Academic literature on the topic 'Smart charging system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Smart charging system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Smart charging system"
Kim, MyeongHyun, KiSung Park, SungJin Yu, JoonYoung Lee, YoungHo Park, Sang-Woo Lee, and BoHeung Chung. "A Secure Charging System for Electric Vehicles Based on Blockchain." Sensors 19, no. 13 (July 9, 2019): 3028. http://dx.doi.org/10.3390/s19133028.
Full textMedved, Dusan, Lubomir Bena, Maksym Oliinyk, Jaroslav Dzmura, Damian Mazur, and David Martinko. "Assessing the Effects of Smart Parking Infrastructure on the Electrical Power System." Energies 16, no. 14 (July 13, 2023): 5343. http://dx.doi.org/10.3390/en16145343.
Full textVoss, Mike F., Steven P. Haveman, and Gerrit Maarten Bonnema. "In-Company Smart Charging: Development of a Simulation Model to Facilitate a Smart EV Charging System." Energies 14, no. 20 (October 15, 2021): 6723. http://dx.doi.org/10.3390/en14206723.
Full textChang, Chin-Wei, Patrick Riehl, and Jenshan Lin. "Alignment-Free Wireless Charging of Smart Garments with Embroidered Coils." Sensors 21, no. 21 (November 5, 2021): 7372. http://dx.doi.org/10.3390/s21217372.
Full textHuber, Julian, Elisabeth Schaule, Dominik Jung, and Christof Weinhardt. "Quo Vadis Smart Charging? A Literature Review and Expert Survey on Technical Potentials and User Acceptance of Smart Charging Systems." World Electric Vehicle Journal 10, no. 4 (November 28, 2019): 85. http://dx.doi.org/10.3390/wevj10040085.
Full textSaheb, Ahmed M., and Bashar Sakeen Farhan. "Design and Measurement of a Modern Charging System Based on IoT." Instrumentation Mesure Métrologie 21, no. 1 (February 28, 2022): 27–34. http://dx.doi.org/10.18280/i2m.210105.
Full textGong, Lingbing, Chunyan Xiao, Bin Cao, and Yuliang Zhou. "Adaptive Smart Control Method for Electric Vehicle Wireless Charging System." Energies 11, no. 10 (October 9, 2018): 2685. http://dx.doi.org/10.3390/en11102685.
Full textChimakurthi, Venkata Naga Satya Surendra. "An Optimal Cloud Based Electric Vehicle Charging System." Asia Pacific Journal of Energy and Environment 8, no. 2 (July 30, 2021): 39–48. http://dx.doi.org/10.18034/apjee.v8i2.604.
Full textMokhtar, Mohamed, Mostafa F. Shaaban, Hatem Zeineldin, and Ehab F. El-Saadany. "A Customer-Centered Smart Charging Strategy Considering Virtual Charging System." IEEE Access 9 (2021): 117993–8004. http://dx.doi.org/10.1109/access.2021.3107348.
Full textD. Suja, Darling. "Optimizing battery charging efficiency and longevity through smart charging techniques in microcontroller-based systems." i-manager’s Journal on Electronics Engineering 13, no. 1 (2022): 13. http://dx.doi.org/10.26634/jele.13.1.19347.
Full textDissertations / Theses on the topic "Smart charging system"
Langschwager, Matthew T. "Cyber Physical System Modeling of Smart Charging Process." Thesis, University of Louisiana at Lafayette, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13420593.
Full textThis research presents cyber-physical systems (CPS) modeling of the smart charging process to both identify and analyze potential vulnerabilities that may exist during the interaction and integration between an Electric Vehicle (EV) and the Electric Vehicle Service Equipment (EVSE). As EVSEs are increasingly being integrated into building energy management systems and interfaced with electric vehicles, safe and secure integration of these systems is of paramount importance for the safety and security of the nation's critical infrastructure and people. Both the charging station and electric vehicles have electro-mechanical components built from 3rd party providers, and there is no mechanism to check for safe and secure integration of EVs and EVSEs. The overall goal of the proposed research is to apply formal methods to verify and validate the cyber-physical interactions between the EV and EVSE to gain insight into vulnerable system states and their impacts. To that end, each component (EV and EVSE) was considered its own cyber-physical system and then separately broken down into individual states of operation. The states of each system were compared to determine how the EV and EVSE interacted on a fundamental level, with one system's state becoming the catalyst for change within the other system. These individual models were completed and subsequently integrated using the open-source software Ptolemy II. Upon successfully completing the interactions, the model was scrutinized using linear temporal logic (LTL) operators to test its veracity and projectability. The initial EV/EVSE model was then altered to emphasize previously determined vulnerabilities within the integrated system in order to verify their existence and potential for harming the system. Two such vulnerabilities were demonstrated in this research to confirm integrity of the model, which will be a valuable asset going forward to ensure the future safety of both operators and consumers regarding EV and EVSE interaction.
Färm, Emil. "Smart charging of an electric bus fleet." Thesis, Uppsala universitet, Elektricitetslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444348.
Full textWu, Yu. "System operation and energy management of EV charging stations in smart grid integration applications." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCA030.
Full textElectric vehicles (EV) have the advantages of zero direct emissions and high electrical energy conversion efficiency. However, EV charging facilities remain largely scarce due to the high investment and operation costs. In order to improve the penetration rate of EV charging facilities, the system control and economic operation optimization of EV charging stations (EVCS) are studied in this thesis.Firstly, as the control fundamentals of upper-level energy management system (EMS), the primary control techniques are studied for the real-time operation of an EVCS. In order to ensure the stability, dynamic capability of the EV charging micro grid system, this work investigated the coordinated control techniques of an EVCS with a local PV system and ESS.Secondly, in order to reduce the operation costs of the EVCS, an approximate dynamic programming (ADP) based EMS is proposed for the EVCS equipped with multiple types of chargers (EVCS-MTC). Multiple EVs can acquire the charging service through a common charger in the EVCS-MTC. In the proposed EMS, the ADP and the evolution algorithm (EA) are combined to determine the optimal charging start time for each EV.Lastly, in order to integrate the renewable energy into EVCS, a finite-horizon Markov Decision Process (MDP) formulation is proposed for the optimal operation of a PV assisted EVCS in a university campus, employing the vehicle-to-grid (V2G) technology to provide ancillary services and taking dynamic electricity price and uncertain behaviors of EV owners into considerations
Alghamdi, Turki. "Interactions of Connected Electric Vehicles with Modern Power Grids in Smart Cities." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42513.
Full textSchmalfuß, Franziska. "Acceptance of Electric Mobility System Components and the Role of Real-Life Experience." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-231870.
Full textSahilaushafnur, Rosyadi. "Study and Analysis of Asymmetrical Charging as A New Electrical Vehicle (EV) Smart Charging Method." Thesis, KTH, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264103.
Full textFör närvarande har spridningen av elektrifierade fordon (EV) ökat snabbt. Att ta hänsyn till EVanvändarnas synvinkel, laddningstiden och platsen att ladda sin bil är väsentliga faktorer. Ökning av EVpenetration ger också inverkan på det elektriska nätverket, såsom överbelastning och problem med kraftkvalitet. IEC 61851 och ISO 15118 är de två primära standarderna för att tillhandahålla krav på elfordonsförsörjningsutrustning (EVSE) för att säkerställa att laddningsprocessen kan genomföras på ett adekvat sätt utan att störa det elektriska systemet i allmänhet. Efter standarder och med tanke på användarens preferens på laddningsplats bör en ny laddningsmetod som kan dra högre energi än befintlig teknik utvecklas. Ett tre-fas nätanslutet hemsystem modelleras i denna studie för att se effekterna av obalanserad hushållsbelastning på en trefasladdning. Lastmodelleringen täcker variationen i lasten på sommaren, våren / hösten och vintern. Specifika användningsområden för elektricitet distribueras i ett trefas hemsystem som består av fas 1: kallapparat, matlagning, standbylagare och andra laster; fas 2: värmepumpar, audiovisuella (TV- och ljudsystem) och datorstorlek; och fas 3: Blixt och tvätt. Två laddningsmetoder definieras i denna modell, som är symmetriska (befintlig standard) och asymmetriska (föreslagna). I symmetrisk teknik drar ombordladdaren (OBC) lika fasström oberoende av hembelastningar anslutna i varje fas i trefassystemet. Trefassystemet kommer inte att balansera helt i denna metod. Under tiden, i asymmetrisk metod, kommer OBC att dra återstoden av strömmen i varje fas enligt dess realtids tillgänglighet genom att balansera alla tre faserna i hemmet. Den asymmetriska metoden förväntas uppnå snabbare laddningstid än symmetrisk laddning på grund av högre energitillgänglighet. Det finns tre huvudfall definierade i denna studie: teoretiskt fall (EV debiteras från timme 00:00), 0-100% SOC-fall och användarfallet (avståndsinriktningen avgör bilfrågan). Resultatet av simulering avslöjar att asymmetrisk laddningsmetod kan ge högre tillgänglig energi än asymmetrisk teknik. Säkringsgraden påverkar mycket på detta resultat. Om den högre säkringsgraden som tillämpas i samma belastningsprofil kommer energiförbrukningen mellan symmetrisk och asymmetrisk att minska. Men fortfarande har den symmetriska metoden aldrig bättre energitillgänglighet än den asymmetriska metoden, varken med 16 A-säkring och 20 A-säkring. Detta resultat av energitillgänglighet blir en indikation för det teoretiska fallet, i vilket asymmetrisk metod kan ge fler laddningscykler än den symmetriska metoden, särskilt för 16 A-säkringssystem. För alla fall som har simulerats visar den asymmetriska metoden fördelar när det gäller minskning av tid och kostnadsminskning. På ett år är besparingen av timmar med laddningstid som kan uppnås genom en ny laddningsmetod i ett säkringssystem på 16 A så hög som 8 timmar och 4 timmar för 0-100% SOC-fall respektive partiell laddning av användarfall (mindre än 50% ungefär). I en kostnadsjämförelse på tre år är de pengar som kan sparas med den asymmetriska metoden i ett säkringssystem på 16 A så höga som 35 Euro för 0-100% fall och 23 405 Euro i användarfallet. Efter erhållna simuleringsresultat visar den asymmetriska metoden en lovande prestanda för den nya laddningstekniken när det gäller varaktighet och sparande. Det finns ett behov att driva en ny standard för att realisera genomförandet av denna avgiftsaktivitet. Ett kommunikationsschema mellan energimätare, EVSE och OBC bör inrättas för att utbyta information om aktuell tillgänglighet i realtid. Nya ACinformationssekvenser kan anpassas från DC-laddningskommunikationsstandarden, IEC 61851-24.
Huber, Julian [Verfasser], and C. [Akademischer Betreuer] Weinhardt. "Engineering User-Centric Smart Charging Systems / Julian Christoph Huber ; Betreuer: C. Weinhardt." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1216949328/34.
Full textHuber, Julian Christoph [Verfasser], and C. [Akademischer Betreuer] Weinhardt. "Engineering User-Centric Smart Charging Systems / Julian Christoph Huber ; Betreuer: C. Weinhardt." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1216949328/34.
Full textBonora, Giulia. "Analysis of the impact of stationary energy storage systems in trolleybus grids using Simulink-based modelling." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25832/.
Full textFachrizal, Reza. "Synergy between Residential Electric Vehicle Charging and Photovoltaic Power Generation through Smart Charging Schemes : Models for Self-Consumption and Hosting Capacity Assessments." Licentiate thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-419665.
Full textBooks on the topic "Smart charging system"
Khajepour, Amir, Hong Wang, Yanjun Huang, Soheil Mohagheghi Fard, and Milad Khazraee. Smart Charging and Anti-Idling Systems. Morgan & Claypool Publishers, 2018.
Find full textKhajepour, Amir, Hong Wang, Yanjun Huang, Soheil Mohagheghi Fard, and Milad Khazraee. Smart Charging and Anti-Idling Systems. Springer International Publishing AG, 2018.
Find full textHuang, Yanjun, Soheil Mohagheghi Fard, and Milad Khazraee. Smart Charging and Anti-Idling Systems. Morgan & Claypool Publishers, 2018.
Find full textKhajepour, Amir, Hong Wang, Yanjun Huang, Soheil Mohagheghi Fard, and Milad Khazraee. Smart Charging and Anti-Idling Systems. Morgan & Claypool Publishers, 2018.
Find full textBook chapters on the topic "Smart charging system"
Krishna, T. K., D. Susitra, and S. Dinesh Kumar. "DC Smart Grid System for EV Charging Station." In Advances in Intelligent Systems and Computing, 307–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0199-9_27.
Full textPattnaik, Saswati, Mano Ranjan Kumar, and Sunil Kumar Mishra. "Supercapacitor-Based Automated Fast Charging System for Electric Vehicles." In Smart Innovation, Systems and Technologies, 377–93. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1777-5_24.
Full textDinesh Kumar, N., and F. B. Shiddanagouda. "IoT-Based Vehicle Charging Eco System for Smart Cities." In Lecture Notes in Electrical Engineering, 611–20. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0236-1_47.
Full textPanda, Bhagyashree, Faeze Momeni Rad, and Mohammad Sadra Rajabi. "Wireless Charging of Electric Vehicles Through Pavements: System, Design, and Technology." In Handbook of Smart Energy Systems, 1–26. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-72322-4_212-1.
Full textKadam, Nikhil, and Archana Thosar. "Design and Simulation of a Wireless Charging System for Electric Vehicle." In Smart Sensors Measurement and Instrumentation, 19–35. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6913-3_2.
Full textConti, Mauro, Denis Donadel, Radha Poovendran, and Federico Turrin. "EVExchange: A Relay Attack on Electric Vehicle Charging System." In Computer Security – ESORICS 2022, 488–508. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17140-6_24.
Full textMohamed, Ahmed A. S., and Ahmed A. Shaier. "Shielding Techniques of IPT System for Electric Vehicles' Stationary Charging." In Electric Vehicle Integration in a Smart Microgrid Environment, 279–93. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367423926-12.
Full textLi, Xuling, Xuefeng He, Chen Dong, Xuan Zhang, and Lin Sang. "Electric Vehicle DC Charger Charging Protocol Conformance Testing System." In Proceedings of PURPLE MOUNTAIN FORUM 2019-International Forum on Smart Grid Protection and Control, 881–90. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9783-7_72.
Full textAdhithya, M. Dev, M. Arulmozhi, M. Vishwa, and S. Ajai Kumar. "Smart Economic Operation of EV Charging Station and Battery Monitoring System." In Advances in Intelligent Systems and Computing, 739–52. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3608-3_51.
Full textDe Yao, Lin, Huang Xue-Hong, and Trong-The Nguyen. "Design and Implement Circuit of Wireless Charging of Parking Management System." In Advances in Smart Vehicular Technology, Transportation, Communication and Applications, 37–45. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1209-1_4.
Full textConference papers on the topic "Smart charging system"
Ferreira, Joao C., Vitor Monteiro, Joao L. Afonso, and Alberto Silva. "Smart electric vehicle charging system." In 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2011. http://dx.doi.org/10.1109/ivs.2011.5940579.
Full textOmbach, G., D. Kurschner, and S. Mathar. "Universal base coil solution for interoperable system for stationary wireless EV charging." In 2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART). IEEE, 2015. http://dx.doi.org/10.1109/smart.2015.7399238.
Full textCao, Zhiyuan, Chi-Cheng Chu, and Rajit Gadh. "An autonomous electric vehicle based charging system: Matching and charging strategy." In 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2018. http://dx.doi.org/10.1109/isgt.2018.8403365.
Full text"Communication Reduced Interaction Protocol between Customer, Charging Station, and Charging Station Management System." In 3rd International Conference on Smart Grids and Green IT Systems. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0004971801180125.
Full textYoung-Min Wi, Jong-Uk Lee, and Sung-Kwan Joo. "Smart electric vehicle charging for smart home/building with a photovoltaic system." In 2013 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2013. http://dx.doi.org/10.1109/icce.2013.6487014.
Full textRutgers, A. "Comparison of electric vehicle fleet smart charging methods." In 5th E-Mobility Power System Integration Symposium (EMOB 2021). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2021.2507.
Full textWey, Chin-Long, and Ping-Chang Jui. "A unitized charging and discharging smart battery management system." In 2013 International Conference on Connected Vehicles and Expo (ICCVE). IEEE, 2013. http://dx.doi.org/10.1109/iccve.2013.6799924.
Full textLi Hui-ling, Bai Xiao-min, and Tan Wen. "Impacts of plug-in hybrid electric vehicles charging on distribution grid and smart charging." In 2012 IEEE International Conference on Power System Technology (POWERCON 2012). IEEE, 2012. http://dx.doi.org/10.1109/powercon.2012.6401265.
Full textTayarani, Hanif, Sina Baghali, Hamidreza Jahangir, Masoud Aliakbar Golkar, and Alireza Fereidunian. "Travel behavior and System Objectives Uncertainties In Electric Vehicle Optimal Charging." In 2018 Smart Grid Conference (SGC). IEEE, 2018. http://dx.doi.org/10.1109/sgc.2018.8777835.
Full textShidujaman, Mohammad, Hooman Samani, Mohammad Ali Raayatpanah, Haipeng Mi, and Chinthaka Premachandra. "Towards Deploying the Wireless Charging Robots in Smart Environments." In 2018 International Conference on System Science and Engineering (ICSSE). IEEE, 2018. http://dx.doi.org/10.1109/icsse.2018.8520063.
Full text