esta contribución, en el capítulo 5 "Economic evaluation of Nearly Zero Energy Cities", el modelo de evaluación económica es aplicado a un modelo de simulación del desempeño energético del autoconsumo energético de ciudades. Desempeño el cual, se basa en la distribución de energía entre consumidores, prosumidores y productores de energía, y el aumento del consumo de recursos energéticos renovables locales en detrimento del consumo de fuentes externas. Cada uno de estos dos capítulos 4 y 5, fue publicado en la revista científica Applied Energy (Q1). Finalmente, el capítulo 6 presenta las conclusiones de la investigación, destacando entre ellas que para mantener en equilibrio la seguridad del suministro eléctrico, la equidad en el acceso a la energía y la sostenibilidad ambiental del binomio entre ciudad y país, la evaluación de la sostenibilidad energética debe abordarse desde la efectividad de los sistemas eléctricos de las Smart Cities. La investigación cubierta en esta Tesis abre a la posibilidad de abordar los siguientes tres trabajos de investigación en el futuro. 1) Diseñar una metodología para evaluar la sostenibilidad energética de las ciudades que vincule la evaluación de la efectividad de "Smart Energy Systems" con la evaluación de objetivos climáticos locales y nacionales .2) Ampliar la aplicación del modelo "Nearly Zero Energy Cities" para convertir sus resultados en un indicador de la flexibilidad de los sistemas eléctricos urbanos. Y 3) evaluar con este modelo otras ciudades del mundo,
APA, Harvard, Vancouver, ISO, and other styles
5

Lara, Topol. "Smart energy city critical infrastructures." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-27245.

Full text
Abstract:
Smart energy cities have a potential to lead the transition from fossil age into the age of renewables. After a theoretical background is presented, of why the transition is necessary and what steps need to be taken in that direction, this paper brings insight into the paradigm of smart cities. The focus is set on the smart building as its fundamental building block. Fifteen cases of turning Norwegian and Croatian households into smart ones have been analyzed. Those are various combinations of consumption, generation and storage options. Expenses and revenues in case of implementing such smart households are presented by conducted cost and benefit analysis, as well as profitability of such projects.This assignment is realized as a part of the collaborative project "Sustainable Energy and Environment in Western Balkans" that aims to develop and establish five new internationally recognized MSc study programs for the field of "Sustainable Energy and Environment", one at each of the five collaborating universities in three different WB countries. The project is funded through the Norwegian Programme in Higher Education, Research and Development in the Western Balkans, Programme 3: Energy Sector (HERD Energy) for the period 2011 - 2014.
APA, Harvard, Vancouver, ISO, and other styles
6

MacIsaac, Liam J. "Modelling smart domestic energy systems." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4214/.

Full text
Abstract:
The increasing price of fossil fuels, coupled with the increased worldwide focus on their contribution to climate change has driven the need to develop cleaner forms of energy generation. The transition to cleaner energy sources has seen a much higher penetration of renewable sources of electricity on the grid than ever before. Among these renewable generation sources are wind and solar power which provide intermittent and often unpredictable energy generation throughout the day depending on weather conditions. The connection of such renewable sources poses problems for electricity network operators whose legacy systems have been designed to use traditional generation sources where supply can be increased as required to meet demand. Among the solutions proposed to address this issue with intermittency in generation are storage systems and automation systems which aim to reduce demand in order to match the available renewable generation. Such a transition would introduce a requirement for more advanced technology within homes to provide network operators with greater control over domestic loads. Another aspect to the transition towards a low-carbon society is the change that will be required to domestic heating systems. Current domestic heating systems largely rely on Natural Gas as their fuel source. In order to meet carbon reduction targets, changes will need to be made to domestic buildings including insulation and other energy efficiency measures. It is also possible that present systems will begin to be replaced by new heating technologies such as ground and air source heat pumps. Due to the effect that such technological transitions will have on domestic end-users, it is important that these new technologies are designed with end-users in mind. It is therefore necessary that software tools are available to model and simulate these changes at the domestic level to guide the design of new systems. This thesis provides a summary of some of the existing building energy analysis tools that are available and shows that there is currently a shortcoming in the capabilities of existing tools when modelling future domestic smart grid technologies. Tools for developing these technologies must include a combination of building thermal characteristics, electrical energy generation and consumption, software control and communications. A new software package was developed which allows for the modelling of small smart grid systems, with a particular focus on domestic systems including electricity, heat transfer, software automation and control and communications. In addition to the modelling of electrical power flow and heat transfer that is available in existing building energy simulation packages, the package provides the novel features of allowing the simulation of data communication and human interaction with appliances. The package also provides a flexible framework that allows system components to be developed in full object-orientated programming languages at run time, rather than having to use additional third-party development environments. As well as describing the background to the work and the design of the new software, this thesis describes validation studies that were carried out to verify the accuracy of the results produced by the package. A simulation-based case study was also carried out to demonstrate the features offered by the new platform in which a smart domestic energy control system including photovoltaic generation, hot water storage and battery storage was developed. During the development of this system, new algorithms for obtaining the operating point of solar panels and photovoltaic maximum power point tracking were developed.
APA, Harvard, Vancouver, ISO, and other styles
7

Kinner, Robert Howard. "Green Energy Through Smart Ceramics." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1321498366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Demadema, Kwanele. "Smart Home Energy Management System." Thesis, Demadema, Kwanele (2018) Smart Home Energy Management System. Honours thesis, Murdoch University, 2018. https://researchrepository.murdoch.edu.au/id/eprint/44789/.

Full text
Abstract:
The link between fossil generated electricity for home energy use and climate change means that the ever‐rising residential energy requirements contribute significantly to the greenhouse gas emissions and therefore household demand also has a negative impact on the environment. As a result, home energy management has gained significant attention over the years. The anticipated incentive to the home energy user is household energy cost reduction while the network operator gains from peak demand reduction. Effective Demand Response (DR) programs in the form of Smart Home Energy Management systems have the potential to fulfill both the consumer’s and network operator’s expectations. This project analyses the challenges of DR and the effects of incorporating local Renewable Energy (RE) generation to a domestic installation with the aim of turning the household into an energy neutral home whose net annual energy consumption is almost zero. Power demand and the consumption characteristics of households through common household appliances were investigated using smart meters and the associated load profiles. Some of Synergy’s Western Australian (WA) electricity retail tariffs were analysed and applied to the load profile downloads to verify the cost benefits of tariff shopping, standby mode elimination and load shifting. The Homer Pro micro grid analysis tool was used to investigate the possibility of turning a Perth household into an energy neutral home by attempting to match its possible loading with the most viable solar generation system. The results show that the Power Shift (PS1) tariff was the cheapest with a 1.44% cost reduction from the Home plan (A1) project base plan. The cost reduction analysis was performed by applying the House 1 June load profile to all the tariffs considered in this investigation. The research results show that it is possible to achieve an energy neutral home in WA although this would be accompanied by high costs and regulatory restrictions. This thesis project found that about 96% renewable fraction is achievable to typical WA households within reasonable technical, economic and regulatory considerations.
APA, Harvard, Vancouver, ISO, and other styles
9

Günther, Niklas, and Christoph Mengs. "Smart Metering: Einsparpotentiale für Kommunen?" Universität Leipzig, 2018. https://ul.qucosa.de/id/qucosa%3A34234.

Full text
Abstract:
Der KOMKIS Report fasst die Ergebnisse einer Kurzstudie zusammen, die methodisch mit Hilfe eines teilstandardisierten Leitfadeninterviews mit Experten zu Smart Metering im kommunalen Kontext geführt wurde. Ziel war es, explorativ erste Einschätzungen für den aktuell erfolgenden Smart Meter Rollout für Kommunen in Sachsen zu erhalten. Ei-nerseits ist das Ergebnis, dass ein erneuter Strukturwandel in der Stromwirtschaft be-vorsteht, der jedoch aus Sicht der Experten noch offen für die einzelnen Marktakteure ist. Andererseits ist klar, dass sowohl das kommunale Energiemanagement als auch die kommunalen öffentlichen Unternehmen in der Energiewirtschaft mit neuen Chancen und Risiken konfrontiert sind, die es zu gestalten gilt.
APA, Harvard, Vancouver, ISO, and other styles
10

Falcey, Jonathan M. "Electricity Markets, Smart Grids and Smart Buildings." Thesis, University of Denver, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1536975.

Full text
Abstract:

A smart grid is an electricity network that accommodates two-way power flows, and utilizes two-way communications and increased measurement, in order to provide more information to customers and aid in the development of a more efficient electricity market. The current electrical network is outdated and has many shortcomings relating to power flows, inefficient electricity markets, generation/supply balance, a lack of information for the consumer and insufficient consumer interaction with electricity markets. Many of these challenges can be addressed with a smart grid, but there remain significant barriers to the implementation of a smart grid.

This paper proposes a novel method for the development of a smart grid utilizing a bottom up approach (starting with smart buildings/campuses) with the goal of providing the framework and infrastructure necessary for a smart grid instead of the more traditional approach (installing many smart meters and hoping a smart grid emerges). This novel approach involves combining deterministic and statistical methods in order to accurately estimate building electricity use down to the device level. It provides model users with a cheaper alternative to energy audits and extensive sensor networks (the current methods of quantifying electrical use at this level) which increases their ability to modify energy consumption and respond to price signals

The results of this method are promising, but they are still preliminary. As a result, there is still room for improvement. On days when there were no missing or inaccurate data, this approach has R2 of about 0.84, sometimes as high as 0.94 when compared to measured results. However, there were many days where missing data brought overall accuracy down significantly. In addition, the development and implementation of the calibration process is still underway and some functional additions must be made in order to maximize accuracy. The calibration process must be completed before a reliable accuracy can be determined.

While this work shows that a combination of a deterministic and statistical methods can accurately forecast building energy usage, the ability to produce accurate results is heavily dependent upon software availability, accurate data and the proper calibration of the model. Creating the software required for a smart building model is time consuming and expensive. Bad or missing data have significant negative impacts on the accuracy of the results and can be caused by a hodgepodge of equipment and communication protocols. Proper calibration of the model is essential to ensure that the device level estimations are sufficiently accurate. Any building model which is to be successful at creating a smart building must be able to overcome these challenges.

APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Smarth energy"

1

Servatius, Hans-Gerd, Uwe Schneidewind, and Dirk Rohlfing, eds. Smart Energy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-21820-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aichele, Christian. Smart Energy. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-1981-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Illinois. Bureau of Energy and Recycling. Smart Energy Design Assistance Program: Working towards smarter buildings with the Smart Energy Design Assistance Center. Springfield, Ill.]: Illinois Dept. of Commerce and Economic Opportunity, [Bureau of Energy & Recycling, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nathanail, Eftihia G., Nikolaos Gavanas, and Giannis Adamos, eds. Smart Energy for Smart Transport. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-23721-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhou, Kaile, and Lulu Wen. Smart Energy Management. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9360-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Papa, Rocco, and Romano Fistola, eds. Smart Energy in the Smart City. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31157-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ploix, Stephane, Manar Amayri, and Nizar Bouguila, eds. Towards Energy Smart Homes. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76477-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Solovev, Denis B., Grigorios L. Kyriakopoulos, and Terziev Venelin, eds. SMART Automatics and Energy. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8759-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Jennifer. Smart energy resources guide. Cincinnati, OH: U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Illinois. Bureau of Energy and Recycling. Small Business $mart Energy Program: Working towards smarter buildings with the Smart Energy Design Assistance Center. Springfield, Ill.]: Illinois Dept. of Commerce and Economic Opportunity, [Bureau of Energy & Recycling, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Smarth energy"

1

Goerdeler, Andreas. "E-Energy – Deutschlands Weg zum Internet der Energie." In Smart Energy, 277–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21820-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Leblebici, Anil, Patrick Mayor, Martin Rajman, and Giovanni De Micheli. "Smart Energy." In Nano-Tera.ch, 109–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99109-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Loske, Moritz. "Smart Energy." In Nanoelectronics, 471–88. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527800728.ch20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aichele, Christian. "Smart Energy." In Smart Energy, 1–20. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-1981-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Osterhage, Wolfgang. "Smart Energy." In Chancen und Grenzen der Energieverwertung, 115–18. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-23902-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liggesmeyer, Peter, Dieter Rombach, and Frank Bomarius. "Smart Energy." In Digital Transformation, 335–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58134-6_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liggesmeyer, Peter, Dieter Rombach, and Frank Bomarius. "Smart Energy." In Digitalisierung, 347–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-55890-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Jianbin, Qi Xia, Kwame Omono Asamoah, and Bonsu Adjei-Arthur. "Smart Energy." In Smart Cities, 159–78. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003289418-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Osterhage, Wolfgang. "Smart Energy." In Energy Utilisation: The Opportunities and Limits, 145–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79404-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abid, Mohamed Nadhir, and Khadija Abid. "SMART Irrigation System (SMARTIS)—Desert Areas." In Sustainable Energy-Water-Environment Nexus in Deserts, 267–77. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76081-6_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Smarth energy"

1

Katz, Jeffrey S. "Educating the Smart Grid." In 2008 IEEE Energy 2030 Conference. IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4780998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bennett, Coalton, and Darren Highfill. "Networking AMI Smart Meters." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DeBlasio, Richard, and Cherry Tom. "Standards for the Smart Grid." In 2008 IEEE Energy 2030 Conference. IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4780988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Malidin, Anne-Solene, Clara Kayser-Bril, Nadia Maizi, Edi Assoumou, Veronique Boutin, and Vincent Mazauric. "Assessing the Impact of Smart Building Techniques: a Prospective Study for France." In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamane, Amine, and Simon Abourida. "Real-time simulation of distributed energy systems and microgrids." In 2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART). IEEE, 2015. http://dx.doi.org/10.1109/smart.2015.7399214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vargas Salgado, Carlos, Cristian Chiñas-Palacios, Jesús Águila-León, and Elías Hurtado-Perez. "Arduino Based Smart Power Meter: A Low-cost Approach for Academic and Research Applications." In INNODOCT 2020. Valencia: Editorial Universitat Politècnica de València, 2020. http://dx.doi.org/10.4995/inn2020.2020.11904.

Full text
Abstract:
Energy consumption has increased significantly over the past century, which has brought several bad conditions for the environment. One way to reduce these adverse consequences of energy consumption from Earth is to make smarter and more efficient use of it, and measuring energy is an essential task to accomplish it. A detailed measurement of power consumption at non-industrial level is often excessively expensive. This paper presents the design and implementation of an Arduino-based low-cost smart power meter, as an affordable alternative. An evaluation of the Arduino-based smart power meter performance is carried out by comparing its measurements against measurements obtained by a commercial Siemens SENTRON PAC3200 smart power meter. Results show that the Arduino-based smart power meter has similar accuracy to the commercial power meter, making it an interesting alternative for low-budget applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Hubner, Markus, Michael Schmitt, and Michael Schier. "Influences of different heating strategies on the energy demand of an airfield luggage tug." In 2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART). IEEE, 2015. http://dx.doi.org/10.1109/smart.2015.7399262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ali, Naser, Mohamed Sebzali, Altaf Safar, and Fadi Al-Khatib. "A feasibility study of using waste cooking oil as a form of energy in Kuwait." In 2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART). IEEE, 2015. http://dx.doi.org/10.1109/smart.2015.7399255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Smart Energy." In 2018 International Conference on Smart Systems and Technologies (SST). IEEE, 2018. http://dx.doi.org/10.1109/sst.2018.8564559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Asif, Rameez, Kinan Ghanem, and James Irvine. "Containerization: For Over-the-Air Programming of Field Deployed Internet-of-Energy Based on Cost Effective LPWAN." In 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH). IEEE, 2020. http://dx.doi.org/10.1109/smart-tech49988.2020.00030.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Smarth energy"

1

Gitchell, John M., and Adam L. Palmer. Energy Smart Colorado, Final Report. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1126484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mui, Ming. Long Island Smart Energy Corridor. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1179181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baldessari, Gianni, Oliver Bender, Domenico Branca, Luigi Crema, Anna Giorgi, Nina Janša, Janez Janša, Marie-Eve Reinert, and Jelena Vidović. Smart Altitude. Edited by Annemarie Polderman, Andreas Haller, Chiara Pellegrini, Diego Viesi, Xavier Tabin, Chiara Cervigni, Stefano Sala, et al. Verlag der Österreichischen Akademie der Wissenschaften, March 2021. http://dx.doi.org/10.1553/smart-altitude.

Full text
Abstract:
This final report summarizes the outcomes of the Smart Altitude project. The Smart Altitude project ran from June 2018 to April 2021 and was carried out by ten partners from six different countries in the Alpine Space (Austria, France, Italy, Germany, Slovenia, and Switzerland). The project was co-financed by the European Union via Interreg Alpine Space. The aim of the project was to enable and accelerate the implementation of low-carbon policies in winter tourism regions by demonstrating the efficiency of a step-by-step decision support tool for energy transition in four Living Labs. The project targeted policymakers, ski resort operators, investors, tourism, and entrepreneurship organizations. The Smart Altitude approach was designed to ensure suitability across the Alpine Space, thereby fostering its replication and uptake in other winter tourism regions and thus increasing the resilience of mountain areas.
APA, Harvard, Vancouver, ISO, and other styles
4

Page, Janie, Chuck McParland, Mary Ann Piette, and Stephen Czarnecki. Design of an Open Smart Energy Gateway for Smart Meter Data Management. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1248928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hendron, Robert, Kristin Heinemeier, Alea German, and Joshua Pereira. Modeling Savings for ENERGY STAR Smart Home Energy Management Systems. Office of Scientific and Technical Information (OSTI), July 2021. http://dx.doi.org/10.2172/1807789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rankin, Linda. An Open Source Extensible Smart Energy Framework. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1347747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gourisetti, Sri Nikhil, Steven Widergren, Michael Mylrea, Peng Wang, Mark Borkum, Alysha Randall, and Bishnu Bhattarai. Blockchain Smart Contracts for Transactive Energy Systems. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1658378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gourisetti, Sri Nikhil, Steven Widergren, Michael Mylrea, Peng Wang, Mark Borkum, Alysha Randall, and Bishnu Bhattarai. Blockchain Smart Contracts for Transactive Energy Systems. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1658380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hollifield, Sam, Mingyan Li, and Michael Iannacone. Smart Packaging for Critical Energy Shipment (SPaCES). Office of Scientific and Technical Information (OSTI), January 2023. http://dx.doi.org/10.2172/1923175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Speer, B., M. Miller, W. Schaffer, L. Gueran, A. Reuter, B. Jang, and K. Widegren. Role of Smart Grids in Integrating Renewable Energy. Office of Scientific and Technical Information (OSTI), May 2015. http://dx.doi.org/10.2172/1215177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography