Dissertations / Theses on the topic 'Smart vehicle'

To see the other types of publications on this topic, follow the link: Smart vehicle.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Smart vehicle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Mustafa, Mustafa Asan. "Smart Grid security : protecting users' privacy in smart grid applications." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/smart-grid-security-protecting-users-privacy-in-smart-grid-applications(565d4c36-8c83-4848-a142-a6ff70868d93).html.

Full text
Abstract:
Smart Grid (SG) is an electrical grid enhanced with information and communication technology capabilities, so it can support two-way electricity and communication flows among various entities in the grid. The aim of SG is to make the electricity industry operate more efficiently and to provide electricity in a more secure, reliable and sustainable manner. Automated Meter Reading (AMR) and Smart Electric Vehicle (SEV) charging are two SG applications tipped to play a major role in achieving this aim. The AMR application allows different SG entities to collect users’ fine-grained metering data measured by users’ Smart Meters (SMs). The SEV charging application allows EVs’ charging parameters to be changed depending on the grid’s state in return for incentives for the EV owners. However, both applications impose risks on users’ privacy. Entities having access to users’ fine-grained metering data may use such data to infer individual users’ personal habits. In addition, users’ private information such as users’/EVs’ identities and charging locations could be exposed when EVs are charged. Entities may use such information to learn users’ whereabouts, thus breach their privacy. This thesis proposes secure and user privacy-preserving protocols to support AMR and SEV charging in an efficient, scalable and cost-effective manner. First, it investigates both applications. For AMR, (1) it specifies an extensive set of functional requirements taking into account the way liberalised electricity markets work and the interests of all SG entities, (2) it performs a comprehensive threat analysis, based on which, (3) it specifies security and privacy requirements, and (4) it proposes to divide users’ data into two types: operational data (used for grid management) and accountable data (used for billing). For SEV charging, (1) it specifies two modes of charging: price-driven mode and price-control-driven mode, and (2) it analyses two use-cases: price-driven roaming SEV charging at home location and price-control-driven roaming SEV charging at home location, by performing threat analysis and specifying sets of functional, security and privacy requirements for each of the two cases. Second, it proposes a novel Decentralized, Efficient, Privacy-preserving and Selective Aggregation (DEP2SA) protocol to allow SG entities to collect users’ fine-grained operational metering data while preserving users’ privacy. DEP2SA uses the homomorphic Paillier cryptosystem to ensure the confidentiality of the metering data during their transit and data aggregation process. To preserve users’ privacy with minimum performance penalty, users’ metering data are classified and aggregated accordingly by their respective local gateways based on the users’ locations and their contracted suppliers. In this way, authorised SG entities can only receive the aggregated data of users they have contracts with. DEP2SA has been analysed in terms of security, computational and communication overheads, and the results show that it is more secure, efficient and scalable as compared with related work. Third, it proposes a novel suite of five protocols to allow (1) suppliers to collect users accountable metering data, and (2) users (i) to access, manage and control their own metering data and (ii) to switch between electricity tariffs and suppliers, in an efficient and scalable manner. The main ideas are: (i) each SM to have a register, named accounting register, dedicated only for storing the user’s accountable data, (ii) this register is updated by design at a low frequency, (iii) the user’s supplier has unlimited access to this register, and (iv) the user cancustomise how often this register is updated with new data. The suite has been analysed in terms of security, computational and communication overheads. Fourth, it proposes a novel protocol, known as Roaming Electric Vehicle Charging and Billing, an Anonymous Multi-User (REVCBAMU) protocol, to support the priced-driven roaming SEV charging at home location. During a charging session, a roaming EV user uses a pseudonym of the EV (known only to the user’s contracted supplier) which is anonymously signed by the user’s private key. This protocol protects the user’s identity privacy from other suppliers as well as the user’s privacy of location from its own supplier. Further, it allows the user’s contracted supplier to authenticate the EV and the user. Using two-factor authentication approach a multi-user EV charging is supported and different legitimate EV users (e.g., family members) can be held accountable for their charging sessions. With each charging session, the EV uses a different pseudonym which prevents adversaries from linking the different charging sessions of the same EV. On an application level, REVCBAMU supports fair user billing, i.e., each user pays only for his/her own energy consumption, and an open EV marketplace in which EV users can safely choose among different remote host suppliers. The protocol has been analysed in terms of security and computational overheads.
APA, Harvard, Vancouver, ISO, and other styles
2

Malmgren, Andreas. "Visual Vehicle Identification Using Modern Smart Glasses." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172428.

Full text
Abstract:
In recent years wearable devices have been advancing at a rapid pace and one of the largest growing segments is the smart glass segment. In this thesis the feasibility of today’s ARM-based smart glasses are evaluated for automatic license plate recognition (ALPR). The license plate is by far the most prominent visual feature to identify a spe- cific vehicle, and exists on both old and newly produced vehicles. This thesis propose an ALPR system based on a sequence of vertical edge detection, a cascade classifier, verti- cal and horizontal projection as well as a general purpose optical character recognition library. The study further concludes that the optimal input resolution for license plate detection using vertical edges is 640x360 pixels and that the license plate need to be at least 20 pixels high or the characters 15 pixels high in order to successfully segment the plate and recognize each character. The separate stages were successfully implemented into a complete ALPR system that achieved 79.5% success rate while processing roughly 3 frames per second when running on a pair of Google Glass.
Under de senaste åren har området wearables avancerat i snabb takt, och ett av de snabbast växande segmenten är smarta glaögon. I denna examensuppsats utvärderas lämpligheten av dagens ARM-baserade smarta glasögon med avseende på automatisk registreringsskyltigenkänning. Registreringsskylten är den i särklass mest framträdande visuella egenskapen som kan användas för att identifiera ett specifikt fordon, och den finns på både gamla och nyproducerade fordon. Detta examensarbete föreslår ett system för automatisk registreringsskyltigenkänning baserat på en följd av vertikal kantdetektering, en kaskad av boostade klassificerare, vertikal och horisontell projektion samt ett optiskt teckenigenkänningsbibliotek. Studien konstaterar vidare att den optimala upplösningen för registreringsskyltdetektion med hjälp av vertikala kanter på smarta glasögonär 640x360 pixlar och att registreringsskylten måste vara minst 20 pixlar hög eller tecknen 15 pixlar höga för att registreringsskylten framgångsrikt skall kunna segmenteras samt tecken identifieras. De separata stegen implementerades framgångsrikt till ett system för automatisk registreringsskyltigenkänning på ett par Google Glass och lyckades känna igen 79,5% av de testade registreringsskyltarna, med en hastighet av ungefär 3 bilder per sekund.
APA, Harvard, Vancouver, ISO, and other styles
3

Moghaddam, Zeinab. "Smart charging strategies for electric vehicle charging stations." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2019. https://ro.ecu.edu.au/theses/2215.

Full text
Abstract:
Although the concept of transportation electrification holds enormous prospects in addressing the global environmental pollution problem, consumer concerns over the limited availability of charging stations and long charging/waiting times are major contributors to the slow uptake of plug-in electric vehicles (PEVs) in many countries. To address the consumer concerns, many countries have undertaken projects to deploy a network of both fast and slow charging stations, commonly known as electric vehicle charging networks. While a large electric vehicle charging network will certainly be helpful in addressing PEV owners' concerns, the full potential of this network cannot be realised without the implementation of smart charging strategies. For example, the charging load distribution in an EV charging network would be expected to be skewed towards stations located in hotspot areas, instigating longer queues and waiting times in these areas, particularly during afternoon peak traffic hours. This can also lead to a major challenge for the utilities in the form of an extended PEV charging load period, which could overlap with residential evening peak load hours, increasing peak demand and causing serious issues including network instability and power outages. This thesis presents a smart charging strategy for EV charging networks. The proposed smart charging strategy finds the optimum charging station for a PEV owner to ensure minimum charging time, travel time and charging cost. The problem is modelled as a multi-objective optimisation problem. A metaheuristic solution in the form of ant colony optimisation (ACO) is applied to solve the problem. Considering the influence of pricing on PEV owners' behaviour, the smart charging strategy is then extended to address the charging load imbalance problem in the EV network. A coordinated dynamic pricing model is presented to reduce the load imbalance, which contributes to a reduction in overlaps between residential and charging loads. A constraint optimization problem is formulated and a heuristic solution is introduced to minimize the overlap between the PEV and residential peak load periods. In the last part of this thesis, a smart management strategy for portable charging stations (PCSs) is introduced. It is shown that when smartly managed, PCSs can play an important role in the reduction of waiting times in an EV charging network. A new strategy is proposed for dispatching/allocating PCSs during various hours of the day to reduce waiting times at public charging stations. This also helps to decrease the overlap between the total PEV demand and peak residential load.
APA, Harvard, Vancouver, ISO, and other styles
4

Ozen, Etkin. "Design Of Smart Controllers For Hybrid Electric Vehicles." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606540/index.pdf.

Full text
Abstract:
This thesis focuses on the feasibility of designing a commercial hybrid electric vehicle (HEV). In this work, relevant system models are developed for the vehicle including powertrain, braking system, electrical machines and battery. Based on these models ten different HEV configurations are assembled for detailed assessment of fuel consumption. This thesis also proposes a smart power management strategy which could be applied to any kind of HEV configuration. The suggested expert system deals with the external information about the driving conditions and modes of the driver as well as the internal states of the internal combustion engine efficiency and the state of charge of the battery, and decides on the power distribution between two different power supplies based on the predefined algorithms. The study illustrates the characteristics of the powertrain components for various HEV configurations. The work also shows the power flow of HEV configurations with the developed smart power management system and therefore, the effectiveness of power management strategies has been evaluated in detail.
APA, Harvard, Vancouver, ISO, and other styles
5

Bönström, Daniel. "Smartphone application in PhoneGap : M2C’s electric vehicle smart charger." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-32452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aloqaily, Osama. "Charging and Discharging Algorithms for Electric Vehicles in Smart Grid Environment." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34562.

Full text
Abstract:
Power demands will increase day-by-day because of widely adopting of Plug-in Electric Vehicles (PEVs) in the world and growing population. Finding and managing additional power resources for upcoming demands is a challenge. Renewable power is one of the alternatives. However, to manage and control renewable resources, we need suitable Energy Storage System (ESS). PEVs have a large battery pack that is used mainly to supply electric motor. Moreover, PEV battery could be used as an ESS to store power at a certain time and use it at another time. Nevertheless, it can play the same role with electric power grids, so it can store power at a time and return it at another time. This role might help the grid to meet the growing demands. In this thesis, we propose a charging and discharging coordination algorithm that effectively addresses the problem of power demand on peak time using the PEV’s batteries as a backup power storage, namely, Flexible Charging and Discharging (FCD) algorithm. The FCD algorithm aims to manage high power demands at peak times using Vehicle to Home (V2H) technologies in Smart Grid and PEV’s batteries. Intensive computer simulation is used to test FCD algorithm. The FCD algorithm shows a significant reduction in power demands and total cost, in proportion to two other algorithms, without affecting the performance of the PEV or the flexibility of PEV owner’s trip schedule.
APA, Harvard, Vancouver, ISO, and other styles
7

Kaur, Amardeep. "Vehicle positioning using image processing." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Kaur_09007dcc80665391.pdf.

Full text
Abstract:
Thesis (M.S.)--Missouri University of Science and Technology, 2009.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed May 27, 2009) Includes bibliographical references (p. 72-74).
APA, Harvard, Vancouver, ISO, and other styles
8

Zulkanthiwar, Amey. "VEHICLE INFORMATION SYSTEM USING BLOCKCHAIN." CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/899.

Full text
Abstract:
The main purpose of a vehicle information system using blockchain is to create a transparent and reliable information system which will help consumers buy a vehicle; it is a vehicle information system. The blockchain system will create a time sequence chain of events database for each vehicle from the original sale. It will include insurance, vehicle repair, and vehicle resale. This project is mainly divided into three parts. Part one is used by the administration who will create the blockchain and will give authentication to a different organization to create the blockchain. Part two will be used by the Organization to create a block in the blockchain. Part three will be used by customers who want to get information about the vehicle.
APA, Harvard, Vancouver, ISO, and other styles
9

Atterby, Alfred, Jakub Bluj, and Elias Sjögren. "Potential for electric vehicle smart charging station expansion at Fyrisskolan." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352636.

Full text
Abstract:
The purpose of this bachelor thesis is to investigate the potential for electric vehicle charging at the high school Fyrisskolan, located in central Uppsala. The idea relies on charging electric vehicles (EV:s) outside of the hours of peak power consumption of the school which in this report is assumed to be solved by a suitable smart charger. In this project, various stochastic models are built to simulate solar energy production and school energy consumption using data collected from various sources. This generated data along with  driving distances and EV:s energy consumptions are used to calculate the available energy for EV charging. The available energy is then used to distinguish a minimal, mean and maximal amount of cars that could potentially be charged outside Fyrisskolan for each chosen month. The data collected is taken from December, March and June. Calculations and simulations are done in MATLAB. Results show that with available energy outside the peak energy consumption hours, there is a possibility to charge around 104 EV:s in one work day. The main conclusion is that there is not only a big potential to expand the charging of EV:s outside the school by installing smart charging stations in a technical view, but also a desire from employees at the school and neighbours living near it, to charge their future electric vehicles.
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Shuang, and 高爽. "Design, analysis and control of vehicle-to-grid services." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/197100.

Full text
Abstract:
There are unique challenges and opportunities related to the integration of electric vehicles into the future power grid, especially the modern distribution grid since electric vehicle (EV) charging facilities and fast-charging stations are usually tied to low-voltage and medium-voltage power networks. The grid-connected EVs, if properly controlled, can operate as distributed energy storage and provide various ancillary services, such as peak shaving, fast-response reserve capacity, frequency regulation, voltage control and reactive supports. The purpose of this thesis is to integrate EVs to the power grid and provides suitable ancillary services to improve the grid reliability and stability. The larger future penetration of EVs and renewable energies is also taken into account to develop the vehicle-to-grid (V2G) control scheme with the constraints of EV charging and communication infrastructures. The main contents include: V2G mathematical model and system configuration; impact evaluation of EV integration and the V2G control framework; energy scheduling of EVs integration; V2G dynamic regulation services; control method of EV aggregator for dispatching a fleet of EVs; and the evaluation of V2G control scheme and hardware-in-the-loop experimental system design.   In the thesis, the impact of EV charging demand on the conventional distribution grid is firstly estimated to reveal the negative effects of the arbitrary EV charging and the necessity to control the EV charging process. The potential benefits EVs can bring into the power grid support are discussed and a V2G control framework is proposed to perform the V2G optimization and various regulation services. The current power electronics applied EV charging facilities and communication network are integrated into the V2G operation in the future distribution grid with microgrid and smaller installation of renewable generation units.   Next, mathematical model of V2G power control is formulated. Two optimization methods are proposed to schedule the EV charging and discharging energy to minimize the power losses and the operating cost while satisfying the mobility needs and the power system limitations. Subsequently, the dynamic regulation of V2G power is investigated to unleash the potential of EVs to provide multiple ancillary services simultaneously. In addition to V2G optimal energy scheduling, EVs can also be employed for dynamic power regulation which requires the fast response to the instantaneous imbalance between the power supply and demand. V2G power is controlled to mitigate the power fluctuation caused by the intermittent wind energy resources, and thus stabilize the system frequency and voltage. Finally, an EV-centric hybrid energy storage system is proposed, which combines the merits of V2G operation and superconducting magnetic energy storage (SMES) to enhance the power quality and system frequency stability. The critical issues in V2G applications are summarized in the end.
published_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
11

Rajvanshi, Kshitij. "Multi-Modal Smart Traffic Signal Control Using Connected Vehicles." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin147981730919519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wang, Nan. "Mody : a smart commuting experience." Thesis, Umeå universitet, Designhögskolan vid Umeå universitet, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-172962.

Full text
Abstract:
Due to the current urbanization trend, people are spending more time than ever on their daily commute. However, commuting in megacities often results in irritating scenarios. Especially when using public transportation. This project tried to provide an alternative way of commuting that would allow people to refresh themselves during the journey and prepare for their activities in the best way possible. Rather than looking at the commute as a transition from A to B, this project tried to envision different scenarios of daily life and implement smart solutions that would enhance the experience through seamlessly integrated technologies—based on the technological expertise from the sponsor Huawei. In this concept, smart sensors combined with data collection would provide a tailored experience for the customer at different depth levels. The process includes brand research and topic selection to set up the design goal. Basing on the valuable material got from the first step, the design moved to the next step and tried to find the solution for the thesis topic. This is processed by gathering information from the website, brainstorming the ideation. Then the author built up the prototype by sketching, rendering, and 3D modeling. The user experience got developed basing on the robust design. The author started with user research and analyzed and set up personas. The result is an interior design concept with a particular focus on its interaction and user experience. The seating position supports the user experience by changing in harmony with individual preferences and time of the day. Three unique travel modes provide different levels of control over the overall experience based upon the user's request and their trust in the smart system.
APA, Harvard, Vancouver, ISO, and other styles
13

Türker, Harun. "Véhicules électriques hybrides rechargeables : évaluation des impacts sur le réseau électrique et stratégies optimales de recharge." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENT110/document.

Full text
Abstract:
Les engagements étatiques relatifs au secteur du transport promouvoient lapopularisation des véhicules rechargeables conformément aux exigences actuelles qu’ellessoient environnementales, techniques ou encore économiques. Ipso facto, ces travaux dethèse, assimilés à la thématique des Smart Grids, exposent une contribution à une gestionorientée du tryptique réseaux électriques, véhicules rechargeables et secteurs résidentiels.La première étape du travail consiste en l’évaluation des impacts liés à un taux de pénétrationélevé. Les travaux se sont ensuite focalisés sur deux problèmes importants qui sont latenue du plan de tension et le vieillissement accéléré des transformateurs de distributionHTA/BT, plus particulièrement ceux alimentant des secteurs résidentiels. Partant, desstratégies de modulation de la charge des batteries embarquées sont proposées et évaluées.Dans une seconde partie, en se basant sur l’hypothèse de bidirectionnalité énergétique duvéhicule électrique hybride rechargeable (Plug-in Hybrid Electric Vehicle - PHEV), estexploré les possibilités d’effacement de pointe et de diminution des puissances souscrites ;conformément au concept Vehicle-to-Home. Les aspects économiques ne sont pas évacués ;à ce titre la minimisation de la facture énergétique d’un logement fait l’objet d’un regardparticulier sous contrainte d’une tarification variable, le V2H servant de levier. Le véhiculebidirectionnel est enfin mis à contribution via une algorithmique adaptée à des fins deréglage du plan de tension et contribue ainsi au concept Vehicle-to-Grid
The national commitments concerning terrestrial transport are promotingrechargeable vehicles according to actual environmental, technical or economicexigencies. To this end, the contribution of this thesis, related to the Smart Grids, coverssimultaneously the fields of electric utility grids, rechargeable vehicles, and residentialareas. The first step consists in the assessment the impacts caused by a highpenetration level. The research then focuses on two major problems : the voltage plan andthe aging rate of low voltage transformer, particularly those supplying residential areas.Therefore, unidirectional Plug-in Hybrid Electric Vehicles (PHEVs) charging strategieshave been proposed and evaluated. In the second part, based on the bidirectional PHEV,the possibility of consumption peak shaving and decrease of subscription contracts bothunder the concept Vehicle-to-Home are explored. The economics aspects are notignored, so a particular attention is paid of energy cost minimization for a housing undervariable pricing of energy constraint. The bidirectional vehicle is finally used in an adaptedalgorithmic for voltage plan control, thus contributing to the concept Vehicle-to-Grid
APA, Harvard, Vancouver, ISO, and other styles
14

Hassan, Hosseini Hourieh. "Vehicle-to-Infrastructure connected smart cameras for intersection monitoring: concept study." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
Infrastructure can obtain and share information about crashes, traffic jams, sharp curves and recommended speed. We can also dynamically change recommended speed based on weather or hazardous conditions. When mentioning something that is smart, by any means, it should have some specific features different from the ordinary monitoring. To take advantage of the full benefit of connected and automated vehicles, we need the infrastructure to be outfitted and that eventually confirms there is no smart city without smart camera. The whole concept of this thesis exercise is about connection between the smart camera that is in infrastructure and the vehicles on the road. This thesis exercise was developed in FEV Italia s.r.l company which is internationally recognized and a leader in vehicle systems. The exercise has been performed in Green Research Mobility Laboratory. We worked on the concept study to make connection between smart camera for the purpose of intersection monitoring and our vehicle to receive warning messages to prevent collision. We worked with two different V2X standards to send warning messages to the vehicles. Final section of this thesis exercise is developed with MATLAB interface to detect the time that these two vehicles will collide and the time that the camera will detect the second vehicle and subsequently sends the warning message to the first vehicle. Then we calculated the maximum latency to find out which standard fits best in our purpose with lesser delay. The proven and result in this thesis will be implemented by FEV company.
APA, Harvard, Vancouver, ISO, and other styles
15

Zhang, Peng. "Electric vehicle charging load research for demand response in smart grid." Thesis, Glasgow Caledonian University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.570731.

Full text
Abstract:
Driven by climate change and fast depleting stock of fossil fuel, electrification of transport systems, both rail and road, has been promoted by many governments around the world. The resultant changes in the load demand in the transmission and distribution electricity networks, along with other motivations such as integrating distributed generation from renewable sources, improving energy efficiency through demand response (DR) and managing increasingly aged infrastructure, have led to the paradigm of Smart Grid being proposed as the next generation of the power grid. Electric vehicle (EV) as a load type requiring power for rechargi~g has a significant I impact on power systems, e.g. increases of peak demand, voltage drop, powerlosses and harmonic distortion, decrease of load factor, transformer overload and feeder congestion. The work presented in this thesis studies the aspect ofDR in Smart Grid which could help mitigate the impact of EV s on power demand and exploit the ability to manage EV s charging times for improving power system performance, i.e. flattening the system load profile. It aims to address the following issues: modelling and monitoring EV charging profiles to obtain load information; and developing a DR model for optimising power systems demand due to EV charging. Through comprehensive research, a model of the EV charging load is obtained by statistical analysis. A non-intrusive load monitoring (NILM) system, capable of monitoring and identifying the presence of traditional appliance and the EV charging loads through measurements at a single point in a household, i.e. the consumer unit has been developed. In the light of the outcomes of the load research, two novel DR programs based on multiple time-of-use (TOU) tariffs and real-time prices with penalties (RTPP) respectively are proposed to manage EV charging for the optimisation of power systems demand. Example studies are carried out to validate and evaluate the DR programs. Results show that the programs can help flatten the system load profile and the fluctuations in the profile decrease gradually with increasing penetration levels of EV s. Furthermore, by levelling off load requirements, the programs could allow generation companies to operate their plant more efficiently, reduce degradation of power plant due to inefficient operation, help to reduce utility costs, and hence reduce customer bills. I . The developed load model, NILM system and DR model in this thesis provide much improved tools in EV charging load prediction and management for power system planning and optimal operations, because the stochastic behaviour of the EV charging load and diversities among EV s that have not been considered in previous researches are carefully studied. The proposed DR programs give a valuable insight into strategies for the design and implementation of DR in the future Smart Grid, resulting in possible congestion due to concurrent responses be avoided. Index Terms - demand response, electric vehicle, electricity tariff, load model, load signature, load disaggregation, non-intrusive load monitoring, pattern recognition, quadratic programming, real-time prices.
APA, Harvard, Vancouver, ISO, and other styles
16

Daina, Nicolò, Aruna Sivakumar, and John W. Polak. "Electric vehicle charging choices: Modelling and implications for smart charging services." Elsevier, 2017. https://publish.fid-move.qucosa.de/id/qucosa%3A72813.

Full text
Abstract:
The rollout of electric vehicles (EV) occurring in parallel with the decarbonisation of the power sector can bring uncontested environmental benefits, in terms of CO2 emission reduction and air quality. This roll out, however, poses challenges to power systems, as additional power demand is injected in context of increasingly volatile supply from renewable energy sources. Smart EV charging services can provide a solution to such challenges. The development of effective smart charging services requires evaluating pre-emptively EV drivers’ response. The current practice in the appraisal of smart charging strategies largely relies on simplistic or theoretical representation of drivers’ charging and travel behaviour. We propose a random utility model for joint EV drivers’ activity-travel scheduling and charging choices. Our model easily integrates in activity-based demand modelling systems for the analyses of integrated transport and energy systems. However, unlike previous charging behaviour models used in integrated transport and energy system analyses, our model empirically captures the behavioural nuances of tactical charging choices in smart grid context, using empirically estimated charging preferences. We present model estimation results that provide insights into the value placed by individuals on the main attributes of the charging choice and draw implications charging service providers
APA, Harvard, Vancouver, ISO, and other styles
17

Almquist, Isabelle, Ellen Lindblom, and Alfred Birging. "Workplace Electric Vehicle Solar Smart Charging based on Solar Irradiance Forecasting." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-323319.

Full text
Abstract:
The purpose of this bachelor thesis is to investigate different outcomes of the usage of photovoltaic (PV) power for electric vehicle (EV) charging adjacent to workplaces. In the investigated case, EV charging stations are assumed to be connected to photovoltaic systems as well as the electricity grid. The model used to simulate different scenarios is based on a goal of achieving constant power exchange with the grid by adjusting EV charging to a solar irradiance forecast. The model is implemented in MATLAB. This enables multiple simulations for varying input parameters. Data on solar irradiance are used to simulate the expected PV power generation. Data on driving distances are used to simulate hourly electricity demands of the EVs at the charging stations. A sensitivity analysis, based on PV irradiance that deviates from the forecast, is carried out. The results show what power the grid needs to have installed capacity for if no PV power system is installed. Furthermore, appropriate PV power installation sizes are suggested. The suggestions depend on whether the aim is to achieve 100 percent self-consumption of PV generated power or full PV power coverage of charging demands. For different scenarios, PV power installations appropriate for reducing peak powers on the grid are suggested. The sensitivity analysis highlights deviations caused by interference in solar irradiance.
APA, Harvard, Vancouver, ISO, and other styles
18

Jerresand, Mikaela, and Ellen Skogh. "Smart and Robust Energy Infrastructure for the Future: Electric Vehicle Adoption." Thesis, KTH, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233232.

Full text
Abstract:
I takt med att miljöbestämmelser från EU blir allt striktare i kombination med Sveriges strävan att gå mot en mer hållbar framtid, är elbilens adoption i samhället av största vikt. I den här rapporten har tidigare studier om framtida scenarier för en potentiell adoption analyserats som en grund för en litteraturstudie. Litteraturstudien har sedan genomförts med målet att kartlägga faktorer som kan påverka en framtida implementering av elbilar i Stockholm, Sverige. De områden som fokuserats på i rapporten är politiska, ekonomiska, sociala och teknologiska aspekter inom adoptionen. Inom dessa aspekter har underteman undersökts, exempelvis svensk lag, elpriser och batteriteknologi. Faktorerna som hittats har kategoriserats och rangordnats efter antagen påverkan utifrån litteraturstudien samt i vilken utsträckning de påverkar varandra och implementeringen av elbilar. Faktorer som ansågs viktiga för elbilarna var de som kopplar till körsträcka och batterikapacitet, samt faktorer rörande kostnad att köpa och äga en elbil. Ytterligare en faktor som visade sig vara viktig för en framtida implementering var den allmänna kunskapen om elbilar i samhället. En SWOT-analys utfördes med syfte att länka faktorerna till varandra för att sedan utvärdera deras påverkan på varandra och en framtida adoption. Utifrån kartläggningen togs åtta tänkbara framtidsscenarier fram för implementering i Stockholm. Dessa utvärderades sedan utifrån förstudien med de funna scenarierna, litteraturstudien och rangordningen av de påverkande faktorerna, innan slutsatsen drogs att en framtida adoption i Stockholm är fullt möjlig och att vi inom en snar framtid kommer att se en stor ökning av elbilar på Stockholms gator.
As EU environmental regulations become increasingly stricter and due to Sweden's ambition to move towards a more sustainable future, the adoption of electric vehicles in society is a key factor for success. In this report, previous studies on future scenarios for the adoption has been analysed, followed by a literature study on electric vehicles. The literature study was conducted with the aim of mapping factors that may affect a future adoption of electric vehicles in Stockholm, Sweden. The principal areas in the report are political, economic, social and technical aspects of the adoption. Within these aspects, subtopics have been investigated, such as Swedish law, electricity prices and battery technology. The discovered factors have been categorized and ranked according to their assumed influence based on the literature study, and to what extent the factors affect each other and the implementation. Factors considered important for the future of the electric vehicles were those related to driving distance and battery capacity, as well as factors relating to the cost of buying and owning one. Another factor that proved important for future implementation was the general knowledge of the electric vehicles in the society. A SWOT analysis was performed to link the factors to each other, evaluate their impact on one another and the adoption. Based on the survey, eight possible future scenarios for Stockholm were identified. These were then evaluated based on the found future scenarios, the literature study and the ranking of the identified influencing factors before the conclusion was drawn that a future adoption in Stockholm is fully possible and that we in a near future will see a significant increase of electric vehicles in the streets.
APA, Harvard, Vancouver, ISO, and other styles
19

Hu, Lejuan. "Smart Fault Tracing: Learning with Diagnostic Data for Predicting Vehicle States." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396988.

Full text
Abstract:
Software applications, as the control centre of vehicle functionality, is becoming much important in recent years. The failure of downloading software applications can cause the loss of vehicle functionality. A tool that effectively estimates the software downloading statuses and locates root causes when failure happens, is highly required. The thesis investigates supervised learning methods, proposes a quantitative and data-driven approach to estimate software downloading statuses and measure the effect of software parts on software downloading process. The goal is to find out if classification models can be used to predict software downloading statuses, and help locate the part numbers that cause the failures in software downloading process. The experiment results indicate that the classification models can help predict the statuses with high prediction performance, and can help locate the causes. The trained models can be used to predict upcoming failures on other vehicles that have the same ECUs. The proposed method also gives a hint that classification tools can help evaluate the statuses of other components of the vehicle system, and help suggest vehicle maintenance planning. A tool that automatically analyses vehicle statuses will be helpful, which can be future work.
APA, Harvard, Vancouver, ISO, and other styles
20

Cridland, Doug, and Chris Dehmelt. "LONG TERM VEHICLE HEALTH MONITORING." International Foundation for Telemetering, 2007. http://hdl.handle.net/10150/604406.

Full text
Abstract:
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada
While any vehicle that is typically part of a flight test campaign is heavily instrumented to validate its performance, long term vehicle health monitoring is performed by a significantly reduced number of sensors due to a number of issues including cost, weight and maintainability. The development and deployment of smart sensor buses has reached a time in which they can be integrated into a larger data acquisition system environment. The benefits of these types of buses include a significant reduction in the amount of wiring and overall system complexity by placing the appropriate signal conditioners close to their respective sensors and providing data back over a common bus, that also provides a single power source. The use of a smart-sensor data collection bus, such as IntelliBus™1 or IEEE-1451, along with the continued miniaturization of signal conditioning devices, leads to the interesting possibility of permanently embedding data collection capabilities within a vehicle after the initial flight test effort has completed, providing long-term health-monitoring and diagnostic functionality that is not available today. This paper will discuss the system considerations and the benefits of a smart sensor based system and how pieces can be transitioned from flight qualification to long-term vehicle health monitoring in production vehicles.
APA, Harvard, Vancouver, ISO, and other styles
21

Overington, Shane N. "Design and control of the energy management system of a smart vehicle." Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/1357.

Full text
Abstract:
This thesis demonstrates the design of two high efficiency controllers, one non-predictive and the other predictive, that can be used in both parallel and power-split connected plug-in hybrid electric vehicles. Simulation models of three different commercially available vehicles are developed from measured data for necessary testing and comparisons of developed controllers. Results prove that developed controllers perform better than the existing controllers in terms of efficiency, fuel consumption, and emissions.
APA, Harvard, Vancouver, ISO, and other styles
22

Mohamed, Ahmed A. S. Mr. "Bidirectional Electric Vehicles Service Integration in Smart Power Grid with Renewable Energy Resources." FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3529.

Full text
Abstract:
As electric vehicles (EVs) become more popular, the utility companies are forced to increase power generations in the grid. However, these EVs are capable of providing power to the grid to deliver different grid ancillary services in a concept known as vehicle-to-grid (V2G) and grid-to-vehicle (G2V), in which the EV can serve as a load or source at the same time. These services can provide more benefits when they are integrated with Photovoltaic (PV) generation. The proper modeling, design and control for the power conversion systems that provide the optimum integration among the EVs, PV generations and grid are investigated in this thesis. The coupling between the PV generation and integration bus is accomplished through a unidirectional converter. Precise dynamic and small-signal models for the grid-connected PV power system are developed and utilized to predict the system’s performance during the different operating conditions. An advanced intelligent maximum power point tracker based on fuzzy logic control is developed and designed using a mix between the analytical model and genetic algorithm optimization. The EV is connected to the integration bus through a bidirectional inductive wireless power transfer system (BIWPTS), which allows the EV to be charged and discharged wirelessly during the long-term parking, transient stops and movement. Accurate analytical and physics-based models for the BIWPTS are developed and utilized to forecast its performance, and novel practical limitations for the active and reactive power-flow during G2V and V2G operations are stated. A comparative and assessment analysis for the different compensation topologies in the symmetrical BIWPTS was performed based on analytical, simulation and experimental data. Also, a magnetic design optimization for the double-D power pad based on finite-element analysis is achieved. The nonlinearities in the BIWPTS due to the magnetic material and the high-frequency components are investigated rely on a physics-based co-simulation platform. Also, a novel two-layer predictive power-flow controller that manages the bidirectional power-flow between the EV and grid is developed, implemented and tested. In addition, the feasibility of deploying the quasi-dynamic wireless power transfer technology on the road to charge the EV during the transient stops at the traffic signals is proven.
APA, Harvard, Vancouver, ISO, and other styles
23

Amini, Arghavan. "An Integrated and a smart algorithm for vehicle positioning in intelligent transportation systems." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/47463.

Full text
Abstract:
Intelligent Transportation Systems (ITS) have emerged to use different technologies to promote safety, convenience, and efficiency of transportation networks. Many applications of ITS depend on the availability of the real-time positioning of the vehicles in the network. In this research, the two open challenges in the field of vehicle localization for ITS are introduced and addressed. First, in order to have safe and efficient transportation systems, the locations of the vehicles need to be available everywhere in a network. Conventional localization techniques mostly rely on Global Positioning System (GPS) technology which cannot meet the accuracy requirements for all applications in all situations. This work advances the study of vehicle positioning in ITS by introducing an integrated positioning framework which uses several resources including GPS, vehicle-to-infrastructure and vehicle-to-vehicle communications, radio-frequency identification, and dead reckoning. These technologies are used to provide more reliable and accurate location information. The suggested framework fills the gap between the accuracy of the current vehicle localization techniques and the required one for many ITS applications. Second, different ITS applications have different localization accuracy and latency requirements. A smart positioning algorithm is proposed which enable us to change the positioning accuracy delivered by the algorithm based on different applications. The algorithm utilizes only the most effective resources to achieve the required accuracy, even if more resources are available. In this way, the complexity of the system and the running time decrease while the desired accuracy is obtained. The adjective Smart is selected because the algorithm smartly selects the most effective connection which has the most contribution to vehicle positioning when a connection needs to be added. On the other hand, when a connection should be removed, the algorithm smartly selects the least effective one which has the least contribution to the position estimation. This study also provides an overview about the positioning requirements for different ITS applications. A close-to-real-world scenario has been developed and simulated in MATLAB to evaluate the performance of the proposed algorithms. The simulation results show that the vehicle can acquire accurate location in different environments using the suggested Integrated framework. Moreover, the advantages of the proposed Smart algorithm in terms of accuracy and running time are presented through a series of comprehensive simulations.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
24

Roa, Christian Raphael. "Smart Power Module for Distributed Sensor Power Network of an Unmanned Ground Vehicle." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/64467.

Full text
Abstract:
Energy efficiency is a driving factor in modern electronic design particularly in power conversion where conversion losses directly set the upper limit of system efficiency. A wide variety of commercially available DC-DC conversion elements have inefficiencies in the 90-97% range. The efficiency range of most common commercial-off-the-shelf (COTS) power supplies is 75-85%, highlighting the fact that COTS power supplies have not kept pace with efficiency improvements of modern conversion elements. Unmanned ground vehicles (UGVs) is an application where efficiency can be crucial in extending tight power budgets. In autonomous ground vehicles, geographic diversity with regard to sensor location is inherent because sensor orientation and placement are crucial to performance. Sensor power, therefore, is also distributed by nature of the devices being supplied. This thesis presents the design and evaluation of a smart power module used to implement a distributed power network in an autonomous ground vehicle. The module conversion element demonstrated an average efficiency of 96.7% for loads from 1-4A. Current monitoring and an adjustable output current limit were provided through a second circuit board within the same module enclosure. The module processing element sends periodic updates and receives commands over a CAN bus. The smart power modules successfully supply critical sensing and communication components in an operational autonomous ground vehicle.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
25

Shuai, Wenjing. "Management of electric vehicle systems with self-interested actors." Thesis, Télécom Bretagne, 2016. http://www.theses.fr/2016TELB0408/document.

Full text
Abstract:
L'arrivée des véhicules électriques (VEs) a un impact non négligeable sur le réseau électrique, à cause de la grande quantité d'énergie demandée. La stabilité du réseau est susceptible d'être menacée. Cependant, dans l'optique de la transition du réseau électrique vers le Smart Grid, les VEs peuvent aussi être vus comme offrant de nouvelles opportunités. Grâce à la flexibilité des VE demande, leur présence ouvre la voie à des optimisations via le processus de recharge ou même par l'utilisation de cette nouvelle capacité de stockage d'énergie distribuée. Dans cette thèse, nous nous intéressons aux aspects économiques liés à la VE recharge, en prenant en compte le fait que l'écosystème associé aux VEs implique un grand nombre d'acteurs divers, aux objectifs rarement alignés et chaque acteur peut prendre des décisions stratégiques. Je présente d'abord un état de l'art structuré des modèles de la littérature introduits pour ces problèmes. Nous décrivons et comparons les principales approches, en mettant en évidence les besoins en communication des mécanismes correspondants, et les principales propriétés économiques afin de souligner les résultats les plus significatifs ainsi que les éventuels manques. Nous faisons ensuite une proposition consistant à utiliser le processus de VE recharge pour fournir un service de régulation au réseau électrique, en adaptant la puissance instantanée de charge. Nous conduisons une analyse économique des incitations en jeu. En particulier, nous analysons les valeurs des incitations à la régulation qui sont suffisantes pour qu'une offre de recharge-régulation soit bénéfique à la fois pour l'agrégateur et le réseau. Cette étude étant initialement conduite dans le cas d'un monopole qui peut offrir une recharge normale ou une recharge-régulation. Nous regardons ensuite l'impact de la compétition, entre un agrégateur n'offrant que des recharges à puissance fixe, et un autre n'offrant que de la recharge-régulation. La compétition semble préférable pour les utilisateurs et pour la société, puisque les prix sont alors plus bas qu'avec le monopole, et que la participation aux services de régulation est bien plus élevée. Enfin, nous proposons d'utiliser une autre propriété des VEs, à savoir leur capacité de stockage d'énergie. En effet, les VEs peuvent se charger pendant les heures de faible demande, donc à des prix réduits, et éventuellement revendre une partie pendant les pics de demande. Nous menons une étude économique des gains et coûts d'une telle approche. A partir de valeurs réalistes des marchés de l'électricité, nous déterminons numériquement les conditions pour qu'un tel scénario soit viable, et quantifions les économies qu'il peut apporter. Cette dissertation se conclut par une prise de recul sur les contributions et sur les extensions qui pourraient y être apportées
Electric Vehicles (EVs), as their penetration increases, are not only challenging the sustainability of the power grid, but also stimulating and promoting its upgrading. Indeed, EVs can actively reinforce the development of the Smart Grid if their charging processes are properly coordinated through two-way communications, possibly benefiting all types of actors. Because grid systems involve a large number of actors with nonaligned objectives, we focus on the economic and incentive aspects, where each actor behaves in its own interest. We indeed believe that the market structure will directly impact the actors' behaviors, and as a result the total benefits that the presence of EVs can earn the society, hence the need for a careful design. The thesis first provides an overview of economic models considering unidirectional energy flows, but also bidirectional energy flows, i.e., with EVs temporarily providing energy to the grid. We describe and compare the main approaches, summarize the requirements on the supporting communication systems, and propose a classification to highlight the most important results and lacks. We propose to use the recharging processes of EVs to provide regulation to the grid by varying the instantaneous recharging power. We provide an economic analysis of the incentives at play, including the EV owners point of view (longer recharging durations and impact on battery lifetime versus cheaper energy) and the aggregator point of view (revenues from recharging versus regulation gains). In particular, we analyze the range of regulation rewards such that offering a regulation-oriented recharging benefits both EV owners and the aggregator. After that, we split the monopolistic aggregator into two competing entities. We model a non-cooperative game between them and examine the outcomes at the Nash equilibrium, in terms of user welfare, station revenue and electricity prices. As expected, competing stations offer users with lower prices than the monopolistic revenue-maximizing aggregator do. Furthermore, the amount of regulation service increases significantly than that in the monopolistic case. Considering the possibility of discharging, we propose an approach close to Vehicle-to-Grid, where EVs can give back some energy from their batteries during peak times. But we also use EVs as energy transporters, by taking their energy where it is consumed. A typical example is a shopping mall with energy needs, benefiting from customers coming and going to alleviate its grid-based consumption, while EV owners make profits by reselling energy bought at off-peak periods. Based on a simple model for EV mobility, energy storage, and electricity pricing, we quantify the reduction in energy costs for the EV-supported system, and investigate the conditions for this scenario to be viable
APA, Harvard, Vancouver, ISO, and other styles
26

Shivakumar, Ashutosh. "Smart EV Charging for Improved Sustainable Mobility." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1496320380627769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Dong. "Enabling Smart Driving through Sensing and Communication in Vehicular Networks." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397760624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, Qi, and Yinrong Ma. "Diagnostic tool for trucks : -from idea to demonstrator." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-23551.

Full text
Abstract:
Vehicles can end up in unplanned visits to workshops due to the driver not checking the vehicle status before using it in traffic. There are many factors not only caused by the environment but also due to the lack of tools that simplify or reminds about beforehand inspections. The purpose of this project was to introduce a smart-phone application that can display the health state (or related parameters) of a vehicle in a brief way and indicate if a part or function of the truck is not working properly. There are six functions in the application. Function status and function fault codes can display information about vehicles by giving two-dimensional plots about vehicle data, while function VSR displays some information in the form of text. Also, the user can submit their feedback through function comment. Function position is designed to give the users specific perspectives on an imported map based on their different user identity. Function check reminds about inspections that must be made before setting out on a driving mission. The application allows bus drivers and managers to continuously monitor different vehicle parameters with a statistical summary over time, as well as providing a method for following-up that drivers perform basic checks on the vehicle before it is taken into traffic.
APA, Harvard, Vancouver, ISO, and other styles
29

Arat, Mustafa Ali. "Development and Improvement of Active Vehicle Safety Systems by Means of Smart Tire Technology." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/51618.

Full text
Abstract:
The dynamic behavior of a vehicle is predominantly controlled by the forces and moments generated at the contact patch between the tire and the road surface. As a result, tire characteristics can dramatically change vehicle response, especially during maneuvers that yields the tires to reach to the limits of its adhesion capacity. To assist the driver in such cases and to prevent other possible instability scenarios, various vehicle control systems e.g. anti-lock brakes (ABS), stability controllers (ESP, ESC) or rollover mitigation schemes are introduced, which are generally known as active vehicle safety systems. Based on the above facts, one can easily come to the conclusion that to improve upon the current control algorithms developed for the technology in use; a vehicle control system design requires accurate knowledge of the tire states. This study proposes the use of a smart tire system that can provide information on momentary variation of tire features through the sensor units attached directly on the tire and develops control algorithms based on this information to assure the match-up between tire and controller dynamics. A prototype smart tire system was developed for field testing and for detailed analysis of its potential. Based on the collected prototype data, novel observer and controller schemes were developed to obtain dynamic tire state information and to improve vehicle handling performance. The proposed algorithms were implemented and evaluated using numerical analysis in Matlab/SimulinkR environment. For a more realistic simulation environment, vehicle models were integrated from Mechanical Simulations CarSimR® software suite.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
30

Haines, Sam P. "Design and application of a smart battery management system for a small electric vehicle." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/228154/1/Sam_Haines_Thesis.pdf.

Full text
Abstract:
This thesis outlines the development and application of a battery management system for a small electric vehicle, and the hardware required to test and validate these systems. The project applies state-of-the-art methods for estimating the remaining charge of a battery pack in a real-world environment. In doing so, the limitations of existing estimation methods are identified and addressed.
APA, Harvard, Vancouver, ISO, and other styles
31

CARFAGNA, GIUSEPPE. "Integrated energy interchange platform between green system of smart housing and smart mobility." Doctoral thesis, Università degli Studi di Camerino, 2018. http://hdl.handle.net/11581/408083.

Full text
Abstract:
In recent years, the need for personal urban mobility has increased a lot especially in emerging and developing countries. It becomes increasingly important to explore propulsion systems that use alternative energy sources and are related to the chain of production, storage and use of renewable energy. Several studies have been conducted in this area, but very few have achieved solutions for the interaction of the vehicle with the building by which it is parked in terms of a multi-energy exchange. Technological innovation of house plant parts, of large residences / hotels, of shelter stations for vehicles, it is now crucial to implement the integration of more renewable energy sources within the same building structure: this is one of the aspects covered by the most general definition of "Smart Housing". Sustainable mobility is perceived as a strong need to match individual urban and sub-urban mobility, to the least environmental and social impact of such personal need. This research project proposes a possible scenario for energy integration between smart housing and smart mobility using a common energy platform that allows self-generation, storage and energy exchange between residential district buildings and smart vehicles. The project integrates multidisciplinary approaches with the aim of designing, evaluating technical and industrial feasibility for the development of: 1) Modular and scalable energy storage devices dedicated to a smart house. 2) a modular city vehicle, with high flexibility of use, with energy storage system and energy-efficient switching capabilities with smart building.
APA, Harvard, Vancouver, ISO, and other styles
32

Omara, Ahmed Mohamed Elsayed. "Predictive Operational Strategies for Smart Microgrid Networks." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40101.

Full text
Abstract:
There have been significant advances in communication technologies over the last decade, such as cellular networks, Wi-Fi, and optical communication. Not only does the technology impact peoples’ everyday lives, but it also helps cities prepare for power outages by collecting and exchanging data that facilitates real-time status monitoring of transmission and distribution lines. Smart grids, contrary to the traditional utility grids, allow bi-directional flow of electricity and information, such as grid status and customer requirements, among different parties in the grid. Thus, smart grids reduce the power losses and increase the efficiency of electricity generation and distribution, as they allow for the exchange of information between subsystems. However, smart grids is not resilient under extreme conditions, particularly when the utility grid is unavailable. With the increasing penetration of the renewable energy sources (RES) in smart grids, the uncertainty of the generated power from the distributed generators (DGs) has brought new challenges to smart grids in general and smart microgrids in particular. The rapid change of the weather conditions can directly affect the amount of the generated power from RES such as wind turbine and solar panels, and thus degrading the reliability and resiliency of the smart microgrids. Therefore, new strategies and technologies to improve power reliability,sustainability, and resiliency have emerged. To this end, in this thesis, we propose a novel framework to improve the smart microgrids reliability and resiliency under severe conditions. We study the transition to the grid-connected operational mode in smart microgrids,in the absence of the utility grid, as an example of emergency case that requires fast and accurate response. We perform a comparative study to accurately predict upcoming grid-connected events using machine learning techniques. We show that decision tree models achieve the best average prediction performance. The packets that carry the occurrence time of the next grid-connected transition are considered urgent packets. Hence, we per-form an extensive study of a smart data aggregation approach that considers the priority of the data. The received smart microgrids data is clustered based on the delay-sensitivity into three groups using k-means algorithm. Our delay-aware technique successfully reduces the queuing delay by 93% for the packets of delay-sensitive (urgent) messages and the Packet Loss Rate (PLR) by 7% when compared to the benchmark where no aggregation mechanism exists prior to the small-cell base stations. As a mitigation action of the utility grid unavailability, we use the electrical vehicles (EVs) batteries as mobile storage units to cover smart microgrids power needs until the utility grid recovery. We formulate a Mixed Integer Linear Programming (MILP) model to find the best set of electrical vehicles with the objective of minimum cost. The EVs participating in the emergency power supply process are selected based on the distance and throughput performance between the base station and the EVs
APA, Harvard, Vancouver, ISO, and other styles
33

Alghamdi, Turki. "Interactions of Connected Electric Vehicles with Modern Power Grids in Smart Cities." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42513.

Full text
Abstract:
In a smart city, it is vital to provide a clean and green environment by curbing air pollution and greenhouse gas emissions (GHGs) from transportation. As a recent action from many governments aiming to minimize transportation’s pollution upon the climate, new plans have been announced to ban cars with gas engines throughout the world. Therefore, it is anticipated that the presence of electric vehicles (EVs) will grow very fast globally. Consequently, the necessity to establish electric vehicle supply equipment (EVSE) in the smart city through public charging stations is growing incrementally year by year. However, the EV charging process via EVSE which is primarily connected to the power grid will put high pressure upon the centralized power grid, especially during peak demand periods. Increasing the power production of power grid will increase the environmental impact. Therefore, it is fundamental for the smart city to be equipped with a modern power grid to cope with the traditional power grid’s drawbacks. In this thesis, we conduct an in-depth analysis of the problem of EVs’ interaction with the modern power grid in a smart city to manage and control EV charging and discharging processes. We also present various approaches and mechanisms toward identifying and investigating these challenges and requirements to manage the power demand. We propose novel solutions, namely Decentralized-EVSE (D-EVSE), for EVs’ charging and discharging processes based on Renewable Energy Sources (RESs) and an energy storage system. We present two algorithms to manage the interaction between EVs and D-EVSE while maximizing EV drivers’ satisfaction in terms of reducing the waiting time for charging or discharging services and minimizing the stress placed on D-EVSE. We propose an optimization model based on Game Theory (GT) to manage the interaction between EVs and D-EVSE. We name this the decentralized-GT (D-GT) model. This model aims to find the optimal solution for EVs and D-EVSE based on the concept of win-win. We design a decentralized profit maximization algorithm to help D-EVSE take profit from the electricity price variation during the day when selling or buying electricity respectively to EVs or from the grid or EVs as discharging processes. We implement different scenarios to these models and show through analytical and simulation results that our proposed models help to minimize the D-EVSE stress level, increase the D-EVSE sustainability, maximize the D-EVSE profit, as well as maximize EV drivers’ satisfaction and reduce EVs’ waiting time.
APA, Harvard, Vancouver, ISO, and other styles
34

Sandoval, Marcelo. "Electric vehicle-intelligent energy management system for frequency regulation application using a distributed, prosumer-based grid control architecture." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47708.

Full text
Abstract:
The world faces the unprecedented challenge of the need change to a new energy era. The introduction of distributed renewable energy and storage together with transportation electrification and deployment of electric and hybrid vehicles, allows traditional consumers to not only consume, but also to produce, or store energy. The active participation of these so called "prosumers", and their interactions may have a significant impact on the operations of the emerging smart grid. However, how these capabilities should be integrated with the overall system operation is unclear. Intelligent energy management systems give users the insight they need to make informed decisions about energy consumption. Properly implemented, intelligent energy management systems can help cut energy use, spending, and emissions. This thesis aims to develop a consumer point of view, user-friendly, intelligent energy management system that enables vehicle drivers to plan their trips, manage their battery pack and under specific circumstances, inject electricity from their plug-in vehicles to power the grid, contributing to frequency regulation.
APA, Harvard, Vancouver, ISO, and other styles
35

Sahilaushafnur, Rosyadi. "Study and Analysis of Asymmetrical Charging as A New Electrical Vehicle (EV) Smart Charging Method." Thesis, KTH, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264103.

Full text
Abstract:
Currently, the proliferation of electrified vehicles (EV) has increased rapidly. Considering EV users’ point of view, the duration of charging, and the place to charge their car are essential factors. Increase of EV penetration gives also impact on the electrical network such as overloading, and power quality issues. IEC 61851 and ISO 15118 are the two primary standards to provide requirements for electric vehicle supply equipment (EVSE) to ensure the process of charging can be adequately conducted without disrupting the electric system in general. Following standards and considering the user’s preference in charging place, a new charging method that can draw higher energy than existing technique should be developed. A three-phase grid connected home system is modeled in this study to see the impact of unbalance household load to a three-phase charging. The load modeling covers the variation level of load in summer, spring/fall, and winter. Specific usages of electricity are distributed in a three-phase home system which consists of phase 1: cold appliance, cooking, standby appliances, and other loads; phase 2: heat pumps, audiovisual (Television and sound system) and computer size; and phase 3: Lightning and washing. Two methods of charging are defined in this model, which are symmetrical (existing standard) and asymmetrical (proposed). In symmetrical technique, the On-board Charger (OBC) will draw equal phase current independent of home loads connected in each phase of three phase system. The three phase system will not balanced completely in this method. Meanwhile, in asymmetrical method, the OBC will draw the leftover of current in each phase according to its real-time availability by balancing all three phase in the home. The asymmetrical method is expected to achieve faster charging duration than symmetrical charging due to higher energy availability. There three main cases defined in this study: theoretical case (the EV is charged from hour 00:00), 0-100% SOC case, and the user case (the distance targeted determines Car Demand). The result of simulation reveals that Asymmetrical charging method can provide higher energy available than asymmetrical technique. Fuse-rating level influences a lot on this result. If the higher fuse rating applied in the same load profile, the gap of energy availability between symmetrical and asymmetrical will be reduced. But still the symmetrical method never perform better energy availability than the asymmetrical method, either with 16 A fuse and 20 A fuse. This result of energy availability becomes an indication for 3 the theoretical case, in which asymmetrical method can provide more charging cycles than the symmetrical method, especially for 16 A fuse system. For all cases that have been simulated, the asymmetrical method shows benefits in terms of reduction in time and cost reduction. In a year, the saving of hours of charging duration which could be achieved by new charging method in a 16 A fuse system is as high as 8 hours and 4 hours for 0-100% SOC cases and partial charging user cases respectively (less than 50% approx.). In a three-year cost comparison, the money that could be saved by the asymmetrical method in a 16 A fuse system are as high as 35 Euro for 0-100% case and 23,405 Euro in the user case. After simulations result obtained, asymmetrical method demonstrates a promising performance of the new charging technique in terms of duration and saving. There is a need to push a new standard to realize the implementation of this charging activity. A communication scheme between energy meter, EVSE, and OBC should be established to exchange real-time current availability information. New AC information sequences could be adapted from the DC charging communication standard, IEC 61851-24.
För närvarande har spridningen av elektrifierade fordon (EV) ökat snabbt. Att ta hänsyn till EVanvändarnas synvinkel, laddningstiden och platsen att ladda sin bil är väsentliga faktorer. Ökning av EVpenetration ger också inverkan på det elektriska nätverket, såsom överbelastning och problem med kraftkvalitet. IEC 61851 och ISO 15118 är de två primära standarderna för att tillhandahålla krav på elfordonsförsörjningsutrustning (EVSE) för att säkerställa att laddningsprocessen kan genomföras på ett adekvat sätt utan att störa det elektriska systemet i allmänhet. Efter standarder och med tanke på användarens preferens på laddningsplats bör en ny laddningsmetod som kan dra högre energi än befintlig teknik utvecklas. Ett tre-fas nätanslutet hemsystem modelleras i denna studie för att se effekterna av obalanserad hushållsbelastning på en trefasladdning. Lastmodelleringen täcker variationen i lasten på sommaren, våren / hösten och vintern. Specifika användningsområden för elektricitet distribueras i ett trefas hemsystem som består av fas 1: kallapparat, matlagning, standbylagare och andra laster; fas 2: värmepumpar, audiovisuella (TV- och ljudsystem) och datorstorlek; och fas 3: Blixt och tvätt. Två laddningsmetoder definieras i denna modell, som är symmetriska (befintlig standard) och asymmetriska (föreslagna). I symmetrisk teknik drar ombordladdaren (OBC) lika fasström oberoende av hembelastningar anslutna i varje fas i trefassystemet. Trefassystemet kommer inte att balansera helt i denna metod. Under tiden, i asymmetrisk metod, kommer OBC att dra återstoden av strömmen i varje fas enligt dess realtids tillgänglighet genom att balansera alla tre faserna i hemmet. Den asymmetriska metoden förväntas uppnå snabbare laddningstid än symmetrisk laddning på grund av högre energitillgänglighet. Det finns tre huvudfall definierade i denna studie: teoretiskt fall (EV debiteras från timme 00:00), 0-100% SOC-fall och användarfallet (avståndsinriktningen avgör bilfrågan). Resultatet av simulering avslöjar att asymmetrisk laddningsmetod kan ge högre tillgänglig energi än asymmetrisk teknik. Säkringsgraden påverkar mycket på detta resultat. Om den högre säkringsgraden som tillämpas i samma belastningsprofil kommer energiförbrukningen mellan symmetrisk och asymmetrisk att minska. Men fortfarande har den symmetriska metoden aldrig bättre energitillgänglighet än den asymmetriska metoden, varken med 16 A-säkring och 20 A-säkring. Detta resultat av energitillgänglighet blir en indikation för det teoretiska fallet, i vilket asymmetrisk metod kan ge fler laddningscykler än den symmetriska metoden, särskilt för 16 A-säkringssystem. För alla fall som har simulerats visar den asymmetriska metoden fördelar när det gäller minskning av tid och kostnadsminskning. På ett år är besparingen av timmar med laddningstid som kan uppnås genom en ny laddningsmetod i ett säkringssystem på 16 A så hög som 8 timmar och 4 timmar för 0-100% SOC-fall respektive partiell laddning av användarfall (mindre än 50% ungefär). I en kostnadsjämförelse på tre år är de pengar som kan sparas med den asymmetriska metoden i ett säkringssystem på 16 A så höga som 35 Euro för 0-100% fall och 23 405 Euro i användarfallet. Efter erhållna simuleringsresultat visar den asymmetriska metoden en lovande prestanda för den nya laddningstekniken när det gäller varaktighet och sparande. Det finns ett behov att driva en ny standard för att realisera genomförandet av denna avgiftsaktivitet. Ett kommunikationsschema mellan energimätare, EVSE och OBC bör inrättas för att utbyta information om aktuell tillgänglighet i realtid. Nya ACinformationssekvenser kan anpassas från DC-laddningskommunikationsstandarden, IEC 61851-24.
APA, Harvard, Vancouver, ISO, and other styles
36

Busuladzic, Ishak, and Marcus Tjäder. "Performance Indicators for Smart Grids : An analysis of indicators that measure and evaluate smart grids." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48902.

Full text
Abstract:
Sweden has developed ambitious goals regarding energy and climate politics. One major goal is to change the entire electricity production from fossil fuels to sustainable energy sources, this will contribute to Sweden being one of the first countries in the world with non-fossil fuel in the electricity sector. To manage this, major changes need to be implemented and difficulties on the existing grid will occur with the expansion of digitalization, electrification and urbanization. By using smart grids, it is possible to deal with these problems and change the existing electricity grid to use more distributed power generation, contributing to flexibility, stability and controllability. The goal with smart grids is to have a sustainable electricity grid with low losses, security of supply, environmental-friendly generation and also have choices and affordable electricity for customers. The purpose of this project is to identify and evaluate several indicators for a smart grid, how they relate and are affected when different scenarios with different technologies are implemented in a test system. Smart grid indicators are quantified metrics that measure the smartness of an electrical grid. There are five scenarios where all are based on possible changes in the society and electricity consumption, these scenarios are; Scenario A – Solar power integration, Scenario B – Energy storage integration, Scenario C – Electric vehicles integration, Scenario D – Demand response and Scenario E – Solar power, Energy storage, Electric vehicles and Demand response integration. A model is implemented in MATLAB and with Monte Carlo simulations expected values, standard deviation and confidence interval were gained. Four selected indicators (Efficiency, capacity factor, load factor and relative utilization) was then analyzed. The results show that progress on indicators related to all smart grid characteristics is needed for the successful development of a smart grid. In scenario C, all four selected indicators improved. This shows that these indicators could be useful for promoting the integration of electric vehicles in an electricity grid. In Scenario A, solar power integration contributed to all indicators deteriorate, this means that, technical solutions that can stabilize the grid are necessary to implement when integrating photovoltaic systems. The load factor is a good indicator for evaluating smart grids. This indicator can incentivize for an even load and minimize the peak loads which contributes to a flexible and efficient grid. With the capacity factor, the utilization and free capacity can be measured in the grid, but it can counteract renewable energy integration if the indicator is used in regulation.
APA, Harvard, Vancouver, ISO, and other styles
37

Segelsjö, Duvernoy Rebecca, and Johanna Lundblad. "Development of a Smart Charging Algorithm for Electric Vehicles at Home." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384707.

Full text
Abstract:
The purpose of this bachelor thesis is to develop a smart charging algorithm for electric vehicles (EVs) and examine the potential of the smart charging scheme, compared to uncontrolled charging scheme at residential houses with an installed photovoltaic (PV) system. The thesis examines if smart charging can increase the photovoltaic self-consumption and self-sufficiency of houses. Also, the thesis will evaluate if the smart charging scheme can reduce the household peak loads compared to the uncontrolled charging scheme. The presented results show that the implementation of the proposed algorithm will reduce the household peak load on average by 38.64 percent at a house with an installed PV system. The self-consumption and self-sufficiency increased by 4.69 percent and 4.97 percent when the smart charging algorithm was applied. To increase the credibility of the developed model a sensitivity analysis considering a number of houses and vehicles was done.  From the results, it can be concluded that the proposed smart charging algorithm could be an option to reduce the household peak load and increase the usage of renewable energy sources.
APA, Harvard, Vancouver, ISO, and other styles
38

Smed, Johan. "Lokal effekttoppsreduktion med elbilar - En del av framtidens smarta elnät?" Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-135873.

Full text
Abstract:
Till följd av de klimatmål som Sverige satt upp för att bemöta klimatförändringar förväntas andelen intermittent elproduktion öka, framförallt sol- och vindkraft. För att undvika dyra investeringar och kapacitetsförstärkningar tillföljd av den intermittent elproduktionen är det viktigt att det redan existerande elnätet effektiviseras och utnyttjas på ett smart sätt. En större andel förnyelsebar elproduktion är inte den enda förändringen som påverkar det svenska elsystemet. Antalet elbilar i den svenska personbilsflottan ökar ständigt och som en viktig del för att nå nationella mål är det både troligt och önskvärt att den fortsätter att öka. Elbilarna för även med sig andra potentiella användningsområden än transport. På grund av batteriets lagringskapacitet kan el lagras under laddning men även återinföras på nätet med hjälp av Vehicle-to-Gridteknik. Detta innebär att elbilen kan få sekundära användningsområden som kan bidra till, och vara en del av, framtidens elnät. Syftet med arbetet har varit att studera lokal effekttoppsreduktion med hjälp av elbilens förmåga att återinföra el till fastigheten då behovet är stort. Arbetet ska vidare besvara vilka ekonomiska incitament som kan uppstå på en lokal nivå samt hur potentialen ser ut för elbilen att verka som en aktiv del i ett smart elnät. För att undersöka elbilens förmåga till effekttoppsreduktion har effektbehovet för de 755 lägenheter på området Lilljansberget i Umeå under år 2016 använts. En modell utvecklades i programvaran Excel vars syfte var att simulera hur urladdningen ifrån elbilarna, efter sista ankomsttid på dygnet, under ett års tid påverkar det nya effektbehovet till området. Modellen ska motsvara verkliga förhållanden varvid parametrar som berör effektbehov, elbilar, laddning och urladdning bestämts utifrån verkligheten och applicerats. Reduktionen optimerades sedan med tillägget What’sBest! varvid ett nytt maxbehov till området kunde bestämmas. Optimeringen har skett på månads- och årsbasis samt med urladdningseffekter på 3,6 och 6,6 kW. Vidare har scenarion undersökts som gör gällande att andelen elbilar motsvarar 10, 20 och 30% av områdets bilar. Arbetet visar att körmönstret för bilar korrelerar bra med höga effekttoppar vilket stärks av resultatet som visar att en reduktion är möjlig för de flesta scenarion kring 100 kW, motsvarande ungefär 25% av områdets tidigare maximala effektbehov. Reduktionen visar vidare på potential för lönsamhet då intäkterna, baserade på effekttariffer, överstiger degenereringskostnaderna av batterierna oavsett scenario och tidsspann för optimeringen. Den mest lönsamma effektreduktionen sker på årsbasis med 20% elbilar där en årlig intäkt på ca 37 tSEK, inkluderat degenereringskostnader av batteriet, är möjlig. Intäkten fördelad på delaktiga elbilar är mellan 700 – 1400 kr per år. För att återspegla arbetets resultat i verkligheten bör även ett lokalt installerat batteri finnas för att bättre garantera reduktionen då tillfälliga förändringar gällande tillgängliga elbilar eller effektbehov uppstår. En större effektreduktion har visat sig vara både möjlig men även direkt lönsamt. Däremot anses intäkterna, baserat på kostnader för effekttariffer, vara för låga i förhållande till utgifter och ersättning varvid ekonomiska incitament utifrån effekttariffer anses svårmotiverade. Fortsatt arbete gällande vidare värdering av effektreduktion behövs i syfte att ge svar på vilka ekonomiska ersättningar som kan bli aktuella. Den lokala effektreduktionen som studerats i detta arbete förändrar kraftigt effektbehvet för området men påverkan på elnätet som stort förblir litet. Därför dras slutsatsen att lokal effekttoppsreduktion med elbilar inte är en enskild lösning på framtidens förändrade elsystem men kan däremot vara med och bidra till ett smart elnät.
Due to climate targets setup by Sweden to address climate change, the share of intermittent electricity generation is expected to increase, especially solar and wind power. In order to avoid expensive investments and capacity enhancement, due to uneven electricity production, it is important that the already existing power grid is efficient and utilized in a smart way. A larger proportion of renewable electricity generation is not the only change that affects the Swedish electricity system. The number of battery electric vehicles (BEV) in the Swedish car fleet is constantly increasing and as an important part of achieving national targets it is both likely and desirable that it continues. BEVs also carry other potential uses than transport. Due to the battery’s storage capacity, electricity can be stored during charging but also returned later to the grid using Vehicle-to-Grid technology. This means that the BEV can have secondary applications, which can contribute to and be part of, the future power grid. The purpose of this study has been to study local power reduction with help of battery electric vehicles ability to recharge electricity to the property when power need is high. The work will furthermore answer the financial incentives that may arise at a local level and how the potential is for BEVs to be an active part of a smart grid. To investigate the potential of the BEVs power reduction, the power need for the 755 apartments in the area of Lilljansberget in Umeå for 2016 has been used. A model was then developed in Excel software, the purpose of which was to simulate how the discharges from BEVs, after last arrival time of the day, over a year’s time, affect the new power usage for the area. Since the model in Excel is intended to correspond to actual conditions, parameters related to electric cars, charging and discharging have been determined and applied. The reduction was then optimized with the plug-in program What’s Best! whereby a new maximum usage for the area could be determined. The optimization has been done on a monthly and annual basis and with 3.6 and 6.6 kW discharge effects. Furthermore, scenarios have been investigated claiming that the proportion of BEVs corresponds to 10, 20 and 30% of the area’s car fleet. The work shows that driving pattern for cars correlates well with high power peaks, which is reinforced by the results that show that a reduction is possible for most scenarios around 100 kW, corresponding to approximately 25% of the area’s previous maximum power need. The reduction further indicates potential for profitability, as revenue, based on power tariffs, exceeds the degeneration costs of batteries regardless of the scenario and time span for optimization. The most profitable power reduction occurs on an annual basis with 20% BEVs, with an annual revenue of approximately 37,000 SEK, including degeneration costs of the battery. Revenue distributed on participating BEVs is between 700 - 1400 SEK per year. In order to reflect the results of the work in reality, a locally installed battery should also be in place to better guarantee reduction as temporary changes to available BEVs or power usage arise. A major reduction in power has proven to be both possible but also directly profitable. On the other hand, revenues, based on costs for power tariffs, are considered to be too low in relation to expenses and remuneration, which makes such an investment difficult to motivate. Continued work on further valuation of power reduction is needed to provide answers to financial compensation that may be applicable. The local power reduction studied in this work greatly changes the power demand for the area but the impact on the grid remains largely small. Therefore, it is concluded that local power reduction with battery electric vehicles is not a solution to the future electrical system, but can at local level, contribute to a smart grid.
APA, Harvard, Vancouver, ISO, and other styles
39

Yoo, Seung-Hoon. "STAY : Mindfulness and Space." Thesis, Umeå universitet, Designhögskolan vid Umeå universitet, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-171731.

Full text
Abstract:
The state of the art technology has been penetrated every corner of people's life. It is a path to transfer to a new way of life with the artificial intelligence and big data resources. The next generation of transportation should not only be a mobile accommodation or a productive studio. It should be a second home or a companion to tackle individual problems and social issues to pervade the physical and mental ground with the mindful and natural approach. This project aims to provide a whole new experience in a vehicle. The supportive concept should stay within people's daily life. The engagement of the time gap and spacial shifting is the role to make people's lives stable with the smooth flow of emotional state. The concept is about offering people to recognise the individual condition and the current situation for better mental condition and stable emotion. Ensuring healthy lives and promoting well-being at all ages is essential to sustainable development. Social relevance and industrial background of the wellness have been witnessed these days such as rapid growth of the economy and researches about an urban mental issue. It is signs of an eagerness to pursue a balance of life and encouraging mindfulness. The thesis will deliver a proper solution to design a product with proposing in-car activity and experience to cover the original subject within the automotive design field. Benchmarking of existing therapeutic solutions was a one of the main approaches for the research. Every design solution is proposed based on the fundamental element of the current solution in the market such as the verified mental care process, resources and basic principle. Architectural trend and structure were adopted to propose the different atmosphere and composition to tackle the emotional element within the moving world. Manual drawing initiated the key idea. Quick sketch modelling was utilised to build the core design solution and to demonstrate the interior transformation. Digital rendering/modelling software and physical soft mockup were important tools to prove feasible movement, proper space and right volume for the conceptual activity and product. 3D animation film is the out-put for the final visualisation. The film contains how each design element works and all parts are in harmony for the mindful space. The vehicle frames the new role beyond the smart transportation. Through various fields of mental solution, the concept STAY takes a part of the role of consistent emotional care in daily life. Its preventative approach blends into people's lifestyle. It is a great opportunity for the automotive industry to be a userfriendly medium. The activity in the mobility is a tool to communicate between passengers and car. It is a flexible platform that users can tell their story and share their feelings to achieve a better emotional health. The STAY is equipped with the re-arrangeable objects and modules. It is about creating a personalised space to offer an opportunity to empathise with the present and how he or she feels.
APA, Harvard, Vancouver, ISO, and other styles
40

Prevedello, Paolo. "Ottimizzazione stocastica di una microrete con tecnologia "vehicle-to-grid"." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016.

Find full text
Abstract:
La presente tesi ha come obiettivo quello di sviluppare un modello per la gestione ottimizzata delle unità di generazione e di accumulo di una microrete elettrica. La tesi analizza, come caso studio di riferimento, una microrete contenente impianti di generazione da fonti rinnovabili, sistemi di accumulo a batteria (BES:Battery Energy System) e stazioni di ricarica per veicoli elettrici. In particolare le stazioni di ricarica sono a flusso bidirezionale, in grado di fornire servizi di tipo "grid-to-vehicle"(G2V) e "vehicle-to-grid" (V2G). Il modello consente di definire, come sistema di dispacciamento centrale, le potenze che le varie risorse distribuite devono erogare o assorbire nella rete nelle 24 ore successive. Il dispacciamento avviene mediante risoluzione di un problema di minimizzazione dei costi operativi e dell'energia prelevata dalla rete esterna. Il problema è stato formulato tramite l'approccio di programmazione stocastica lineare dove i parametri incerti del modello sono modellizzati tramite processi stocastici. L'implementazione del modello è stata effettuata tramite il software AIMMS, un programma di ottimizzazione che prevede al suo interno delle funzionalità specifiche per la programmazione stocastica
APA, Harvard, Vancouver, ISO, and other styles
41

Gupta, Prakriti. "Spatio-Temporal Analysis of Urban Data and its Application for Smart Cities." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/87418.

Full text
Abstract:
With the advent of smart sensor devices and Internet of Things (IoT) in the rapid urbanizing cities, data is being generated, collected and analyzed to solve urban problems in the areas of transportation, epidemiology, emergency management, economics, and sustainability etc. The work in this area basically involves analyzing one or more types of data to identify and characterize their impact on other urban phenomena like traffic speed and ride-sharing, spread of diseases, emergency evacuation, share market and electricity demand etc. In this work, we perform spatio-temporal analysis of various urban datasets collected from different urban application areas. We start with presenting a framework for predicting traffic demand around a location of interest and explain how it can be used to analyze other urban activities. We use a similar method to characterize and analyze spatio-temporal criminal activity in an urban city. At the end, we analyze the impact of nearby traffic volume on the electric vehicle charging demand at a charging station.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
42

Parast, Vand Hossein. "Power network and smart grids analysis from a graph theoretic perspective." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2021. https://ro.ecu.edu.au/theses/2440.

Full text
Abstract:
The growing size and complexity of power systems has given raise to the use of complex network theory in their modelling, analysis, and synthesis. Though most of the previous studies in this area have focused on distributed control through well established protocols like synchronization and consensus, recently, a few fundamental concepts from graph theory have also been applied, for example in symmetry-based cluster synchronization. Among the existing notions of graph theory, graph symmetry is the focus of this proposal. However, there are other development around some concepts from complex network theory such as graph clustering in the study. In spite of the widespread applications of symmetry concepts in many real world complex networks, one can rarely find an article exploiting the symmetry in power systems. In addition, no study has been conducted in analysing controllability and robustness for a power network employing graph symmetry. It has been verified that graph symmetry promotes robustness but impedes controllability. A largely absent work, even in other fields outside power systems, is the simultaneous investigation of the symmetry effect on controllability and robustness. The thesis can be divided into two section. The first section, including Chapters 2-3, establishes the major theoretical development around the applications of graph symmetry in power networks. A few important topics in power systems and smart grids such as controllability and robustness are addressed using the symmetry concept. These topics are directed toward solving specific problems in complex power networks. The controllability analysis will lead to new algorithms elaborating current controllability benchmarks such as the maximum matching and the minimum dominant set. The resulting algorithms will optimize the number of required driver nodes indicated as FACTS devices in power networks. The second topic, robustness, will be tackled by the symmetry analysis of the network to investigate three aspects of network robustness: robustness of controllability, disturbance decoupling, and fault tolerance against failure in a network element. In the second section, including Chapters 4-8, in addition to theoretical development, a few novel applications are proposed for the theoretical development proposed in both sections one and two. In Chapter 4, an application for the proposed approaches is introduced and developed. The placement of flexible AC transmission systems (FACTS) is investigated where the cybersecurity of the associated data exchange under the wide area power networks is also considered. A new notion of security, i.e. moderated-k-symmetry, is introduced to leverage on the symmetry characteristics of the network to obscure the network data from the adversary perspective. In chapters 5-8, the use of graph theory, and in particular, graph symmetry and centrality, are adapted for the complex network of charging stations. In Chapter 5, the placement and sizing of charging stations (CSs) of the network of electric vehicles are addressed by proposing a novel complex network model of the charging stations. The problems of placement and sizing are then reformulated in a control framework and the impact of symmetry on the number and locations of charging stations is also investigated. These results are developed in Chapters 6-7 to "robust" placement and sizing of charging stations for the Tesla network of Sydney where the problem of extending the capacity having a set of pre-existing CSs are addressed. The role of centrality in placement of CSs is investigated in Chapter 8. Finally, concluding remarks and future works are presented in Chapter 9.
APA, Harvard, Vancouver, ISO, and other styles
43

Altinsoy, Sinan. "Zero-Power Fall Detection System for Smart Helmets." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21618/.

Full text
Abstract:
The widespread use of vehicles has led to an increase in traffic accidents. In these accidents, motorcyclists are exposed to more risks because they are more vulnerable than car drivers. With the development of technology, manufacturers have increased their work on vehicle security systems. Advancements in these studies which are being applied in daily life resulted in a reduction of risks in accidents. In this thesis, Zero-Power Fall Detection System is developed for smart helmets, which is a safety system for motorcycles. Since the lifetime of electronic devices has become one of the most important features of today, the aim of this study is to design a self-sustainable fall detection system that consumes as low power as possible. First, the system is designed with Piezoelectric Wake-up Circuits, a microcontroller unit with bluetooth low energy communication and a self-sustainable battery management system with high efficiency power recovery. Then, a fall detection algorithm is designed to send a message to a smartphone, tablet or etc. through bluetooth low energy connection when hazardous situations are detected. Based on this algorithm, the software of the system is prepared. Finally, field tests have been carried out and according to the results, it has been shown that the fall detection system developed is functional and has a very low power consumption.
APA, Harvard, Vancouver, ISO, and other styles
44

McKee, Kristin. "Political Feasibility of Implementing Smart Growth Development Strategies in the Monterey Bay Area." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/813.

Full text
Abstract:
Development over the past sixty years has created patterned growth and expansion outward from city centers, separating residences from commercial areas and employment centers. This separation of land uses has increased automobile dependency, which increases vehicle miles traveled and associated greenhouse gas emissions. California Senate Bill 375 mandates the development and implementation of a “Sustainable Communities Strategy” in order to plan regional land use and transportation in a coordinated fashion. In coordination with this effort, the Association of Monterey Bay Area Governments (AMBAG) is developing the Regional Implementation Plan for Smart Growth Development Strategies, which entails the identification of smart growth strategies that offer the greatest potential to reduce vehicle miles traveled and meet the 5% greenhouse gas emissions reduction target for the Monterey Bay Area. The major goal of this project was to assist AMBAG in determining the political feasibility of smart growth development strategies and identifying the most feasible strategies for the region. Political feasibility was determined by two factors: 1) support from the public/stakeholders, 2) “low-hanging fruit” potential, and one technical criterion: the potential to reduce vehicle miles traveled and the associated greenhouse gas emissions. The Regional Advisory Committee provided ten months of knowledge and expertise on stakeholder opinions v about strategies, barriers, circumstances for gaining stakeholder support, and resources for implementation. Additionally, survey results from planning directors the “low-hanging fruit” strategies. The quantified VMT/GHG reduction potential of smart growth strategies was another evaluation criteria and was used to inventory quantified reduction measures and their ranges of potential. The analysis identified seventeen strategies that met a set of thresholds for political feasibility. Based on these results, it is recommended that AMBAG consider these strategies in the development of their plan, by addressing the barriers to implementation, the conditions or circumstances for overcoming those barriers and gaining support from stakeholders, and developing the resources to assist jurisdictions with implementation.
APA, Harvard, Vancouver, ISO, and other styles
45

Shao, Shengnan. "An Approach to Demand Response for Alleviating Power System Stress Conditions due to Electric Vehicle Penetration." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/29335.

Full text
Abstract:
Along with the growth of electricity demand and the penetration of intermittent renewable energy sources, electric power distribution networks will face more and more stress conditions, especially as electric vehicles (EVs) take a greater share in the personal automobile market. This may cause potential transformer overloads, feeder congestions, and undue circuit failures. Demand response (DR) is gaining attention as it can potentially relieve system stress conditions through load management. DR can possibly defer or avoid construction of large-scale power generation and transmission infrastructures by improving the electric utility load factor. This dissertation proposes to develop a planning tool for electric utilities that can provide an insight into the implementation of demand response at the end-user level. The proposed planning tool comprises control algorithms and a simulation platform that are designed to intelligently manage end-use loads to make the EV penetration transparent to an electric power distribution network. The proposed planning tool computes the demand response amount necessary at the circuit/substation level to alleviate the stress condition due to the penetration of EVs. Then, the demand response amount is allocated to the end-user as a basis for appliance scheduling and control. To accomplish the dissertation objective, electrical loads of both residential and commercial customers, as well as EV fleets, are modeled, validated, and aggregated with their control algorithms proposed at the appliance level. A multi-layer demand response model is developed that takes into account both concerns from utilities for load reduction and concerns from consumers for convenience and privacy. An analytic hierarchy process (AHP)-based approach is put forward taking into consideration opinions from all stakeholders in order to determine the priority and importance of various consumer groups. The proposed demand response strategy takes into consideration dynamic priorities of the load based on the consumersâ real-time needs. Consumer comfort indices are introduced to measure the impact of demand response on consumersâ life style. The proposed indices can provide electric utilities a better estimation of the customer acceptance of a DR program, and the capability of a distribution circuit to accommodate EV penetration. Research findings from this work indicate that the proposed demand response strategy can fulfill the task of peak demand reduction with different EV penetration levels while maintaining consumer comfort levels. The study shows that the higher number of EVs in the distribution circuit will result in the higher DR impacts on consumersâ comfort. This indicates that when EV numbers exceed a certain threshold in an area, other measures besides demand response will have to be taken into account to tackle the peak demand growth. The proposed planning tool is expected to provide an insight into the implementation of demand response at the end-user level. It can be used to estimate demand response potentials and the benefit of implementing demand response at different DR penetration levels within a distribution circuit. The planning tool can be used by a utility to design proper incentives and encourage consumers to participate in DR programs. At the same time, the simulation results will give a better understanding of the DR impact on scheduling of electric appliances.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
46

Zarov, Filipp. "Life Cycle Cost of Smart Wayside Object Controller." Thesis, KTH, Spårfordon, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299368.

Full text
Abstract:
In a regional railway signalling system, object controllers are the devices responsible for controlling Track Side Equipment and act as interfaces for TSE with the interlocking computer and the Traffic control system. However, associated cabling (signal and power cabling) and civil works pose a major capital investment and it is a source of significant Capital and Operational expenses, particularly in rural areas, where accessibility andconnectivity to power grid and to the interlocking are a problem. Furthermore, cables/signalling equipment are exposed to sabotage and theft in such areas. This can increase the total Life Cycle Cost even further. The Shift2Rail research programme, which was initiated by the European Union and railway stakeholders, tries to address this issue, and revamp the Object Controller concept through the project “TD2.10 Smart radio connectedwayside object controller”, where the aim is to develop a Smart Wayside Object Controller (SWOC). A SWOC is capable of wireless communication between central interlocking and TSE as well as decentralization of interlocking logic. These innovations can reduce the cabling required, increase the availability of diagnostic data, thus reducing maintenance and operational costs and can lead to power saving by utilizing local power sources. The most important impact of the SWOC is a significant reduction of CAPEX, OPEX and of total LCC for an installation utilizing SWOCs, instead of typical OCS.  This work focuses on estimating the LCC of a SWOC system and to compare it with a conventional OCS by developing an LCC model that covers both cases, as well as to use this model to examine when it is more profitable to implement a SWOC, instead of an OCS system. This is done by utilizing LCC analysis and combining a variety of methods in a parametric study. To that extend, a thorough analysis of a modern regional railway signalling system, as well as the basis for LCCA are being discussed. At the same time, both OC and SWOC systems are being described and factors affecting their cost discussed.  The methodology is comprised of the LCC modelling part as well as the collection of methods and techniques used to calculate the LCC of OC/SWOC systems and to estimate the costs of different sub-models and parameters of the process. For the modelling process, the station of Björbo was chosen, which operates under ERTMS-R system, but for the sake of the analysis it is assumed that the typical base system in place is an OCS and together with the existing track layout and equipment it is used as the basis of the analysis. Finally, the formed LCC model is being used in a parametric study to examine how the LCC is affected by using OC or SWOC as well as how LCC responds to changes in parameters such as number of OC/SWOC, traffic density and local power installation cost for the Björbo station.
I ett regionalt järnvägssignalsystem är utdelar de enheter som ansvarar för att kontrollera spårutrustning och fungerar de som gränsyta för spårutrustning med ställverksdatorn och tågtrafikledning systemet. Dock, tillhörande kablar (signalkablar ock kraftkablar), samt anläggningsinfrastruktur utgör en stor kapitalinvestering och de är en källa till märkbar kapitalkostnad och driftskostnader, särskilt på landsbygdsområden, där tillgänglighet och anslutning till elnätet och ställverket är problematisk. Dessutom, kablar och signalutrustning utsätts för stöld och sabotage i sådana områden. Detta kan öka den totala livscykelkostnaden ytterligare. Shift2rail forskningsprogram, som genomförs av EU och järnvägsintressenter, försöker att ta itu med problemet och modernisera utdelar konceptet genom projektet “TD2.10 Smart Radio Connected Wayside Object Controller”, där målet är att utveckla en Smart Spårutrustning Utdelar, så kallade SWOC. En SWOC har kapacitet för trådlös kommunikation mellan central ställverket och spårutrustning, samt decentralisering av satällverkslogiken. Dessa innovationer kan minska nödvändig kabeldragning, öka tillgängligheten av diagnostiska data, vilket minskar underhålls- och driftskostnader och kan leda till energibesparing genom att använda lokala kraftkällor. Den viktigaste effekten av SWOC är en betydande minskning av kapitalkostnader, driftskostnader och totala livscykelkostnaden för en installation som använder SWOC istället för typiska utdelningsystemet. Detta examensarbete fokuserar på att uppskatta LCC för ett SWOC-system och jämföra det med en konventionell utdelingsystem genom att utveckla en LCC-modell som täcker båda fallen, samt att använda denna modell för att undersöka när det är mer lönsamt att implementera en SWOC istället av ett typiskt utdelingsystem. Detta görs genom att använda LCC-analys och kombinera en mängd olika metoder i en parametrisk studie. För att göradetta genomförs en grundlig analys av ett modernt regionalt järnvägssignalsystem, samt grunden för livscykelanalys. Samtidigt beskrivs både ett typiskt utdelingssystem - och SWOC-system samt faktorer som påverkar deras kostnad deskuteras. Metoden består av LCC-modelleringsdelen samt insamling av metoder och tekniker som används för att beräkna LCC för OC / SWOC-system och för att uppskatta kostnaderna för olika delmodeller och parametrar för processen. För modelleringsprocessen valdes stationen i Björbo, som arbetar under ERTMS-R-systemet, men för analysens skull antas att det typiska bassystemet på plats är en typisk OCS och tillsammans med befintlig planritning ochkabelplan är används som grund för analys. Slutligen används den bildade LCC-modellen i en parametrisk studie för att undersöka hur LCC påverkas genom att använda OC eller SWOC samt hur LCC reagerar på förändringar i parametrar såsom antal OC / SWOC, trafiktäthet och lokala kraftinstallationskostnader för Björbo-stationen.
APA, Harvard, Vancouver, ISO, and other styles
47

Frendo, Oliver [Verfasser], and Heiner [Akademischer Betreuer] Stuckenschmidt. "Improving smart charging for electric vehicle fleets by integrating battery and prediction models / Oliver Frendo ; Betreuer: Heiner Stuckenschmidt." Mannheim : Universitätsbibliothek Mannheim, 2021. http://d-nb.info/1228271585/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Choi, Junsung. "Latency Study and System Design Guidelines for Cooperative LTE-DSRC Vehicle-to-Everything (V2X) Communications including Smart Antenna." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/78083.

Full text
Abstract:
Vehicle-related communications are a key application to be enabled by Fifth Generation (5G) wireless systems. The communications enabled by the future Internet of Vehicles (IoV) that are connected to every wireless device are referred to as Vehicle-to-Everything (V2X) communications. A major application of V2X communication systems will be to provide emergency warnings. This thesis evaluates Long-Term Evolution (LTE) and Dedicated Short Range Communications (DSRC) in terms of service quality and latency, and provides guidelines for design of cooperative LTE-DSRC systems for V2X communications. An extensive simulation analysis shows that (1) the number of users in need of warning has an effect on latency, and more so for LTE than for DSRC, (2) the DSRC priority parameter has an impact on the latency, and (3) wider system bandwidths and smaller cell sizes reduce latency for LTE. The end-to-end latency of LTE can be as high as 1.3 s, whereas the DSRC latency is below 15 ms for up to 250 users. Also, improving performance of systems is as much as important as studying about latency. One method to improving performance is using a better suitable antenna for physical communication. The mobility of vehicles results in a highly variable propagation channel that complicates communication. Use of a smart, steerable antenna can be one solution. The most commonly used antennas for vehicular communication are omnidirectional. Such antennas have consistent performance over all angles in the horizontal plane; however, rapidly steerable directional antennas should perform better in a dynamic propagation environment. A linear array antenna can perform dynamical appropriate azimuth pattern by having different weights of each element. The later section includes (1) identifying beam pattern parameters based on locations of a vehicular transmitter and fixed receivers and (2) an approach to find weights of each element of linear array antenna. Through the simulations with our approach and realistic scenarios, the desired array pattern can be achieved and array element weights can be calculated for the desired beam pattern. Based on the simulation results, DSRC is preferred to use in the scenario which contains large number of users with setup of higher priority, and LTE is preferred to use with wider bandwidth and smaller cell size. Also, the approach to find the controllable array antenna can be developed to the actual implementation of hardware with USRP.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
49

Jones, Harry W. "The potential use of smart cards in vehicle management with particular reference to the situation in Western Australia." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2000. https://ro.ecu.edu.au/theses/1363.

Full text
Abstract:
Vehicle management may be considered to consist of traffic management, usage control, maintenance, and security. Various regulatory authorities undertake the first aspect, fleet managers will be concerned with all aspects, and owner-drivers will be interested mainly in maintenance and security. Car theft poses a universal security problem. Personalisation, including navigational assistance, might be achieved as a by-product of an improved management system. Authorities and fleet managers may find smartcards to be key components of an improved system, but owners may feel that the need for improved security does not justify its cost. This thesis seeks to determine whether smartcards may be used to personalise vehicles in order to improve vehicle management within a forseeable time and suggest when it might happen. In the process four broad questions are addressed. • First, what improvements in technology are needed to make any improved scheme using smartcards practicable, and what can be expected in the near future? • Second, what problems and difficulties may impede the development of improved management? • Third, what non-vehicle applications might create an environment in which a viable scheme could emerge? • Finally, is there a perceived need for improved vehicle management? The method involved a literature search, the issue of questionnaires to owner drivers and fleet managers, discussions with fleet managers, the preparation of data-flow and state diagrams, and the construction of a simulation of a possible security approach. The study concludes that although vehicle personalisation is possible- and desirable it is unlikely to occur within the next decade because the environment needed to make it practicable will not emerge until a number of commercial and standardisation problems that obstruct all smartcard applications have been solved.
APA, Harvard, Vancouver, ISO, and other styles
50

Turker, Harun. "Véhicules électriques Hybrides Rechargeables : évaluation des Impacts sur le Réseau électrique et Stratégies Optimales de recharge." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00966055.

Full text
Abstract:
Les engagements étatiques relatifs au secteur du transport promouvoient la popularisation des véhicules rechargeables conformément aux exigences actuelles qu'elles soient environnementales, techniques ou encore économiques. Ipso facto, ces travaux de thèse, assimilés à la thématique des Smart Grids, exposent une contribution à une gestion orientée du tryptique réseaux électriques, véhicules rechargeables et secteurs résidentiels. La première étape du travail consiste en l'évaluation des impacts liés à un taux de pénétration élevé. Les travaux se sont ensuite focalisés sur deux problèmes importants qui sont la tenue du plan de tension et le vieillissement accéléré des transformateurs de distribution HTA/BT, plus particulièrement ceux alimentant des secteurs résidentiels. Partant, des stratégies de modulation de la charge des batteries embarquées sont proposées et évaluées. Dans une seconde partie, en se basant sur l'hypothèse de bidirectionnalité énergétique du véhicule électrique hybride rechargeable (Plug-in Hybrid Electric Vehicle - PHEV), est exploré les possibilités d'effacement de pointe et de diminution des puissances souscrites ; conformément au concept Vehicle-to-Home. Les aspects économiques ne sont pas évacués ; à ce titre la minimisation de la facture énergétique d'un logement fait l'objet d'un regard particulier sous contrainte d'une tarification variable, le V2H servant de levier. Le véhicule bidirectionnel est enfin mis à contribution via une algorithmique adaptée à des fins de réglage du plan de tension et contribue ainsi au concept Vehicle-to-Grid.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography