Academic literature on the topic 'Smart charging system'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Smart charging system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Smart charging system"

1

Kim, MyeongHyun, KiSung Park, SungJin Yu, JoonYoung Lee, YoungHo Park, Sang-Woo Lee, and BoHeung Chung. "A Secure Charging System for Electric Vehicles Based on Blockchain." Sensors 19, no. 13 (July 9, 2019): 3028. http://dx.doi.org/10.3390/s19133028.

Full text
Abstract:
Smart grids incorporating internet-of-things are emerging solutions to provide a reliable, sustainable and efficient electricity supply, and electric vehicle drivers can access efficient charging services in the smart grid. However, traditional electric vehicle charging systems are vulnerable to distributed denial of service and privileged insider attacks when the central charging server is attacked. The blockchain-based charging systems have been proposed to resolve these problems. In 2018, Huang et al. proposed the electric vehicle charging system using lightning network and smart contract. However, their system has an inefficient charging mechanism and does not guarantee security of key. We propose a secure charging system for electric vehicles based on blockchain to resolve these security flaws. Our charging system ensures the security of key, secure mutual authentication, anonymity, and perfect forward secrecy, and also provides efficient charging. We demonstrate that our proposed system provides secure mutual authentication using Burrows–Abadi–Needham logic and prevents replay and man-in-the-middle attacks using automated validation of internet security protocols and applications simulation tool. Furthermore, we compare computation and communication costs with previous schemes. Therefore, the proposed charging system efficiently applies to practical charging systems for electric vehicles.
APA, Harvard, Vancouver, ISO, and other styles
2

Medved, Dusan, Lubomir Bena, Maksym Oliinyk, Jaroslav Dzmura, Damian Mazur, and David Martinko. "Assessing the Effects of Smart Parking Infrastructure on the Electrical Power System." Energies 16, no. 14 (July 13, 2023): 5343. http://dx.doi.org/10.3390/en16145343.

Full text
Abstract:
The forthcoming surge in electric vehicle (EV) adoption demands the comprehensive advancement of associated charging infrastructure. In this study, an exploration of EV charging’s impact on the power distribution system is conducted via the simulation of a parking lot equipped with six distinct types of EVs, each showcasing unique charging curves, charging power, and battery capacities. A charging profile is synthesized and compared with laboratory-obtained data to ascertain the implications on the grid. To further understand the effects of smart parking on the power distribution system, a mathematical algorithm was created and applied to a segment of an urban electrical grid that includes 70 private residences. Basic electrical parameters were computed using the node voltage method. Four scenarios were simulated: (1) the existing distribution system, (2) the current system plus smart parking, (3) the current system plus 50% of houses equipped with 3.5 kW photovoltaic installations, and (4) the current system plus photovoltaics and smart parking. This paper examines the core distribution system parameters, namely voltage and current, across these four scenarios, and the simulation results are extensively detailed herein.
APA, Harvard, Vancouver, ISO, and other styles
3

Voss, Mike F., Steven P. Haveman, and Gerrit Maarten Bonnema. "In-Company Smart Charging: Development of a Simulation Model to Facilitate a Smart EV Charging System." Energies 14, no. 20 (October 15, 2021): 6723. http://dx.doi.org/10.3390/en14206723.

Full text
Abstract:
Current electric vehicle (EV) charging systems have limited smart functionality, and most research focuses on load-balancing the national or regional grid. In this article, we focus on supporting the early design of a smart charging system that can effectively and efficiently charge a company’s EV fleet, maximizing the use of self-generated Photo-Voltaic energy. The support takes place in the form of the Vehicle Charging Simulation (VeCS) model. System performance is determined by operational costs, CO2 emissions and employee satisfaction. Two impactful smart charging functions concern adaptive charging speeds and charging point management. Simulation algorithms for these functions are developed. The VeCS model is developed to simulate implementation of a smart charging system incorporating both charging infrastructure and local Photo-Voltaics input, using a company’s travel and energy data, prior to having the EVs in place. The model takes into account travel behaviour, energy input and energy consumption on a daily basis. The model shows the number of charged vehicles, whether incomplete charges occur, and energy flow during the day. The model also facilitates simulation of an entire year to determine overall cost and emission benefits. It also estimates charging costs and CO2 emissions that can be compared to the non-EV situation. With the VeCS model, the impact of various system design and implementation choices can be explored before EVs are used. Two system designs are proposed for the case company; a short-term version with current technology and a future version with various smart functionalities. Overall, the model can contribute to substantiated advice for a company regarding implementation of charging infrastructure.
APA, Harvard, Vancouver, ISO, and other styles
4

Chang, Chin-Wei, Patrick Riehl, and Jenshan Lin. "Alignment-Free Wireless Charging of Smart Garments with Embroidered Coils." Sensors 21, no. 21 (November 5, 2021): 7372. http://dx.doi.org/10.3390/s21217372.

Full text
Abstract:
Wireless power transfer (WPT) technologies have been adopted by many products. The capability of charging multiple devices and the design flexibility of charging coils make WPT a good solution for charging smart garments. The use of an embroidered receiver (RX) coil makes the smart garment more breathable and comfortable than using a flexible printed circuit board (FPCB). In order to charge smart garments as part of normal daily routines, two types of wireless-charging systems operating at 400 kHz have been designed. The one-to-one hanger system is desired to have a constant charging current despite misalignment so that users do not need to pay much attention when they hang the garment. For the one-to-multiple-drawer system, the power delivery ability must not change with multiple garments. Additionally, the system should be able to charge folded garments in most of the folding scenarios. This paper analyses the two WPT systems for charging smart garments and provides design approaches to meet the abovementioned goals. The wireless-charging hanger is able to charge a smart garment over a coupling variance kmaxkmin=2 with only 21% charging current variation. The wireless-charging drawer is able to charge a smart garment with at least 20 mA under most folding scenarios and three garments with stable power delivery ability.
APA, Harvard, Vancouver, ISO, and other styles
5

Huber, Julian, Elisabeth Schaule, Dominik Jung, and Christof Weinhardt. "Quo Vadis Smart Charging? A Literature Review and Expert Survey on Technical Potentials and User Acceptance of Smart Charging Systems." World Electric Vehicle Journal 10, no. 4 (November 28, 2019): 85. http://dx.doi.org/10.3390/wevj10040085.

Full text
Abstract:
Uncontrolled charging of plug-in Battery Electric Vehicles (BEV) represents a challenge for the energy system. As a solution, recent studies propose smart charging to avoid grid congestion and to integrate renewable energy. While financial benefits for smart charging schemes are currently quite low, there are other objectives for smart charging. However, it is unclear for which objectives smart charging can be used most effectively and which arguments are most likely to convince end users of BEVs to use smart charging schemes. To fill this gap, we conducted a literature review of the premises and the objectives of smart charging and how they fit the end-user’s motivation to use such smart charging systems. To evaluate the results, we present findings of 16 domain experts who evaluated various statements on smart charging according to their technical correctness and their persuasiveness towards end users. The results show that experts consider those smart charging objectives as most persuasive towards end users which they consider technically correct. Moreover, cost savings and integration of renewable energies are rated highest on both scales. On the contrary, experts do not expect a positive impact of smart charging systems on battery life and rate it as not very convincing.
APA, Harvard, Vancouver, ISO, and other styles
6

Saheb, Ahmed M., and Bashar Sakeen Farhan. "Design and Measurement of a Modern Charging System Based on IoT." Instrumentation Mesure Métrologie 21, no. 1 (February 28, 2022): 27–34. http://dx.doi.org/10.18280/i2m.210105.

Full text
Abstract:
This paper presents a modern charging system to improve the reliability of locating the closest and available free charging slot to charge low-power smart-devices. Also, the presented system is based on the cloud and the used network is based on the internet of things technology. The basic idea of the charging system is to provide a public charging place for all individuals who wish to charge their smart devices when it is close to running out. First and foremost, the charging system was designed and implemented to have multiple power sources in the event that one of the system's power sources failed. Secondly, the charging system provides a special smart mobile application that has also been designed and implemented, which allows the user to know the locations of the charging systems on a map and choose the nearest available system near the user. After selecting the nearest charging system, the user will be able to know whether or not there is an available charging port and the number of associated devices in each system. The study successfully built this system in practical life.
APA, Harvard, Vancouver, ISO, and other styles
7

Gong, Lingbing, Chunyan Xiao, Bin Cao, and Yuliang Zhou. "Adaptive Smart Control Method for Electric Vehicle Wireless Charging System." Energies 11, no. 10 (October 9, 2018): 2685. http://dx.doi.org/10.3390/en11102685.

Full text
Abstract:
In order to shorten the wireless charging time of electric vehicles (EVs) and achieve stable charging, an adaptive smart control method for EV wireless charging is proposed in the paper. The method dynamically tracks the rechargeable battery state during the whole charging process, realizes multi-stage charging of constant current (CC) or constant voltage (CV) by switching two kinds of compensation networks of bilateral L3C and L3C-C, and regulates the charging voltage and current to make it as close as possible to the battery charging characteristic curve. This method can be implemented because the voltage source connected to the coupler and the compensation networks of bilateral L3C and L3C-C have the CC and CV source characteristics, respectively. On the basis of the established adaptive smart control system of EV wireless charging, the experiments of wireless data transmission and adaptive smart charging were conducted. The results showed that the designed control system had a response time of less than 200 ms and strong anti-interference ability and it shortened the charging time by about 16% compared with the time using traditional charging methods, thereby achieving a fast, stable, safe, and complete wireless charging process.
APA, Harvard, Vancouver, ISO, and other styles
8

Chimakurthi, Venkata Naga Satya Surendra. "An Optimal Cloud Based Electric Vehicle Charging System." Asia Pacific Journal of Energy and Environment 8, no. 2 (July 30, 2021): 39–48. http://dx.doi.org/10.18034/apjee.v8i2.604.

Full text
Abstract:
With the evolution of the internet-of-things and the emergence of cloud computing, the charging dynamics of vehicles have changed. This work discusses cloud-based monitoring and management used in charging electric vehicles and their impact on the smart charging system. Charging management plays a key role in assessing the charging infrastructure because of the automakers and charging service providers. As the market evolves, this system looks at the present public and private sectors that provide charging stations and contrasts them with modern cloud-based charging in electric vehicles. The cloud module developed contains layers, with the top layer of the robust calculating ability, which is globally optimized using machine learning technology. The bottom layer counters the real-time issues with the controller. The system also analyzes the current demands in the market and forms strategies to maximize profits through smart charging systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Mokhtar, Mohamed, Mostafa F. Shaaban, Hatem Zeineldin, and Ehab F. El-Saadany. "A Customer-Centered Smart Charging Strategy Considering Virtual Charging System." IEEE Access 9 (2021): 117993–8004. http://dx.doi.org/10.1109/access.2021.3107348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

D. Suja, Darling. "Optimizing battery charging efficiency and longevity through smart charging techniques in microcontroller-based systems." i-manager’s Journal on Electronics Engineering 13, no. 1 (2022): 13. http://dx.doi.org/10.26634/jele.13.1.19347.

Full text
Abstract:
This paper explores the topic of optimizing battery charging efficiency and longevity through smart charging techniques in microcontroller-based systems. With the increasing demand for portable and wireless devices, efficient battery charging and longer battery life have become essential. The use of microcontroller-based systems allows for more precise and effective control of battery charging, resulting in improved efficiency and longevity. The current research is on intelligent battery charging systems and battery management systems and discusses various smart charging techniques that can be employed in microcontroller-based systems, including fuzzy logic control, model predictive control, and hybrid algorithms. The paper also highlights the importance of battery management and the need for a comprehensive battery management system to optimize charging efficiency and battery longevity. Finally, the paper presents several case studies and experimental results to demonstrate the effectiveness of these smart charging techniques in improving battery charging efficiency and longevity in microcontroller-based systems.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Smart charging system"

1

Langschwager, Matthew T. "Cyber Physical System Modeling of Smart Charging Process." Thesis, University of Louisiana at Lafayette, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13420593.

Full text
Abstract:

This research presents cyber-physical systems (CPS) modeling of the smart charging process to both identify and analyze potential vulnerabilities that may exist during the interaction and integration between an Electric Vehicle (EV) and the Electric Vehicle Service Equipment (EVSE). As EVSEs are increasingly being integrated into building energy management systems and interfaced with electric vehicles, safe and secure integration of these systems is of paramount importance for the safety and security of the nation's critical infrastructure and people. Both the charging station and electric vehicles have electro-mechanical components built from 3rd party providers, and there is no mechanism to check for safe and secure integration of EVs and EVSEs. The overall goal of the proposed research is to apply formal methods to verify and validate the cyber-physical interactions between the EV and EVSE to gain insight into vulnerable system states and their impacts. To that end, each component (EV and EVSE) was considered its own cyber-physical system and then separately broken down into individual states of operation. The states of each system were compared to determine how the EV and EVSE interacted on a fundamental level, with one system's state becoming the catalyst for change within the other system. These individual models were completed and subsequently integrated using the open-source software Ptolemy II. Upon successfully completing the interactions, the model was scrutinized using linear temporal logic (LTL) operators to test its veracity and projectability. The initial EV/EVSE model was then altered to emphasize previously determined vulnerabilities within the integrated system in order to verify their existence and potential for harming the system. Two such vulnerabilities were demonstrated in this research to confirm integrity of the model, which will be a valuable asset going forward to ensure the future safety of both operators and consumers regarding EV and EVSE interaction.

APA, Harvard, Vancouver, ISO, and other styles
2

Färm, Emil. "Smart charging of an electric bus fleet." Thesis, Uppsala universitet, Elektricitetslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444348.

Full text
Abstract:
Controlling the balance of production and consumption of electricity will become increasingly challenging as the transport sector gradually converts to electric vehicles along with a growing share of wind power in the Swedish electric power system. This puts greater demand on resources that maintain the balance to ensure stable grid operation. The balancing act is called frequency regulation which historically has been performed almost entirely by hydropower. As the power production becomes more intermittent with renewable energy sources, frequency regulation will need to be performed in higher volumes on the demand side by having a more flexible consumption. In this report, the electrification of 17 buses Svealandstrafiken bus depot in Västerås has been studied. The aim has been to assess different charging strategies to efficiently utilize the available time and power but also to investigate if Svealandstrafiken can participate in frequency regulation. A smart charging model was created that demonstrated how smart charging can be implemented to optimize the charging in four different cases. The simulated cases were: charging with load balancing, reduced charging power, frequency regulation, and electrifying more buses. The results show that the power capacity limit will be exceeded if the buses are being charged directly as they arrive at the depot and without scheduling the charging session. By implementing smart charging, Svealandstrafiken can fully charge the 17 buses within the power capacity limit of the depot with 82 minutes to spare. By utilizing this 82-minute margin in the four different charging strategies, it was found that Svealandstrafiken can save 88 200SEK per year by load balancing, save 30 000 SEK per year by reducing the charging power by 10 %, earn 111 900 SEK per year by frequency regulation or electrify five more buses. Reducing the charging power may also increase the lifetime of the batteries but quantifying this needs further studies. Conclusively, there is economic potential for Svealandstrafiken for implementing smart charging.
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Yu. "System operation and energy management of EV charging stations in smart grid integration applications." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCA030.

Full text
Abstract:
Véhicules électriques (EV) présente les avantages de zéro émission directe et d'un rendement élevé de conversion de l'énergie électrique. Toutefois, les installations de charge des véhicules électriques restent largement rares en raison des coûts d'investissement et d’exploitation élevés. Dans le but d’améliorer le taux de pénétration des installations de charge de véhicules électriques, cette thèse étudie le contrôle du système et l’optimisation de l’activité économique des stations de charge de véhicules électriques (EVCS).Premièrement, en tant que principes de contrôle du système de gestion de l’énergie de niveau supérieur, les techniques de contrôle principales sont étudiées pour le fonctionnement en temps réel d’un système EVCS. Afin de garantir la stabilité et la capacité dynamique du système de micro-réseau de chargement de véhicules électriques, ce travail a porté sur les techniques de contrôle coordonnées d'un système EVCS avec un système photovoltaïque local et un système de stockage.Deuxièmement, afin de réduire les coûts de fonctionnement de l’EVCS, un EMS basé sur la programmation dynamique approximative (ADP) est proposé pour l’EVCS équipé de plusieurs types de chargeurs (EVCS-MTC). Plusieurs véhicules électriques peuvent acquérir le service de charge via un chargeur commun dans l’EVCS-MTC. Dans l'EMS proposé, l'ADP et l'algorithme d'évolution (EA) sont combinés pour déterminer le temps de début de charge optimal pour chaque EV.Enfin, afin d'intégrer les énergies renouvelables dans l'EVCS, une formulation de processus de décision de Markov (MDP) à horizon fini est proposée pour le fonctionnement optimal d'un EVCS assisté par PV sur un campus universitaire, utilisant la technologie de véhicule à réseau (V2G). fournir des services auxiliaires et prendre en compte le prix dynamique de l'électricité et les comportements incertains des propriétaires de EV
Electric vehicles (EV) have the advantages of zero direct emissions and high electrical energy conversion efficiency. However, EV charging facilities remain largely scarce due to the high investment and operation costs. In order to improve the penetration rate of EV charging facilities, the system control and economic operation optimization of EV charging stations (EVCS) are studied in this thesis.Firstly, as the control fundamentals of upper-level energy management system (EMS), the primary control techniques are studied for the real-time operation of an EVCS. In order to ensure the stability, dynamic capability of the EV charging micro grid system, this work investigated the coordinated control techniques of an EVCS with a local PV system and ESS.Secondly, in order to reduce the operation costs of the EVCS, an approximate dynamic programming (ADP) based EMS is proposed for the EVCS equipped with multiple types of chargers (EVCS-MTC). Multiple EVs can acquire the charging service through a common charger in the EVCS-MTC. In the proposed EMS, the ADP and the evolution algorithm (EA) are combined to determine the optimal charging start time for each EV.Lastly, in order to integrate the renewable energy into EVCS, a finite-horizon Markov Decision Process (MDP) formulation is proposed for the optimal operation of a PV assisted EVCS in a university campus, employing the vehicle-to-grid (V2G) technology to provide ancillary services and taking dynamic electricity price and uncertain behaviors of EV owners into considerations
APA, Harvard, Vancouver, ISO, and other styles
4

Alghamdi, Turki. "Interactions of Connected Electric Vehicles with Modern Power Grids in Smart Cities." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42513.

Full text
Abstract:
In a smart city, it is vital to provide a clean and green environment by curbing air pollution and greenhouse gas emissions (GHGs) from transportation. As a recent action from many governments aiming to minimize transportation’s pollution upon the climate, new plans have been announced to ban cars with gas engines throughout the world. Therefore, it is anticipated that the presence of electric vehicles (EVs) will grow very fast globally. Consequently, the necessity to establish electric vehicle supply equipment (EVSE) in the smart city through public charging stations is growing incrementally year by year. However, the EV charging process via EVSE which is primarily connected to the power grid will put high pressure upon the centralized power grid, especially during peak demand periods. Increasing the power production of power grid will increase the environmental impact. Therefore, it is fundamental for the smart city to be equipped with a modern power grid to cope with the traditional power grid’s drawbacks. In this thesis, we conduct an in-depth analysis of the problem of EVs’ interaction with the modern power grid in a smart city to manage and control EV charging and discharging processes. We also present various approaches and mechanisms toward identifying and investigating these challenges and requirements to manage the power demand. We propose novel solutions, namely Decentralized-EVSE (D-EVSE), for EVs’ charging and discharging processes based on Renewable Energy Sources (RESs) and an energy storage system. We present two algorithms to manage the interaction between EVs and D-EVSE while maximizing EV drivers’ satisfaction in terms of reducing the waiting time for charging or discharging services and minimizing the stress placed on D-EVSE. We propose an optimization model based on Game Theory (GT) to manage the interaction between EVs and D-EVSE. We name this the decentralized-GT (D-GT) model. This model aims to find the optimal solution for EVs and D-EVSE based on the concept of win-win. We design a decentralized profit maximization algorithm to help D-EVSE take profit from the electricity price variation during the day when selling or buying electricity respectively to EVs or from the grid or EVs as discharging processes. We implement different scenarios to these models and show through analytical and simulation results that our proposed models help to minimize the D-EVSE stress level, increase the D-EVSE sustainability, maximize the D-EVSE profit, as well as maximize EV drivers’ satisfaction and reduce EVs’ waiting time.
APA, Harvard, Vancouver, ISO, and other styles
5

Schmalfuß, Franziska. "Acceptance of Electric Mobility System Components and the Role of Real-Life Experience." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-231870.

Full text
Abstract:
Neben der Verringerung von Verkehrsunfällen und Staus ist ein wichtiges Ziel der Verkehrspsychologie, die Luftverschmutzung durch den Verkehr zu reduzieren. Elektrofahrzeuge (BEVs) könnten die CO2-Emissionen deutlich reduzieren. Der weltweite BEV-Bestand nimmt zwar stetig zu, aber die Marktanteile in den meisten EU-Ländern lag 2016 dennoch nur bei rund 1% (International Energy Agency, 2016). Eine weitreichende Verbreitung von Elektrofahrzeugen birgt nicht nur Vorteile in sich, sondern kann auch zur Belastung der Stromnetze führen. ‚Intelligente Ladesysteme‘, die den Ladeprozess an die Netzbelastung und Nutzeranforderungen (z.B. Ladestand bei Abfahrtszeit) anpassen, gelten als vielversprechende Lösung. Vor dem Hintergrund der bisher geringen Verbreitung von Elektrofahrzeugen und der mit einem Erfolg der Elektromobilität steigenden Relevanz intelligenter Ladesysteme entsteht die Notwendigkeit psychologische Faktoren zu identifizieren, die die Evaluation und Akzeptanz von Komponenten des Elektromobilitätssystems beeinflussen. An dieser Stelle knüpft die vorliegende Dissertation an. Der (praktische) Erfahrungshorizont vieler Menschen in Bezug auf Elektrofahrzeuge und intelligente Ladesysteme ist sehr limitiert. Unerfahrene Nutzer solch neuer Systeme begegnen bisher unbekannten Herausforderungen in der Mensch-Maschine-Interaktion. Beispielsweise geht das elektrische Fahren, im Vergleich zum Fahren herkömmlicher Fahrzeuge, mit einer wesentlich niedrigeren Reichweite, einer geringeren Geräuschkulisse, neuen „Nachtankprozessen“ und Fahrfunktionen wie der Rekuperation (d.h. regeneratives Bremsen bei dem kinetische in elektrische Energie umgewandelt wird) einher. Dieses Thema wird ebenfalls in der vorliegenden Dissertation aufgegriffen. Das erste Forschungsziel fokussierte die allgemeine Bewertung und Akzeptanz von Elektrofahrzeugen sowie den Einfluss von praktischer Erfahrung. Im Rahmen einer Feldstudie mit zwei 6-monatigen Studienphasen (Artikel II), einer Onlinestudie (Studie I von Artikel III) sowie einer 24-Stunden Testfahrt (Studie II von Artikel III) wurde dieses Ziel untersucht. Für die verschiedenen Arten von Erfahrung (langzeitig mit gleichem Fahrzeug vs. unkontrolliert vs. kurzzeitig mit gleichem Fahrzeug) zeigten sich unterschiedliche Effekte auf die Akzeptanz von Elektrofahrzeugen, die detailliert diskutiert werden. Die Berichte der Feldstudienteilnehmer (langzeitige Erfahrung) zu Vor- und Nachteilen von Elektrofahrzeugen zeigten, dass sich die Salienz bestimmter Vor- und Nachteile über die Nutzungszeit hinweg ändert. Vor allem die Vorteile, die beim Alltagstest direkt erlebt werden können (z.B. das angenehme Fahrgefühl, die geringe Geräuschkulisse), waren in ihrer Salienz gestiegen. Es gibt erlebbare Barrieren, wie die Ladedauer, die innerhalb der Feldstudie an Prägnanz verloren, aber auch andere, wie die Reichweite, die in ihrer Bedeutsamkeit konstant blieben. Die Vorher-Nachher-Studien (Artikel II & Studie II von Artikel III) zeigten, dass die Erwartungen der Tester an solch ein Fahrzeug im Alltagstest insgesamt erfüllt werden und die Einstellung gegenüber Elektrofahrzeugen positiv bleibt. Im Rahmen der 24-Stunden-Testfahrt (kurzzeitige Erfahrung) zeigte sich zudem ein Anstieg in der Zufriedenheit mit Elektrofahrzeugen. Dem gegenüber stehen die geringen Kaufabsichten der Befragten. Der Alltagstest mit einem Elektrofahrzeug, egal ob kurz- oder langzeitig, zeigte keine Effekte auf die Kaufintention. Allerdings wiesen die Ergebnisse der Onlinebefragung darauf hin, dass Personen, die bereits ein Elektrofahrzeug gefahren sind, gegenüber dem Kauf eines Elektrofahrzeugs nicht so stark abgeneigt sind wie Unerfahrene, aber dennoch keine klare Intention zeigen. Das zweite Forschungsziel bestand in der Untersuchung wie praktische Erfahrung mit dem Nutzerverhalten und der Evaluation bezüglich der Elektrofahrzeugcharakteristika zusammenspielt. Am Beispiel der Rekuperation wurde untersucht wie sich die Menschen im Rahmen einer 6-monatigen Feldstudie an solch eine Funktion gewöhnen, ihre Nutzung erlernen und ob sich dies in der Bewertung der Funktion widerspiegelt (Artikel I). Die Ergebnisse aus den Fahrzeugdaten weisen darauf hin, dass die Adaption an diese Funktion recht zügig abgeschlossen ist und dem Power Law of Practice (Newell & Rosenbloom, 1981) folgt. Die Rekuperationsfunktion wird durch die Nutzer positiv bewertet und die Zufriedenheit mit der Rekuperation steigt mit der Nutzungszeit. In zwei weiteren Studien wurde die Bewertung von Elektrofahrzeugcharakteristika zwischen Elektrofahrzeug-Erfahrenen und –Unerfahrenen verglichen. In der Onlinestudie (Studie I in Artikel III) mit dem unkontrollierten Erfahrungsfaktor zeigten sich kaum Unterschiede. Lediglich ‚Reichweite und Laden‘ bewerteten die Erfahrenen positiver. Kontrollierte, kurzfristige Erfahrung (Studie II in Artikel III) führte zu einer positiveren Bewertung von Beschleunigung und Fahrspaß, Geräuschlosigkeit, Sicherheit und Reliabilität, Umweltfreundlichkeit sowie des Rufs von Elektrofahrzeugen. Die Bewertung von Reichweite und Laden blieb unverändert. Das dritte, übergeordnete Ziel dieser Dissertation bestand darin, akzeptanzbeeinflussende Faktoren zu identifizieren, die als Ansatzpunkte für zukünftige Weiterentwicklungen und Strategien zur Erhöhung der Akzeptanz genutzt werden können. Dazu wurde das Potential der Bewertung verschiedener Elektrofahrzeugattribute, der Faktoren der Theorie des geplanten Verhaltens (Ajzen, 1991) sowie der Erfahrung mit Elektrofahrzeugen zur Vorhersage der Akzeptanz im Rahmen der beiden Studien in Artikel III untersucht. Der soziale Faktor (subjektive Norm) und die Bewertung von ‚Reichweite und Laden‘ wirkten sich am stärksten auf die Vorhersage von Einstellungs- und Verhaltensakzeptanz aus. In der Onlinestudie mit between-subjekt Design, zeigte sich zudem ein starker Erfahrungseffekt auf die Kaufabsicht. Zudem erwies sich auch der Faktor ‚Beschleunigung und Fahrspaß‘ als relevante Größe für die Akzeptanz. Vor dem Hintergrund der aktuellen Entwicklungen, im Detail den sinkenden Batteriekosten und damit günstiger werdenden Reichweiteressourcen, eröffnen die Ergebnisse Ansatzpunkte, um die Akzeptanz zu steigern. Die Bewertung der Performanz und das angenehme Fahrgefühl beim elektrischen Fragen weisen einen nicht zu vernachlässigbaren Einfluss auf die Akzeptanz von Elektrofahrzeugen auf und konnten durch ein kurzzeitiges Erfahrungserlebnis positiv beeinflusst werden. Das letzte Forschungsziel dieser Dissertation fokussierte das intelligente Laden. Die Ergebnisse der 5-monatigen Feldstudie (Artikel IV) zeigten, dass ein intelligentes Ladesystem (mit aktiver Nutzerbeteiligung) nutzbar und akzeptabel ist. Allerdings zeigten die Ergebnisse auch, dass eine positive Kosten-Nutzen-Bilanz für die Nutzer von hoher Relevanz ist. Der zusätzliche Aufwand beim Laden erwies sich als signifikant höher und die finanziellen Anreize durch die Nutzung des Systems als niedriger als erwartet. Zudem fühlten sich die Nutzer durch das System zusätzlich in ihrer Mobilität eingeschränkt. Demnach sollten zukünftige, intelligente Ladesysteme sorgfältig gestaltet werden, so dass der Aufwand und die Reduzierung von Flexibilität und Mobilität nicht so hoch sind, dass die Barriere "Reichweite und Laden" für die Akzeptanz von Elektrofahrzeugen erhöht wird. Basierend auf den Ergebnissen wurden verschiedene Implikationen abgeleitet. Die Weiterentwicklung des Elektromobilitätssystems sollte sich darauf konzentrieren, die Barrieren bezüglich Reichweite und Laden zu reduzieren sowie die positiven Aspekte des elektrischen Fahrens zu vermitteln. Zudem sollten zukünftige Akzeptanzmodelle, vor allem für bisher eher unbekannte Objekte oder Technologien, einen Erfahrungsfaktor und die Bewertung verschiedener, objekt-/technologie-spezifischer Attribute enthalten, da dadurch wichtige Aspekte zur Verbesserung des Forschungsobjektes identifiziert werden können. Die Ergebnisse zeigten außerdem, dass der soziale Einfluss in zukünftigen Strategien zur Akzeptanzförderung von Elektrofahrzeugen adressiert werden sollte und eine Testfahrt mit einem Elektrofahrzeug, das dem aktuellen Entwicklungsstand entspricht, ein strategisches Werkzeug zur Akzeptanzsteigerung darstellt.
APA, Harvard, Vancouver, ISO, and other styles
6

Sahilaushafnur, Rosyadi. "Study and Analysis of Asymmetrical Charging as A New Electrical Vehicle (EV) Smart Charging Method." Thesis, KTH, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264103.

Full text
Abstract:
Currently, the proliferation of electrified vehicles (EV) has increased rapidly. Considering EV users’ point of view, the duration of charging, and the place to charge their car are essential factors. Increase of EV penetration gives also impact on the electrical network such as overloading, and power quality issues. IEC 61851 and ISO 15118 are the two primary standards to provide requirements for electric vehicle supply equipment (EVSE) to ensure the process of charging can be adequately conducted without disrupting the electric system in general. Following standards and considering the user’s preference in charging place, a new charging method that can draw higher energy than existing technique should be developed. A three-phase grid connected home system is modeled in this study to see the impact of unbalance household load to a three-phase charging. The load modeling covers the variation level of load in summer, spring/fall, and winter. Specific usages of electricity are distributed in a three-phase home system which consists of phase 1: cold appliance, cooking, standby appliances, and other loads; phase 2: heat pumps, audiovisual (Television and sound system) and computer size; and phase 3: Lightning and washing. Two methods of charging are defined in this model, which are symmetrical (existing standard) and asymmetrical (proposed). In symmetrical technique, the On-board Charger (OBC) will draw equal phase current independent of home loads connected in each phase of three phase system. The three phase system will not balanced completely in this method. Meanwhile, in asymmetrical method, the OBC will draw the leftover of current in each phase according to its real-time availability by balancing all three phase in the home. The asymmetrical method is expected to achieve faster charging duration than symmetrical charging due to higher energy availability. There three main cases defined in this study: theoretical case (the EV is charged from hour 00:00), 0-100% SOC case, and the user case (the distance targeted determines Car Demand). The result of simulation reveals that Asymmetrical charging method can provide higher energy available than asymmetrical technique. Fuse-rating level influences a lot on this result. If the higher fuse rating applied in the same load profile, the gap of energy availability between symmetrical and asymmetrical will be reduced. But still the symmetrical method never perform better energy availability than the asymmetrical method, either with 16 A fuse and 20 A fuse. This result of energy availability becomes an indication for 3 the theoretical case, in which asymmetrical method can provide more charging cycles than the symmetrical method, especially for 16 A fuse system. For all cases that have been simulated, the asymmetrical method shows benefits in terms of reduction in time and cost reduction. In a year, the saving of hours of charging duration which could be achieved by new charging method in a 16 A fuse system is as high as 8 hours and 4 hours for 0-100% SOC cases and partial charging user cases respectively (less than 50% approx.). In a three-year cost comparison, the money that could be saved by the asymmetrical method in a 16 A fuse system are as high as 35 Euro for 0-100% case and 23,405 Euro in the user case. After simulations result obtained, asymmetrical method demonstrates a promising performance of the new charging technique in terms of duration and saving. There is a need to push a new standard to realize the implementation of this charging activity. A communication scheme between energy meter, EVSE, and OBC should be established to exchange real-time current availability information. New AC information sequences could be adapted from the DC charging communication standard, IEC 61851-24.
För närvarande har spridningen av elektrifierade fordon (EV) ökat snabbt. Att ta hänsyn till EVanvändarnas synvinkel, laddningstiden och platsen att ladda sin bil är väsentliga faktorer. Ökning av EVpenetration ger också inverkan på det elektriska nätverket, såsom överbelastning och problem med kraftkvalitet. IEC 61851 och ISO 15118 är de två primära standarderna för att tillhandahålla krav på elfordonsförsörjningsutrustning (EVSE) för att säkerställa att laddningsprocessen kan genomföras på ett adekvat sätt utan att störa det elektriska systemet i allmänhet. Efter standarder och med tanke på användarens preferens på laddningsplats bör en ny laddningsmetod som kan dra högre energi än befintlig teknik utvecklas. Ett tre-fas nätanslutet hemsystem modelleras i denna studie för att se effekterna av obalanserad hushållsbelastning på en trefasladdning. Lastmodelleringen täcker variationen i lasten på sommaren, våren / hösten och vintern. Specifika användningsområden för elektricitet distribueras i ett trefas hemsystem som består av fas 1: kallapparat, matlagning, standbylagare och andra laster; fas 2: värmepumpar, audiovisuella (TV- och ljudsystem) och datorstorlek; och fas 3: Blixt och tvätt. Två laddningsmetoder definieras i denna modell, som är symmetriska (befintlig standard) och asymmetriska (föreslagna). I symmetrisk teknik drar ombordladdaren (OBC) lika fasström oberoende av hembelastningar anslutna i varje fas i trefassystemet. Trefassystemet kommer inte att balansera helt i denna metod. Under tiden, i asymmetrisk metod, kommer OBC att dra återstoden av strömmen i varje fas enligt dess realtids tillgänglighet genom att balansera alla tre faserna i hemmet. Den asymmetriska metoden förväntas uppnå snabbare laddningstid än symmetrisk laddning på grund av högre energitillgänglighet. Det finns tre huvudfall definierade i denna studie: teoretiskt fall (EV debiteras från timme 00:00), 0-100% SOC-fall och användarfallet (avståndsinriktningen avgör bilfrågan). Resultatet av simulering avslöjar att asymmetrisk laddningsmetod kan ge högre tillgänglig energi än asymmetrisk teknik. Säkringsgraden påverkar mycket på detta resultat. Om den högre säkringsgraden som tillämpas i samma belastningsprofil kommer energiförbrukningen mellan symmetrisk och asymmetrisk att minska. Men fortfarande har den symmetriska metoden aldrig bättre energitillgänglighet än den asymmetriska metoden, varken med 16 A-säkring och 20 A-säkring. Detta resultat av energitillgänglighet blir en indikation för det teoretiska fallet, i vilket asymmetrisk metod kan ge fler laddningscykler än den symmetriska metoden, särskilt för 16 A-säkringssystem. För alla fall som har simulerats visar den asymmetriska metoden fördelar när det gäller minskning av tid och kostnadsminskning. På ett år är besparingen av timmar med laddningstid som kan uppnås genom en ny laddningsmetod i ett säkringssystem på 16 A så hög som 8 timmar och 4 timmar för 0-100% SOC-fall respektive partiell laddning av användarfall (mindre än 50% ungefär). I en kostnadsjämförelse på tre år är de pengar som kan sparas med den asymmetriska metoden i ett säkringssystem på 16 A så höga som 35 Euro för 0-100% fall och 23 405 Euro i användarfallet. Efter erhållna simuleringsresultat visar den asymmetriska metoden en lovande prestanda för den nya laddningstekniken när det gäller varaktighet och sparande. Det finns ett behov att driva en ny standard för att realisera genomförandet av denna avgiftsaktivitet. Ett kommunikationsschema mellan energimätare, EVSE och OBC bör inrättas för att utbyta information om aktuell tillgänglighet i realtid. Nya ACinformationssekvenser kan anpassas från DC-laddningskommunikationsstandarden, IEC 61851-24.
APA, Harvard, Vancouver, ISO, and other styles
7

Huber, Julian [Verfasser], and C. [Akademischer Betreuer] Weinhardt. "Engineering User-Centric Smart Charging Systems / Julian Christoph Huber ; Betreuer: C. Weinhardt." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1216949328/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huber, Julian Christoph [Verfasser], and C. [Akademischer Betreuer] Weinhardt. "Engineering User-Centric Smart Charging Systems / Julian Christoph Huber ; Betreuer: C. Weinhardt." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1216949328/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bonora, Giulia. "Analysis of the impact of stationary energy storage systems in trolleybus grids using Simulink-based modelling." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25832/.

Full text
Abstract:
The voltage profile of the catenary between traction substations (TSSs) is affected by the trolleybus current intake and by its position with respect to the TSSs: the higher the current requested by the bus and the further the bus from the TSSs, the deeper the voltage drop. When the voltage drops below 500V, the trolleybus is forced to decrease its consumption by reducing its input current. This thesis deals with the analysis of the improvements that the installation of an BESS produces in the operation of a particularly loaded FS of the DC trolleybus network of the city of Bologna. The stationary BESS is charged by the TSSs during off-peak times and delivers the stored energy when the catenary is overloaded alleviating the load on the TSSs and reducing the voltage drops. Only IMC buses are considered in the prospect of a future disposal of all internal combustion engine vehicles. These trolleybuses cause deeper voltage drops because they absorb enough current to power their traction motor and recharge the on board battery. The control of the BESS aims to keep the catenary voltage within the admissible voltage range and makes sure that all physical limitations are met. A model of FS Marconi Trento Trieste is implemented in Simulink environment to simulate its daily operation and compare the behavior of the trolleybus network with and without BESS. From the simulation without BESS, the best location of the energy storage system is deduced, and the battery control is tuned. Furthermore, from the knowledge of the load curve and the battery control trans-characteristic, it is formulated a prediction of the voltage distribution at BESS connection point. The prediction is then compared with the simulation results to validate the Simulink model. The BESS allows to decrease the voltage drops along the catenary, the Joule losses and the current delivered by the TSSs, indicating that the BESS can be a solution to improve the operation of the trolleybus network.
APA, Harvard, Vancouver, ISO, and other styles
10

Fachrizal, Reza. "Synergy between Residential Electric Vehicle Charging and Photovoltaic Power Generation through Smart Charging Schemes : Models for Self-Consumption and Hosting Capacity Assessments." Licentiate thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-419665.

Full text
Abstract:
The world is now in a transition towards a more sustainable future. Actions to reduce the green-house gases (GHG) emissions have been promoted and implemented globally, including switching to electric vehicles (EVs) and renewable energy technologies, such as solar photovoltaics (PV). This has led to a massive increase of EVs and PV adoption worldwide in the recent decade. However, large integration of EVs and PV in buildings and electricity distribution systems pose new challenges such as increased peak loads, power mismatch, component overloading, and voltage violations, etc. Improved synergy between EVs, PV and other building electricity load can overcome these challenges. Coordinated charging of EVs, or so-called EV smart charging, is believed to a promising solution to improve the synergy. This licentiate thesis investigates the synergy between residential EV charging and PV generation with the application of EV smart charging schemes. The investigation in this thesis was carried out on the individual building, community and distribution grid levels. Smart charging models with an objective to reduce the net-load (load - generation) variability in residential buildings were developed and simulated. Reducing the net-load variability implies both reducing the peak loads and increasing the self-consumption of local generation, which will also lead to improved power grid performance. Combined PV-EV grid hosting capacity was also assessed.       Results show that smart charging schemes could improve the PV self-consumption and reduce the peak loads in buildings with EVs and PV systems. The PV self-consumption could be increased up to 8.7% and the peak load could be reduced down to 50%. The limited improvement on self-consumption was due to low EV availability at homes during midday when the solar power peaks. Results also show that EV smart charging could improve the grid performance such as reduce the grid losses and voltage violation occurrences. The smart charging schemes improve the grid hosting capacity for EVs significantly and for PV slightly. It can also be concluded that there was a slight positive correlation between PV and EV hosting capacity in the case of residential electricity distribution grids.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Smart charging system"

1

Khajepour, Amir, Hong Wang, Yanjun Huang, Soheil Mohagheghi Fard, and Milad Khazraee. Smart Charging and Anti-Idling Systems. Morgan & Claypool Publishers, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khajepour, Amir, Hong Wang, Yanjun Huang, Soheil Mohagheghi Fard, and Milad Khazraee. Smart Charging and Anti-Idling Systems. Springer International Publishing AG, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Yanjun, Soheil Mohagheghi Fard, and Milad Khazraee. Smart Charging and Anti-Idling Systems. Morgan & Claypool Publishers, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khajepour, Amir, Hong Wang, Yanjun Huang, Soheil Mohagheghi Fard, and Milad Khazraee. Smart Charging and Anti-Idling Systems. Morgan & Claypool Publishers, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Smart charging system"

1

Krishna, T. K., D. Susitra, and S. Dinesh Kumar. "DC Smart Grid System for EV Charging Station." In Advances in Intelligent Systems and Computing, 307–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0199-9_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pattnaik, Saswati, Mano Ranjan Kumar, and Sunil Kumar Mishra. "Supercapacitor-Based Automated Fast Charging System for Electric Vehicles." In Smart Innovation, Systems and Technologies, 377–93. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1777-5_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dinesh Kumar, N., and F. B. Shiddanagouda. "IoT-Based Vehicle Charging Eco System for Smart Cities." In Lecture Notes in Electrical Engineering, 611–20. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0236-1_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Panda, Bhagyashree, Faeze Momeni Rad, and Mohammad Sadra Rajabi. "Wireless Charging of Electric Vehicles Through Pavements: System, Design, and Technology." In Handbook of Smart Energy Systems, 1–26. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-72322-4_212-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kadam, Nikhil, and Archana Thosar. "Design and Simulation of a Wireless Charging System for Electric Vehicle." In Smart Sensors Measurement and Instrumentation, 19–35. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6913-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Conti, Mauro, Denis Donadel, Radha Poovendran, and Federico Turrin. "EVExchange: A Relay Attack on Electric Vehicle Charging System." In Computer Security – ESORICS 2022, 488–508. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17140-6_24.

Full text
Abstract:
AbstractTo support the increasing spread of Electric Vehicles (EVs), Charging Stations (CSs) are being installed worldwide. The new generation of CSs employs the Vehicle-To-Grid (V2G) paradigm by implementing novel standards such as the ISO 15118. This standard enables high-level communication between the vehicle and the charging column, helps manage the charge smartly, and simplifies the payment phase. This novel charging paradigm, which connects the Smart Grid to external networks (e.g., EVs and CSs), has not been thoroughly examined yet. Therefore, it may lead to dangerous vulnerability surfaces and new research challenges.In this paper, we present EVExchange, the first attack to steal energy during a charging session in a V2G communication: i.e., charging the attacker’s car while letting the victim pay for it. Furthermore, if reverse charging flow is enabled, the attacker can even sell the energy available on the victim’s car! Thus, getting the economic profit of this selling, and leaving the victim with a completely discharged battery. We developed a virtual and a physical testbed in which we validate the attack and prove its effectiveness in stealing the energy. To prevent the attack, we propose a lightweight modification of the ISO 15118 protocol to include a distance bounding algorithm. Finally, we validated the countermeasure on our testbeds. Our results show that the proposed countermeasure can identify all the relay attack attempts while being transparent to the user.
APA, Harvard, Vancouver, ISO, and other styles
7

Mohamed, Ahmed A. S., and Ahmed A. Shaier. "Shielding Techniques of IPT System for Electric Vehicles' Stationary Charging." In Electric Vehicle Integration in a Smart Microgrid Environment, 279–93. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367423926-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Xuling, Xuefeng He, Chen Dong, Xuan Zhang, and Lin Sang. "Electric Vehicle DC Charger Charging Protocol Conformance Testing System." In Proceedings of PURPLE MOUNTAIN FORUM 2019-International Forum on Smart Grid Protection and Control, 881–90. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9783-7_72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Adhithya, M. Dev, M. Arulmozhi, M. Vishwa, and S. Ajai Kumar. "Smart Economic Operation of EV Charging Station and Battery Monitoring System." In Advances in Intelligent Systems and Computing, 739–52. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3608-3_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

De Yao, Lin, Huang Xue-Hong, and Trong-The Nguyen. "Design and Implement Circuit of Wireless Charging of Parking Management System." In Advances in Smart Vehicular Technology, Transportation, Communication and Applications, 37–45. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1209-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Smart charging system"

1

Ferreira, Joao C., Vitor Monteiro, Joao L. Afonso, and Alberto Silva. "Smart electric vehicle charging system." In 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2011. http://dx.doi.org/10.1109/ivs.2011.5940579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ombach, G., D. Kurschner, and S. Mathar. "Universal base coil solution for interoperable system for stationary wireless EV charging." In 2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART). IEEE, 2015. http://dx.doi.org/10.1109/smart.2015.7399238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cao, Zhiyuan, Chi-Cheng Chu, and Rajit Gadh. "An autonomous electric vehicle based charging system: Matching and charging strategy." In 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2018. http://dx.doi.org/10.1109/isgt.2018.8403365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Communication Reduced Interaction Protocol between Customer, Charging Station, and Charging Station Management System." In 3rd International Conference on Smart Grids and Green IT Systems. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0004971801180125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Young-Min Wi, Jong-Uk Lee, and Sung-Kwan Joo. "Smart electric vehicle charging for smart home/building with a photovoltaic system." In 2013 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2013. http://dx.doi.org/10.1109/icce.2013.6487014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rutgers, A. "Comparison of electric vehicle fleet smart charging methods." In 5th E-Mobility Power System Integration Symposium (EMOB 2021). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2021.2507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wey, Chin-Long, and Ping-Chang Jui. "A unitized charging and discharging smart battery management system." In 2013 International Conference on Connected Vehicles and Expo (ICCVE). IEEE, 2013. http://dx.doi.org/10.1109/iccve.2013.6799924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li Hui-ling, Bai Xiao-min, and Tan Wen. "Impacts of plug-in hybrid electric vehicles charging on distribution grid and smart charging." In 2012 IEEE International Conference on Power System Technology (POWERCON 2012). IEEE, 2012. http://dx.doi.org/10.1109/powercon.2012.6401265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tayarani, Hanif, Sina Baghali, Hamidreza Jahangir, Masoud Aliakbar Golkar, and Alireza Fereidunian. "Travel behavior and System Objectives Uncertainties In Electric Vehicle Optimal Charging." In 2018 Smart Grid Conference (SGC). IEEE, 2018. http://dx.doi.org/10.1109/sgc.2018.8777835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shidujaman, Mohammad, Hooman Samani, Mohammad Ali Raayatpanah, Haipeng Mi, and Chinthaka Premachandra. "Towards Deploying the Wireless Charging Robots in Smart Environments." In 2018 International Conference on System Science and Engineering (ICSSE). IEEE, 2018. http://dx.doi.org/10.1109/icsse.2018.8520063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography