Academic literature on the topic 'SMART CITIES OF INDIA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SMART CITIES OF INDIA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "SMART CITIES OF INDIA"
Nagaraj, Laxmi. "Transforming ‘traditional’ cities into ‘smart’ cities." E3S Web of Conferences 170 (2020): 06013. http://dx.doi.org/10.1051/e3sconf/202017006013.
Full textChatterjee, Sheshadri, and Arpan Kumar Kar. "Effects of successful adoption of information technology enabled services in proposed smart cities of India." Journal of Science and Technology Policy Management 9, no. 2 (July 2, 2018): 189–209. http://dx.doi.org/10.1108/jstpm-03-2017-0008.
Full textKumar, Kamlesh, Seema Baxi, and Dr Jai Singh. "SMART CITIES IN INDIA: A SMARTER WAY TO BUILD‘NEW INDIA’ THROUGH SMART CITIES." International Journal of Advanced Research 4, no. 5 (May 31, 2016): 1598–606. http://dx.doi.org/10.21474/ijar01/589.
Full textRathore, Indu. "Smart Cities Mission in India." International Journal of Technology 7, no. 1 (2017): 79. http://dx.doi.org/10.5958/2231-3915.2017.00013.x.
Full textAlok, V. N., and Ashutosh Vashist. "Financing Smart Cities in India." Indian Journal of Public Administration 62, no. 4 (October 2016): 791–804. http://dx.doi.org/10.1177/0019556120160405.
Full textPattnaik, Satyajit. "Smart cities in India need smart health care." Indian Journal of Community and Family Medicine 3, no. 1 (2017): 6. http://dx.doi.org/10.4103/2395-2113.251874.
Full textBaporikar, Neeta. "Urban Development Through Smart Cities in India." International Journal of Civic Engagement and Social Change 3, no. 3 (July 2016): 36–49. http://dx.doi.org/10.4018/ijcesc.2016070103.
Full textAggarwal, Tanu, and Priya Solomon. "Quantitative analysis of the development of smart cities in India." Smart and Sustainable Built Environment 9, no. 4 (December 20, 2019): 711–26. http://dx.doi.org/10.1108/sasbe-06-2019-0076.
Full textMohan, M. "GEOSPATIAL INFORMATION FROM SATELLITE IMAGERY FOR GEOVISUALISATION OF SMART CITIES IN INDIA." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8 (June 24, 2016): 979–85. http://dx.doi.org/10.5194/isprs-archives-xli-b8-979-2016.
Full textMohan, M. "GEOSPATIAL INFORMATION FROM SATELLITE IMAGERY FOR GEOVISUALISATION OF SMART CITIES IN INDIA." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8 (June 24, 2016): 979–85. http://dx.doi.org/10.5194/isprsarchives-xli-b8-979-2016.
Full textDissertations / Theses on the topic "SMART CITIES OF INDIA"
Siddabathuni, Deepti Prasad. "Unfolding Smart City Development in India." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27393.
Full textOliveira, Ana Cláudia de. "Smart cities." Doctoral thesis, Universidade de Lisboa, Faculdade de Arquitetura, 2017. http://hdl.handle.net/10400.5/16936.
Full textO desenvolvimento sucessivo de Cidades Inteligentes pelo mundo, tem criado uma atitude negativa e prejudicial que resulta na dificuldade de atração de habitantes para estes espaços. As novas tecnologias não são suficientemente impulsionadoras para garantir uma taxa de adoção sustentável dentro destas novas cidades. O conceito de Cidades Inteligentes Climáticas visam resolver esta questão tendo em conta aspectos relacionados na base da habitabilidade e da sustentabilidade. Enquanto o papel da arquitetura nas Cidades Inteligentes Climáticas é ainda mais importante do que Cidades Inteligentes, os princípios que se encontram subjacentes na sua concepção e, em última instância, no seu sucesso, não foram ainda sistematicamente estudados e avaliadas. Este trabalho sistematiza e valida as necessidades de Cidades Inteligentes Climáticas e propõe um conjunto de princípios para a sua planificação, concepção e manutenção. As necessidades foram validadas com os casos de estudo da cidade de ‘Songdo City’ em Incheon, na Coreia do Sul, em Ulaanbaatar na Mongólia e em Minsk na Bielorrúsia. Com a definição dos princípios orientadores subjacentes à concepção de Cidades Inteligentes Climáticas, o quadro proposto permitirá que arquitetos, engenheiros, governos, e organizações internacionais afiram soluções a serem implementadas mundialmente. Estes princípios podem ser facilmente implementados em intervenções em cidades europeias, nas cidades emergentes e, em países subdesenvolvidos que estão sujeitos a um mau planeamento estratégico.
ABSTRACT: Successive deployments of Smart Cities around the world are hindered by the difficulty in attracting a critical mass of inhabitants. New technology is not enough as a driver to guarantee a sustained adoption rate within the new cities. The concept of Climate Smart City aims at solving this issue by putting aspects related to liveability and sustainability at the centre. While the role of architecture in Climate Smart Cities is even more important than in Smart Cities, the principles that underlie their design and, ultimately, their success, have never been systematically studied and assessed. This research work systematises and validates the needs of Climate Smart Cities and then proposes a framework of principles for their planning, design and maintenance. The needs are validated with field studies of Songdo City in Incheon, South Korea, Ulaanbaatar, Mongolia and Minsk, Belarus. By defining the guiding principles underlying the design of Climate Smart Cities, the proposed framework will also enable architects, engineers, decision-makers and, international organisations to benchmark the solutions to be implemented. These principles can be readily implemented in interventions planned for European cities, emerging cities and, underdeveloped cities subject to poorly strategic planning.
N/A
Faanes, Erlend Kydland. "Smart Cities - Smart Homes and Smart Home Technology." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for sosialt arbeid og helsevitenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25978.
Full textDenne masteroppgaven er skrevet i artikkelform og består av en teoretisk og en empirisk artikkel. Artikkel I Hensikten artikkelen er å utforske og belyse hvordan smarthus og smarthusteknologi kan være med på å forbedre helse og livskvalitet hos eldre mennesker. I tillegg til dette undersøkes det om denne teknologien kan bidra til å øke eldre menneskers muligheter for å bo lengre i sine egne hjem. Artikkelen gir en kort innføring i helsefremming, og belyser masteroppgavens teoretiske rammeverk og fundament i Aaron Antonovsky’s teori om Salutogenese. I lyset av en raskt voksende aldrende befolkning verden over, er mange nasjoner ivrige etter å søke nye metoder for å møte denne utfordringen. En av flere mulige løsninger til dette er smarthus og smarthusteknologi. Artikkelens avsluttende bemerkninger er at selv om det finnes lite empirisk data på dette feltet, viser litteraturen at smarthus og smarthusteknologi kan være med å bidra til en økning i livskvalitet hos eldre mennesker, dette gjennom en økt følelse selvstendighet, trygghet, sikkerhet og trivsel. Videre blir det foreslått et mulig helsefremmende salutogent rammeverk, og gitt et eksempel på hvordan salutogenese kan brukes i praksis og som kan være med på å bidra i utviklingen av fremtidige helsefremmende smarthus. Artikkel II Studien tar sikte på å undersøke på hvilken måte smarthus og smarthusteknologi bidrar til å forbedre helse og livskvalitet hos eldre mennesker og om denne teknologien bidrar til å øke deres muligheter til å bo lengre i sine hjem. Det undersøkes også om denne teknologien bidrar til økt sikkerhet, uavhengighet og sosial aktivitet blant eldre. Det ble gjennomført seks dybdeintervjuer med eldre beboere i et smarthus som danner det empiriske grunnlaget i studien. Intervjuguiden består av spørsmål som tar for seg livskvalitet (QoL), smarthus og smarthusteknologi, sikkerhet og uavhengighet. For å analysere datamaterialet har en innholdsanalyse og systematisk tekstkondensering vært en inspirasjon. Resultatene viser at det ikke var en enkelt faktor som bidro til å øke deres livskvalitet, men det totale av det Kampen Omsorg+ (KO+) tilbød. Smarthus og smarthusteknologi kan bidra til å øke helse og livskvaliteten og i tillegg bidra til at eldre mennesker kan leve lengre i sine hjem, men det er et behov for videre undersøkelser for å kunne trekke en avsluttende konklusjon.
Giannuzzi, Federico. "Importanza dei PAES nei bandi SMART CITIES verso le SMART ANCIENT CITIES." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textAkande, Adeoluwa Stephen. "Smart Sustainable Cities Assessment." Doctoral thesis, Universitat Jaume I, 2020. http://hdl.handle.net/10803/669623.
Full textEn esta investigación, proporcionamos una visión más holística que estudia la relación entre una "ciudad inteligente" y una "ciudad sostenible". Conceptualizamos un marco para medir la conexión entre la tecnología y la sostenibilidad ambiental y categorizamos las ciudades europeas en función de esta relación. Proporcionamos una comprensión concisa y más clara de los impulsores del uso de la tecnología a través de la economía compartida para fomentar la sostenibilidad en las ciudades por parte de los ciudadanos. En esta investigación, proporcionamos una visión más holística que estudia la relación entre una "ciudad inteligente" y una "ciudad sostenible". Conceptualizamos un marco para medir la conexión entre la tecnología y la sostenibilidad ambiental y categorizamos las ciudades europeas en función de esta relación. Proporcionamos una comprensión concisa y más clara de los impulsores del uso de la tecnología a través de la economía compartida para fomentar la sostenibilidad en las ciudades por parte de los ciudadanos.
Jusko, Ján. "Chatbot pro Smart Cities." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2019. http://www.nusl.cz/ntk/nusl-403204.
Full textEl, Mazraani Vincent. "Governance of Smart Cities." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1A008.
Full textSmart city is relatively a new concept, which might become indispensable in the near future. What we consider just an idea will become part of our daily life. The smart city concept differs between continents; while the American view is oriented more toward technology, the European one is more oriented toward collaboration. Despite the fact that smart city has more than one definition, all used definitions involve development, sustainability, resilience, improvement, evolution and quality of life. Focusing on smart cities and precisely on the outputs and outcomes of this relatively, new concept requires us to look for the most effective and efficient way to manage these cities, and what better than governance to sustain, evolve and thrive. Governance can be perceived in several ways, such as a process undertaken by a government or a process concerned with human resources, smart people or towards stakeholder collaboration. As for the governance axis, pillars or chapters, different types of governance structures and models can be found and with that comes different monitoring systems and tools that can evaluate and monitor governance developments and successes. Despite using different terminologies, the different types of governance share similar concepts, including, a clear mission, vision, strategic planning with smart objectives, better outputs, better outcomes, participation, transparency, management and recognition. All these concepts when combined provide a framework that is made up of rules and regulations and procedures, and the process of how they are designed and controlled. To improve the governance of smart cities, the researcher proposes the use of a self-assessment tool in order to provide policy and decision-makers, with an efficient instrument, with the aim of improving the outcome of applying good governance. The proposed assessment tool, the University Governance Screening Card (UGSC), was created by the World Bank to assess governance of universities. This tool will be adapted to become the Smart City Governance Screening Card (SCGSC) and tested on a smart city. Based on the findings, the researcher will update the SCGSC and will propose an action plan for the selected smart city to improve its governance
Zambon, Camilla <1996>. "Smart Cities in China." Master's Degree Thesis, Università Ca' Foscari Venezia, 2020. http://hdl.handle.net/10579/18218.
Full textGraber, Giuseppe. "Electric Mobility: Smart Transportation in Smart Cities." Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2470.
Full textOne of the mega trends over the past century has been humanity’s move towards cities. Public Administration and Municipalities are facing a challenging task, to harmonize a sustainable urban development offering to people in city the best living conditions. Smart cities are now considered a winning urban strategy able to increase the quality of life by using technology in urban space, both improving the environmental quality and delivering better services to the citizens. Mobility is a key element to support this new approach in the growth of the cities. In fact, transport produces several negative impacts and problems for the quality of life in cities, such as, pollution, traffic and congestion. Therefore, Sustainable Mobility is one of the most promising topics in smart city, as it could produce high benefits for the quality of life of almost all the city stakeholders. The boldest and imminent challenge awaiting mobility in smart cities is the introduction of the electricity as energy vector instead of fossil fuels, concerning both the collective and the private transports. Electric public transport include electric city buses, trolleybuses, trams (or light rail), passenger trains and rapid transit (metro/subways/undergrounds, etc.). Even though railway systems are the most energy efficient than other transport modes, the enhancement of energy efficiency is an important issue to reduce their contributions to climate change further as well as to save and enlarge competition advantages involved. One key means for improving energy efficiency is to deploy advanced systems and innovative technologies. Additionally, electrification of the private road transport has emerged as a trend to support energy efficiency and CO2 emissions reduction targets. According to the International Energy Agency, in order to limit average global temperature increases to 2°C - the critical threshold that scientists say will prevent dangerous climate change -, by 2050, 21% of carbon reductions must come from the transport sector. Full electric vehicles (EVs) use electric motor and battery energy for propulsion, which has higher efficiency and lower operating cost compared to the conventional internal combustion engine vehicle. Today, there are more than 20 models offered by different brands covering different range of sizes, styles, prices and powertrains to suit the wider range of consumers as possible. The continuous development of lithium ion battery and of fast charging technology will be the major facilitators for EVs roll out in the very near future. However, the present EVs industry meets many technical limitations, such as high initial price, long battery recharge time, limited charging facilities and driving range. Although it is desirable a fast development from the start of electric mobility, its impact on the existing power grid must be assessed beforehand to see if it is necessary prior an adjustment of power infrastructure or/and the introduction of new services in the power grid. In fact, the interconnection of EVs on the power grid for charging their batteries potentially introduces negative impacts on grid operation: uncontrolled charging can significantly increase average load in the existing power systems, with problems in terms of reliability and overloads. If uncontrolled EV charging is added to the system, this can have effects both at the distribution and at the generation level. Controlled or smart charging will allow a much greater number of cars in the cities, avoiding local overload and allowing a faster EVs penetration without requiring an imminent improvement of the electricity generating and grid capacity. Smart charging might also allow load balancing both at sub-station and at the grid level, particularly with charging at peak wind supply times. This kind of use of EV battery capacity for storing electric energy may ease the integration of large scale intermittent electricity sources such as renewable energy sources. The proposed PhD Dissertation is developed in the context just described, mainly focusing the attention on the impact that electric mobility will have on the power systems and the effectiveness of solutions aimed to increase the reliability and resilience in the smart grid. In particular, it is addressed a scenario analysis regarding the electric vehicles charging management and some innovative solutions to increase energy efficiency in electrified transport systems. The first chapter emphasizes on the key aspects related to the sustainable mobility in the smart cities of the future. It provides a brief overview on the transport sector energy consumption expected in the next years. In particular, the chapter shows the significant contribution that the electrification of urban transport may provide to the sustainable mobility, and the serious concerns related to its impact on existing power systems. Chapter 2 proposes a solution method for an optimal generation rescheduling and load-shedding (GRLS) problem in microgrids in order to determine a stable equilibrium state following unexpected outages of generation or sudden increase in demand. The chapter mainly focuses on the mathematical formulation of the GRLS problem and the proposed solution algorithm. Finally, simulations results carried out by using a real case study data are presented and discussed. In Chapter 3, a simple and effective methodology is proposed to analyze data acquired during the fulfillment of the COSMO research project, and to identify typical load pattern for the EVs charging. The chapter also presents a novel scheduling problem formulation, flattening the demand load profile and minimizing the EVs charging costs, according to the electricity prices during the day. Finally, some simulations results are discussed, showing the effectiveness of the proposed methodology. Chapter 4 introduces some innovative solutions for energy efficiency in urban railway systems focusing, in particular, on energy storage systems and eco-drive operations in metro networks. The mathematical formulation of these optimization problems and the proposed solution algorithms are illustrated and discussed. The obtained results are part of the activity carried out in the SFERE research project. Finally, Chapter 5 ends the Dissertation with some concluding remarks and further developments of the proposed research activity. [edited by author]
Una delle grandi tendenze nel corso del secolo scorso è stata la concentrazione della popolazione nelle città. Attualmente, le Pubbliche Amministrazioni e i Comuni si trovano ad affrontare un compito impegnativo per armonizzare uno sviluppo urbano sostenibile e offrire agli abitanti delle città le migliori condizioni di vita. Le smart cities sono ormai considerate una strategia urbana vincente in grado di aumentare la qualità della vita utilizzando la tecnologia, sia per il miglioramento della qualità ambientale che per fornire servizi migliori ai cittadini. A tale scopo, la mobilità risulta essere un elemento chiave per sostenere questo nuovo approccio nella crescita delle città. Infatti, i sistemi di trasporto urbano producono diversi effetti negativi sulla qualità della vita urbana, come ad esempio, inquinamento, traffico e congestione. Pertanto, la mobilità sostenibile è uno degli argomenti più interessanti per le smart cities, in quanto in grado produrre elevati benefici per la qualità della vita di quasi tutte le parti interessate degli agglomerati urbani. La sfida più audace e imminente per la mobilità nelle smart cities del futuro è l'introduzione dell'elettricità come vettore energetico al posto dei combustibili fossili, per quanto riguarda sia il trasporto collettivo che quello privato. I mezzi per il trasporto pubblico comprendono autobus elettrici, filobus, tram, treni passeggeri e trasporto rapido (metropolitane, etc.). Anche se i sistemi di trasporto su ferro sono più efficienti rispetto ad altri modi di trasporto, l’incremento dell'efficienza energetica è un tema importante per ridurre ulteriormente il loro contributo alle emissioni inquinanti e al consumo di energia. Le più promettenti soluzioni per migliorarne l'efficienza energetica consistono nell’implementazione di sistemi avanzati per il recupero dell’energia di frenata e tecnologie di controllo innovative. D’altro canto, l'elettrificazione del trasporto individuale su strada è emersa come una tendenza finalizzata a sostenere gli obiettivi di efficienza energetica e di riduzione delle emissioni di CO2. Secondo l'Agenzia Internazionale per l'Energia, al fine di limitare, entro il 2050, l'aumento della temperatura media globale a 2 °C - la soglia critica che gli scienziati suggeriscono di non superare per evitare pericolosi cambiamenti climatici -, il 21% delle riduzioni di biossido di carbonio deve provenire dal settore trasporti. I veicoli elettrici (EV) utilizzano un motore elettrico e l'energia accumulata nelle batterie per la propulsione, in modo da avere una maggiore efficienza e minori costi operativi rispetto ai veicoli convenzionali con motore a combustione interna. Oggi, esistono in commercio più di 20 modelli offerti da diverse case produttrici che coprono una ampia gamma di modelli che differiscono per dimensione, stile, prezzo e motorizzazione in modo da soddisfare il maggior numero di consumatori possibile. Il continuo sviluppo delle batterie al litio e delle tecnologie di ricarica rapida saranno i principali fattori abilitanti per la diffusione degli EV in un futuro molto prossimo. Tuttavia, l'attuale industria dei veicoli elettrici incontra molte limitazioni tecnico-economiche, come elevati costi, autonomia e tempi di ricarica della batteria, capillarità delle infrastrutture di ricarica. Sebbene sia auspicabile un rapido sviluppo della mobilità elettrica, il suo impatto sulla rete elettrica esistente deve essere investigato a fondo per verificare la necessità di potenziamenti delle infrastrutture e/o l'introduzione di nuovi servizi nella rete elettrica. Infatti, l'interconnessione dei veicoli elettrici con la rete di distribuzione dell’energia necessaria per la ricarica delle batterie può causare effetti negativi sul normale funzionamento del sistema elettrico: una ricarica degli EV non controllata può aumentare significativamente il carico medio negli impianti esistenti, introducendo problemi di affidabilità e sovraccarico. La ricarica intelligente o controllata degli EV consente, invece, di gestire un numero molto maggiore di autovetture elettriche nelle città, riducendo le possibilità di sovraccarico locale e di velocizzare la penetrazione della mobilità elettrica senza che rendere necessari imminenti potenziamenti dei sistemi di produzione di energia elettrica e incrementi della capacità di rete. La ricarica intelligente, inoltre, può anche influire sul bilanciamento del carico sia a livello della sottostazione elettrica che a livello di rete di distribuzione, in particolare quando si verificano molte sessioni di ricarica nelle ore di punta. Infatti, l’utilizzo della capacità della batteria degli EV per l’accumulo di energia elettrica può facilitare l'integrazione su larga scala delle fonti di energia non programmabili, come quelle rinnovabili. Il lavoro di tesi si sviluppa nel contesto di riferimento appena descritto, focalizzando l'attenzione soprattutto sull'impatto che la mobilità elettrica ha sui sistemi elettrici e sull'efficacia di nuove soluzioni finalizzate all’incremento dell'affidabilità nelle smart grids. In particolare, viene proposta un'analisi di scenario per quanto riguarda la gestione intelligente delle ricariche dei veicoli elettrici e alcune soluzioni innovative per aumentare l'efficienza energetica nei sistemi di trasporto elettrificati. Il primo capitolo sottolinea gli aspetti chiave relativi alla mobilità sostenibile nelle smart cities del futuro e fornisce una breve panoramica sul consumo energetico del settore trasporti previsto nel prossimo futuro. In particolare, vengono evidenziate da un lato il significativo contributo che l'elettrificazione dei trasporti urbani può fornire alla causa della mobilità sostenibile, e dall’altro, le gravi preoccupazioni legate all’impatto sui sistemi elettrici esistenti di un notevole incremento della domanda. Il Capitolo 2 propone un metodo per la soluzione del problema congiunto di scheduling dei generatori e load shedding (GRLS) all’interno di microgrids portando in conto l’incertezza sia sulla domanda che lato generazione. Il fine è determinare un nuovo stato di equilibrio stabile in seguito a guasti, riduzione della generazione da fonte rinnovabile o improvviso aumento della domanda. Il capitolo si concentra principalmente sulla formulazione matematica del problema GRLS e sull'algoritmo di soluzione proposto. Infine, sono presentati e commentati i risultati di simulazione basati su un caso studio reale. Nel Capitolo 3, è proposta una metodologia semplice ed efficace per identificare profili di carico tipico relativi alla ricarica di veicoli elettrici: in particolare, l’analisi condotta si basa sull’analisi dei dati acquisiti durante lo svolgimento del progetto di ricerca COSMO. Il capitolo, inoltre, introduce una formulazione matematica del problema dello scheduling delle ricariche dei veicoli elettrici, che garantisce un appiattimento del profilo di carico e riduce allo stesso tempo il costo della ricarica per gli utenti. Infine, sono commentati i risultati delle simulazioni eseguite dimostrando l'efficacia della metodologia proposta. Il Capitolo 4 introduce alcune soluzioni innovative per l'efficienza energetica nei sistemi di trasporto urbani: l’attenzione viene posta, in particolare, sui sistemi di accumulo dell’energia e sulla condotta di guida Eco-Drive in reti metropolitane. In dettaglio, nel capitolo, vengono introdotti e commentati la formulazione matematica dei problemi di ottimizzazione proposti e i rispettivi algoritmi di soluzione. I risultati ottenuti fanno parte delle attività svolte nell’ambito del progetto di ricerca SFERE. Infine, il Capitolo 5 conclude la tesi con alcune osservazioni finali e con i possibili sviluppi dell'attività di ricerca proposta. [a cura dell'autore]
XIV n.s.
Чорнобай, А. А., and О. О. Смотр. "ПЕРСПЕКТИВНІ СФЕРИ ДІЯЛЬНОСТІ: «Smart Cities» та «Smart Homes»." Thesis, Львівський державний університет безпеки життєдіяльності, 2019. http://hdl.handle.net/123456789/6226.
Full textBooks on the topic "SMART CITIES OF INDIA"
Sharma, Poonam, and Swati Rajput, eds. Sustainable Smart Cities in India. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47145-7.
Full textKumar, Deepak. Renewable Energy Scenarios in Future Indian Smart Cities. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8456-3.
Full textNational Seminar on Smart City vs Smart Village: a Path Towards Startup India-Opportunities, Issues, and Challenges (2017 Vārānasi, Uttar Pradesh, India). Perspectives on smart city vs smart village: A path towards startup India-opportunities, issues and challenges. Edited by Jaiswal Kripa Shanker editor, Ayush Kumar editor, Mahatma Gandhi Kashi Vidyapith. Faculty of Commerce & Management Studies, India University Grants Commission, Uttar Pradesh (India). Department of Higher Education, and Indian Association for Management Development. Annual Conference. New Delhi: New Delhi Publishers, 2017.
Find full textBarlow, Mike, and Cornelia Lévy-Bencheton. Smart Cities, Smart Future. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119516224.
Full textMinaei, Negin. Smart Cities. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003272199.
Full textNesmachnow, Sergio, and Luis Hernández Callejo, eds. Smart Cities. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96753-6.
Full textKumar, Krishna, Gaurav Saini, Duc Manh Nguyen, Narendra Kumar, and Rachna Shah. Smart Cities. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003287186.
Full textNesmachnow, Sergio, and Luis Hernández Callejo, eds. Smart Cities. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12804-3.
Full textSong, Houbing, Ravi Srinivasan, Tamim Sookoor, and Sabina Jeschke, eds. Smart Cities. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119226444.
Full textMahmood, Zaigham, ed. Smart Cities. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76669-0.
Full textBook chapters on the topic "SMART CITIES OF INDIA"
Tandon, Nidhi, Pratyusha Basu, Omkumar Krishnan, and R. V. Bhavani. "Smart Cities." In Emerging Work Trends in Urban India, 170–93. London: Routledge India, 2022. http://dx.doi.org/10.4324/9781003264194-8.
Full textBhatt, Yagyavalk, and Jitendra Roychoudhury. "Smart Cities from an Indian Perspective: Evolving Ambitions." In Smart Cities, 359–83. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35664-3_19.
Full textThangavel, Chandrakumar, and Parthasarathy Sudhaman. "A Business Model for Digital Services for Smart Cities in India." In Smart Cities, 263–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76669-0_11.
Full textRekha, Y., S. Suriya, and Carolin Arul. "Flood Management Policies in Megacities: A Case Study of Southern India." In Smart Cities, 197–208. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003287186-8.
Full textSaitluanga, Benjamin L. "Smart cities in Northeast India." In Understanding Urbanisation in Northeast India, 65–77. 1. | New York : Taylor & Francis Group, 2020.: Routledge India, 2020. http://dx.doi.org/10.4324/9781003032625-6.
Full textPrabhakaran, Priyanka, and S. Anandakumar. "Maintenance Methodologies Embraced by O&M Department for Track Geometry at Kochi Metro Rail Limited, India: A Case Study." In Smart Cities, 209–22. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003287186-9.
Full textSingh, Binti, and Manoj Parmar. "Urbanism, Urban Design, and Planned Historic Cities." In Smart City in India, 54–68. Abingdon, Oxon ; New York, NY : Routledge, 2020.: Routledge India, 2019. http://dx.doi.org/10.4324/9780429353604-4.
Full textVerma, Punita, Sakshi Patwal, Kavita Kumari, Vernika Mehta, Ritu Vyaghrambare, and Tulika Sharma. "Alternatives for Energy Stressed Cities." In Sustainable Smart Cities in India, 259–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47145-7_17.
Full textSaxena, Devanshi, Shaweta Khanna, Sangeeta Mangesh, Manisha Chaudhry, and Kayhan Zrar Ghafoor. "Social and Technical Challenges in Eco-Sustainable Smart City in India—An Analysis." In Sustainable Smart Cities, 87–104. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08815-5_6.
Full textPathak, Chitta Ranjan. "Challenges of Smart Cities in India." In Contemporary South Asian Studies, 261–69. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23796-7_16.
Full textConference papers on the topic "SMART CITIES OF INDIA"
Jaiswal, Tarun, Manju Pandey, and Priyanka Tripathi. "IoT Empowered Smart Cities in India." In 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). IEEE, 2019. http://dx.doi.org/10.1109/i-smac47947.2019.9032674.
Full textJabbar, M. A., and Rajanikanth Aluvalu. "Smart cities in India: Are we smart enough?" In 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon). IEEE, 2017. http://dx.doi.org/10.1109/smarttechcon.2017.8358525.
Full textGupta, Priyanka, and Rajan Gupta. "Smart cities: Progress and Problems in India." In 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). IEEE, 2018. http://dx.doi.org/10.1109/icacccn.2018.8748602.
Full textAggarwal, Vaishali. "Smart Cities in India: branded or brain-dead?" In 55th ISOCARP World Planning Congress, Beyond Metropolis, Jakarta-Bogor, Indonesia. ISOCARP, 2019. http://dx.doi.org/10.47472/rian9466.
Full textJaiswal, Tarun, Manju Pandey, and Priyanka Tripathi. "Review On IoT Enabled Smart Cities in India." In 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T). IEEE, 2020. http://dx.doi.org/10.1109/icpc2t48082.2020.9071519.
Full textMehta, Animesh, Gayatri Doctor, Anita Kane, and Disha Sawant. "Study for achieving carbon-neutral campus in India." In 2022 IEEE International Smart Cities Conference (ISC2). IEEE, 2022. http://dx.doi.org/10.1109/isc255366.2022.9922226.
Full textPramanick, Shabari, Nadim Ahmad, and Daman Kumar Jain. "Real Time Electricity Market (RTM) in India." In 2021 5th International Conference on Smart Grid and Smart Cities (ICSGSC). IEEE, 2021. http://dx.doi.org/10.1109/icsgsc52434.2021.9490431.
Full textMoirangthem, Puremba, Komal Saxena, Abdul Basit, and Ajay Rana. "Explorative State-Wise Study of Smart Cities in India." In 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE, 2020. http://dx.doi.org/10.1109/icrito48877.2020.9197789.
Full textMishra, Naman, Priyank Singhal, and Shakti Kundu. "Application of IoT Products in Smart Cities of India." In 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). IEEE, 2020. http://dx.doi.org/10.1109/smart50582.2020.9337150.
Full textAhmed, Azhar, and Shalbbya Ali. "Smart Cities in India: Practices, Policies, Current Status and Gaps." In Proceedings of the 2nd International Conference on ICT for Digital, Smart, and Sustainable Development, ICIDSSD 2020, 27-28 February 2020, Jamia Hamdard, New Delhi, India. EAI, 2021. http://dx.doi.org/10.4108/eai.27-2-2020.2303203.
Full textReports on the topic "SMART CITIES OF INDIA"
Gupte, Jaideep, Sarath MG Babu, Debjani Ghosh, Eric Kasper, and Priyanka Mehra. Smart Cities and COVID-19: Implications for Data Ecosystems from Lessons Learned in India. Institute of Development Studies (IDS), March 2021. http://dx.doi.org/10.19088/sshap.2021.034.
Full textGupte, Jaideep, Sarath MG Babu, Debjani Ghosh, Eric Kasper, Priyanka Mehra, and Asif Raza. Smart Cities and COVID-19: Implications for Data Ecosystems from Lessons Learned in India. Institute of Development Studies, March 2022. http://dx.doi.org/10.19088/sshap.2022.004.
Full textGupte, Jaideep, Sarath MG Babu, Debjani Ghosh, Eric Kasper, Priyanka Mehra, and Asif Raza. Smart Cities and COVID-19: Implications for Data Ecosystems from Lessons Learned in India. SSHAP, March 2021. http://dx.doi.org/10.19088/sshap.2021.012.
Full textClark, Louise, and Jaideep Gupte. Community Embedded Decision Support Systems: Learning Report from the Smart Data for Inclusive Cities Bhopal Pilot. Institute of Development Studies (IDS), February 2022. http://dx.doi.org/10.19088/ids.2022.020.
Full textCarrasco, Carlos, Pedro Franca, Joan Enric Ricart, Jordi Salvador, and Albert Tapia. Financing Smart Solutions in Cities: Smart Financing. Servicio de Publicaciones de la Universidad de Navarra, November 2019. http://dx.doi.org/10.15581/018.op-325.
Full textFACHINELLI, ANA CRISTINA, TAN YIGITCANLAR, TATIANA TUCUNDUVA PHILIPPI CORTESE, JAMILE SABATINI MARQUES, DEBORA SOTTO, and BIANCA LIBARDI. SMART CITIES DO BRASIL: Performance of Brazilian Capital Cities. UCS - Universidade de Caxias do Sul, May 2022. http://dx.doi.org/10.18226/9786500438604.
Full textSperling, Joshua, Stanley E. Young, Venu Garikapati, Andrew L. Duvall, and John Beck. Mobility Data and Models Informing Smart Cities. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1571756.
Full textAmar Flórez, Darío. International Case Studies of Smart Cities: Medellin, Colombia. Inter-American Development Bank, June 2016. http://dx.doi.org/10.18235/0000406.
Full textGutiérrez Bayo, Jaime. International Case Studies of Smart Cities: Santander, Spain. Inter-American Development Bank, June 2016. http://dx.doi.org/10.18235/0000407.
Full textShaheen, Susan, Adam Cohen, Mark Dowd, and Richard Davis. A Framework for Integrating Transportation Into Smart Cities. Mineta Transportation Institute, September 2019. http://dx.doi.org/10.31979/mti.2019.1705.
Full text