Academic literature on the topic 'Small Heat Schok Protein'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Small Heat Schok Protein.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Small Heat Schok Protein":

1

Friedrich, Kenneth L., Kim C. Giese, Nicole R. Buan, and Elizabeth Vierling. "Interactions between Small Heat Shock Protein Subunits and Substrate in Small Heat Shock Protein-Substrate Complexes." Journal of Biological Chemistry 279, no. 2 (October 22, 2003): 1080–89. http://dx.doi.org/10.1074/jbc.m311104200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Garrett J., and Elizabeth Vierling. "A Small Heat Shock Protein Cooperates with Heat Shock Protein 70 Systems to Reactivate a Heat-Denatured Protein." Plant Physiology 122, no. 1 (January 1, 2000): 189–98. http://dx.doi.org/10.1104/pp.122.1.189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lindner, Robyn A., John A. Carver, Monika Ehrnsperger, Johannes Buchner, Gennaro Esposito, Joachim Behlke, Gudrun Lutsch, Alexey Kotlyarov, and Matthias Gaestel. "Mouse Hsp25, a small heat shock protein." European Journal of Biochemistry 267, no. 7 (April 2000): 1923–32. http://dx.doi.org/10.1046/j.1432-1327.2000.01188.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vos, Michel J., Marianne P. Zijlstra, Serena Carra, Ody C. M. Sibon, and Harm H. Kampinga. "Small heat shock proteins, protein degradation and protein aggregation diseases." Autophagy 7, no. 1 (January 2011): 101–3. http://dx.doi.org/10.4161/auto.7.1.13935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Laskowska, Ewa, Ewelina Matuszewska, and Dorota Kuczynska-Wisnik. "Small Heat Shock Proteins and Protein-Misfolding Diseases." Current Pharmaceutical Biotechnology 11, no. 2 (February 1, 2010): 146–57. http://dx.doi.org/10.2174/138920110790909669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fujita, Eri. "Protein Homeostasis-Small Heat Shock Proteins and Cytoskeleton." Biological Sciences in Space 22, no. 4 (2008): 148–57. http://dx.doi.org/10.2187/bss.22.148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Kyeong Kyu, Rosalind Kim, and Sung-Hou Kim. "Crystal structure of a small heat-shock protein." Nature 394, no. 6693 (August 1998): 595–99. http://dx.doi.org/10.1038/29106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shi, Xiaodong, Zhao Wang, Linxuan Yan, Anastasia N. Ezemaduka, Guizhen Fan, Rui Wang, Xinmiao Fu, Changcheng Yin, and Zengyi Chang. "Small heat shock protein AgsA forms dynamic fibrils." FEBS Letters 585, no. 21 (October 12, 2011): 3396–402. http://dx.doi.org/10.1016/j.febslet.2011.09.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lelj-Garolla, Barbara, and A. Grant Mauk. "Self-association of a Small Heat Shock Protein." Journal of Molecular Biology 345, no. 3 (January 2005): 631–42. http://dx.doi.org/10.1016/j.jmb.2004.10.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xi, Jing-hua, Fang Bai, Julia Gross, R. Reid Townsend, A. Sue Menko, and Usha P. Andley. "Mechanism of Small Heat Shock Protein Functionin Vivo." Journal of Biological Chemistry 283, no. 9 (December 5, 2007): 5801–14. http://dx.doi.org/10.1074/jbc.m708704200.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Small Heat Schok Protein":

1

Bellanger, Tiffany. "Mécanismes de résistance au stress chez les bactéries lactiques impliquant des sHSPs : investigation du mécanisme mis en jeu dans l’activité lipochaperon de la protéine Lo18 chez O. oeni." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les bactéries lactiques (LAB), telles que O. oeni, impliquées dans les processus de fermentation malolactique du vin, sont soumises à d'importants stress environnementaux. La plupart de ces stress affectent négativement la survie des micro-organismes. Parmi les différentes stratégies de réponse mises en jeu par les LAB, on retrouve la formation de biofilm et la production de petites protéines de choc thermique (sHSP). Les sHSPs, sont décrites pour leur activité de chaperon moléculaires. A ce titre, elles sont capables de replier les protéines natives, partiellement dénaturées par les stress environnementaux. Un petit nombre d’entre elles est décrit pour avoir une seconde activité de lipochaperon moléculaire leur permettant de maintenir une fluidité membranaire optimale, au cours des stress environnementaux. Actuellement, les mécanismes impliqués dans l’interaction entre les membranes et les sHSPs restent encore peu connus. Il semblerait que, lorsque les oligomères de ces sHSPs se dissocient en dimères à la surface de la membrane, des forces électrostatiques et hydrophobes déforment la protéine, lui permettant ainsi de pénétrer la membrane et de contribuer au maintien de sa fluiditéLa protéine Lo18, l’unique sHSP d’O. oeni fait partie des sHSPs décrites pour ces deux activités. Dans ce contexte, nous avons entrepris une exploration des mécanismes fondamentaux impliqué dans l'interaction entre la protéine Lo18 et les membranes par des techniques in silico, in vitro et in vivo, comprenant des mesures d'anisotropie, de radiation circulaire à rayonnement synchrotron ainsi que des techniques d'immunomarquage et de modélisation. Nos recherches ont révélé que, sous l'influence à la fois de la nature des lipides membranaires et de certains résidus de la protéine, la structure protéique de Lo18 est modifiée. Cette modification de structure, particulièrement au niveau de la structure secondaire, s'avère être essentielle pour son activité lipochaperon. Enfin, nos travaux ont également permis de montrer l’implication de Lo18 dans la résistance de biofilm de O. oeni au stress acide, stress majoritairement retrouvé dans le vin.. L’ensemble de ces travaux a permis une meilleure compréhension des mécanismes fondamentaux dans la réponse au stress impliquant des sHSPs
Lactic acid bacteria (LAB), such as O. oeni, involved in the malolactic fermentation of wine, are subjected to major environmental stresses. Most of these stresses adversely affect the survival of the micro-organisms. Among the various response strategies employed by LAB are biofilm formation and the production of small heat shock proteins (sHSPs). sHSPs are described for their molecular chaperone activity. As such, they are capable of folding native proteins that have been partially denatured by environmental stresses. A small number have been described to have a second molecular lipochaperon activity, enabling them to maintain optimal membrane fluidity during environmental stresses. At present, little is known about the mechanisms involved in the interaction between membranes and sHSPs. It would appear that when the oligomers of these sHSPs dissociate into dimers at the membrane surface, electrostatic and hydrophobic forces deform the protein, allowing it to penetrate the membrane and help maintain its fluidity.The Lo18 protein, the only sHSP in O. oeni, is one of the sHSPs described for these two activities. In this context, we undertook an exploration of the fundamental mechanisms involved in the interaction between the Lo18 protein and membranes using in silico, in vitro and in vivo techniques, including anisotropy measurements, circular synchrotron radiation as well as immunolabelling and modelling techniques. Our research revealed that, under the influence of both the nature of the membrane lipids and certain residues of the protein, the protein structure of Lo18 is modified. This structural modification, particularly at the level of the secondary structure, proves to be essential for its lipochaperon activity. Finally, our work has also demonstrated the involvement of Lo18 in the resistance of O. oeni biofilms to acid stress, a stress found mainly in wine. Taken together, this work has led to a better understanding of the fundamental mechanisms in the response to stress involving sHSPs
2

Collier, Miranda. "Small heat shock protein interactions with in vivo partners." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:24cf8041-c82d-4bc4-87a7-0ae7e38f1879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Small heat-shock proteins (sHsps) are part of a broad cellular sys- tem that functions to maintain a stable proteome under stress. They also perform a variety of regulatory roles at physiological conditions. Despite the multitude of sHsp targets, their interactions with partners are not well understood due to highly dynamical structures. In this thesis, I apply a variety of biophysical and structural approaches to examine distinct interactions made by the abundant human sHsps αβ-crystallin and Hsp27. First, I find that αβ-crystallin binds a cardiac-specific domain of the muscle sarcomere protein titin. A cardiomyopathy-causative variant of αβ-crystallin is shown to disrupt this interaction, with demonstrated implications for tissue biomechanics. Next, I investigate the conformation and unfolding behaviour of another sarcomere-associated protein, filamin C, finding support for the hypothesis that it is mechanosensitive. This leads into an interrogation of the interaction between filamin C and Hsp27, which we find is modulated by phosphorylation of Hsp27. This modulation only manifests during filamin C unfolding, pointing toward a protective chaperoning mode against over-extension during mechanical stress. This finding is bolstered by up-regulation and interaction of both proteins in a mouse model of heart failure. I establish a system for similar studies of a third sHsp, cvHsp, which is muscle-specific and implicated in various myopathies but scantly understood at the molecular level compared to αβ-crystallin and Hsp27. Finally, I probe the stoichiometries and kinetics of complexes formed between αβ-crystallin and Hsp27 themselves, which co-assemble into a highly polydisperse ensemble. This involved the development of a high-resolution native mass spectrometry method for disentangling heterogeneous systems. Together these findings add to our understanding of the roles and mechanisms of ATP-independent molecular chaperones.
3

Franzmann, Titus Marcellus. "Chaperone mechanism of the small heat shock protein Hsp26." kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/652224/652224.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sund, Derrick T. "Replica Exchange Molecular Dynamics of a Small Heat Shock Protein." Thesis, The University of Arizona, 2011. http://hdl.handle.net/10150/144990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morris, Amie Michelle. "Structure and function of the mammalian small heat shock protein Hsp25." Access electronically Access electronically, 2007. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20080605.104334/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carson, Kenneth Harris. "Study and characterization of a novel small heat shock protein from Babesia." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

di, Bard Barbara Lelj Garolla. "Self-association and chaperon activity of the small heat shock protein 27." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Human Hsp27 is a member of the small heat shock protein family that is over-expressed during cellular stress and that is involved in biological functions ranging from inhibition of apoptosis to regulation of cellular glutathione levels. In addition, Hsp27 is an ATP-independent molecular chaperon that binds to unfolding peptides and inhibits their precipitation. Roles for Hsp27 in several human diseases have also been proposed. For example, the expression of Hsp27 by several human tumors has been noted as a potential diagnostic feature or a therapeutic target. Increasing evidence indicates that the biological functions of Hsp27 are linked to the reversible self-association of the protein to form large oligomers in a process that is at least in part regulated by reversible phosphorylation of three Ser residues. The three-dimensional structure of Hsp27 is not available, and relatively few rigorous physical studies of the protein have been reported. In the present study, analytical ultracentrifugation has been used to define self-association of Hsp27 and selected variants as a function of protein concentration, pH, temperature, and ionic strength to evaluate the role of structural domains believed to be functionally significant. These results are correlated with the chaperon activity, as determined by monitoring the inhibition of insulin unfolding, and with the kinetics of subunit exchange, monitored by fluorescence resonance energy transfer. The results establish that wild-type Hsp27 forms a distribution of oligomers that ranges from dimers to at least 32-mers and that oligomerization is highly regulated by temperature but not ionic strength or pH. Moreover, the oligomeric size of Hsp27 increases with increased temperature in a manner that correlates well with increased chaperon activity and rate of subunit exchange. Comparison of results from all three types of experiments obtained for the wild-type protein to those obtained with Hsp27 variants has led to the development of a model for Hsp27 self-association and chaperon activity.
Medicine, Faculty of
Biochemistry and Molecular Biology, Department of
Graduate
8

Dabbaghizadeh, Afrooz. "Structure and function of mitochondrial small heat shock protein 22 in Drosophila melanogaster." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/34491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les petites protéines de choc thermique (sHsps) ont été découvertes initialement chez Drosophila. Les membres de cette famille sont des chaperons moléculaires sont présentsdans la plupart des organismes eucaryotes et procaryotes et certains virus. En plus d’être induites en réponse à la plupart des stresseurs dont un choc thermique, elles sont également exprimés en absence de stress. Les sHsps forment des structures dynamiques s'assemblant en oligomères et elles sont essentielles durant les conditions de stress en empêchant l'agrégation des protéines dénaturées et en favorisant leur repliement par des chaperons moléculaires dépendants de l'ATP. Le génome de Drosophila melanogastercode pour 12 sHsp, qui ont des profils d'expression développementaux, des localisations intracellulaires diverses et des spécificités de substrats distincts. DmHsp22 est jusqu'à présent la seule sHsp localisée dans les mitochondries avant et après un choc thermique. Elle est préférentiellement régulée lors du vieillissement et en réponse à la chaleur et aux stress oxydants. La surexpression de DmHsp22 augmente la durée de vie et la résistance au stress et sa régulation négative est préjudiciable. C'est un chaperon efficace, qui pourrait être impliqué dans la réponse mitochondriale au dépliement protéique (UPRMT). Cependant, le mécanisme exact de son action est mal compris. Structurellement, DmHsp22 forme une population d'oligomères semblable aux nombreux sHsps de métazoaires et différente deDmHsp27. L'alignement des séquences de la région ACDde DmHsp22 avec des sHsp de drosophile et d'autres organismes a démontré la présence de trois résidus d'arginine hautement conservés dans ce domaine. Une forte conservationde ces résidus suggère leur implication possible dans la structure et la fonction de DmHsp22. La substitution des résidus d'arginine hautement conservés dans les sHsps de mammifères est associée à certaines pathogenèses et déclenche des changements de conformation des protéines ainsi que l'agrégation des protéines intracellulaires. La mutation de l'arginine en glycine au niveau de trois résidus hautement conservés d'ACD dans DmHsp22 (R105, R109, R110) résulte en une population oligomérique qui, dans le cas de R110G, perturbe la structure et provoque la formation de petits oligomères. Bien que DmHsp22 ainsi que les mutants aient été caractérisés comme des chaperons efficaces in vitro, les mécanismes d'action exacts dans les mitochondries et l'information sur le comportement protecteur nécessitent la détermination du réseau d’interaction in vivo. Nous avons utilisé la technique capture d’immunoaffinité (CIA) pour récupérer 60 protéines qui interagissent spécifiquement avec DmHsp22 in vivo pendant le traitement normal et thermique, dans le surnageant des cellules de mammifères exprimant la DmHsp22. L’CIA effectuée sur la fraction mitochondriale a permis d’identifies 39 protéines qui interagissent spécifiquement avec DmHsp22. La combinaison de l’IAC avec l'analyse par spectroscopie de masse de mitochondries de cellules HeLa transfectées avec DmHsp22 a conduit à l'identification de partenaires de liaison à DmHsp22 dans des conditions de normales et de choc thermique. L'interaction entre DmHsp22 et deux autres chaperons mitochondriaux a été validée par immunobuvardage. Notre approche a montré que les cellules HeLa exprimant DmHsp22 augmentent la consommation d'oxygène mitochondrial et les teneurs en ATP, ce qui confère un nouveau rôle à DmHsp22 dans les mitochondries. En outre, l'activité d’une luciférase exogène a légèrement augmenté dans les cellules HeLa exprimant DmHsp22 après que l'activité enzymatique ait été réduite à la suite de l'exposition à la chaleur. En résumé, ce projet a permis de caractériser la structure oligomérique de DmHsp22 et un certain nombre de mutants dans le domaine alpha cristallin tout en fournissant un rôle potentiel mécanistique dans l’homéostase mitochondriale. La détermination du réseau mitochondrial de DmHsp22 suggère son importance dans cette organelle non seulement en tant que chaperon moléculaire, mais aussi en tant que protéine impliquée dans plusieurs fonctions cellulaires significatives.
The small heat shock proteins (sHsps) were first discovered in Drosophila. Members of this family are molecular chaperones and are present in most eukaryotic and prokaryotic. Although, they are induced in response to most of the stressors including heat shock, they are also expressed in absence of stress. SHsps for mdynamic structures that assemble into oligomers which are essential during stress conditions by preventing aggregation of denatured proteins and promoting their folding by ATP dependent molecular chaperones. Drosophila melanogaster genome encodes 12 sHsps, that have developmental expression patterns, diverse intracellular localizations and distinct substrate specificities. DmHsp22 is up to now the only sHsp localized in mitochondria before and after heat shock. It is preferentially regulated during ageing and in response to heat and oxidative stresses. Over-expression of DmHsp22 increases lifespan and resistance to stress and its down-regulation is detrimental. It is an efficient chaperone and could be involved in the mitochondrial unfolding protein response (UPRMT). However, the exact mechanism of its action is poorly understood. Structurally, DmHsp22 forms one population of oligomers similar to the many metazoan sHsps but DmHsp27. Sequence alignment of DmHsp22 with sHsps in Drosophilaand other organisms at the alpha crystalline domain (ACD) region demonstrated the presence of three highly conserved arginine residues in this domain. Strong conservation of these residues suggest their possible involvement in structure and function of DmHsp22. Substitution of highly conserved arginine residues in mammalian sHsps is associated with some pathogenesis and triggers protein conformational changes as well as intracellular protein aggregation. Mutation of arginine to glycine at three highly conserved residues of ACD in DmHsp22 (R105, R109, R110) results in one oligomeric population as well which in the case of R110G disrupts the structure and causes formation of smaller oligomers. Although DmHsp22 as well as mutants have been characterized as effective in vitro chaperones, the exact mechanism(s) of action in mitochondria and information about protective behavior requires defining of in vivoprotein interacting network. We have used immunoaffinity conjugation (IAC) technique to recover 60 proteins that specifically interact with DmHsp22 in vivo during normal and heat treatment using cell extract of mammalian cells expressing DmHsp22. The IAC performed on mitochondrial fraction identified 39 proteins that specifically interact with DmHsp22. Combination of IAC with mass spectroscopy analysis of mitochondria of HeLa cells transfected with DmHsp22 resulted in identification of DmHsp22-binding partners under normal andunder heat shock conditions. Interaction between DmHsp22 and two other mitochondrial chaperones was validated by immunoblotting. Our approach showed that HeLa cells expressing DmHsp22 increase maximal mitochondrial oxygen consumption and ATP contents which provides a new mechanistic role for DmHsp22 in mitochondria. Further more, exogenous luciferase activity slightly increased in HeLa cells expressing DmHsp22 after the enzyme activity reduced as a result of exposure to heat. In summary, this project has characterized the oligomeric structure of DmHsp22 and a number of mutants inthe alpha crystalline domain while providing a potential mechanistic role in mitochondrial homeostasis. Determining mitochondrial network of DmHsp22 suggest its importance in this organelle not only as a molecular chaperone but also as a protein involved in several significant cellular functions.
9

Friedrich, Kenneth Lane. "Dynamic behavior of small heat shock protein subunits and their interactions with substrates." Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/280410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Small heat shock proteins (sHsps) are oligomeric proteins expressed by cells in response to high temperatures. It is believed that sHsps are produced as a defensive mechanism against temperature stress and act as molecular chaperones by binding and protecting heat-labile proteins from irreversible aggregation. Binding results in the formation of sHsp/substrate complexes from which substrate can later be refolded by ATP-dependent chaperones. Despite past investigations, many aspects of this model remain poorly defined. Results presented here provide new insight into the mechanism of sHsp action. sHsp chaperone activity and sHsp oligomerization are closely linked. Therefore, an understanding of the oligomeric structure, subunit number, and subunit dynamics is essential to understanding sHsp action. Three sHsps were analyzed for these properties: PsHsp18.1 from pea, TaHsp16.9 from wheat, and SynHsp16.6, from the cyanobacterium Synechocystis. In solution, SynHsp16.6 is a duodecamer, while TaHsp16.9 and PsHsp18.1 are dodecamers. An equilibrium between an oligomeric and suboligomeric state was observed for PsHsp18.1 and SynHsp16.6. Increasing temperatures resulted in the reversible dissociation of the TaHsp16.9 oligomer into a suboligomeric species. These results indicate that subunit dynamics are important for sHsp function. Interactions between sHsp and substrate in sHsp/substrate complexes and the mechanism by which substrate is transferred to refolding chaperones are poorly defined. C-terminal affinity-tagged sHsps were used to investigate these issues. This analysis revealed that while some sHsp subunits within sHsp/substrate complexes remain dynamic, complex size remains unchanged and association of substrate with sHsp is not similarly dynamic. These data suggest a model in which ATP-dependent chaperones associate directly with sHsp-bound substrate to initiate refolding. The homologous TaHsp16.9 and PsHsp18.1 are structurally similar. However, TaHsp16.9 interacts differently with substrate and is less effective at protecting substrate than PsHsp18.1. Studies with chimeric sHsps made between PsHsp18.1 and TaHsp16.9 revealed that the N-terminal arm is involved in subunit affinity, substrate protection, and substrate refolding, but interactions between the N-terminal arm and C-terminal domain are also critical for these aspects of chaperone activity. Additionally, the first ten residues of the N-terminal arm play a role in sHsp subunit affinity and substrate protection, but are unimportant for substrate protection.
10

Bentley, Nicola Jane. "Structural and biochemical analysis of a small heat shock protein, Hsp26, from Saccharomyces cerevisiae." Thesis, University of Kent, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304620.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Small Heat Schok Protein":

1

Kegel, Kimberly Beth. Small heat shock protein αB-crystallin: Functional analysis during hypertonic stress. 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Clarke, Andrew. Metabolism. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199551668.003.0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Metabolism is driven by redox reactions, in which part of the difference in potential energy between the electron donor and acceptor is used by the organism for its life processes (with the remainder being dissipated as heat). The key process is intermediary metabolism, by which the energy stored in reserves (glycogen, starch, lipid, protein) is transferred to ATP. In aerobic respiration the electrons released from reserves are passed to oxygen, which is thereby reduced to water. Not all ATP regeneration involves oxygen as the final electron acceptor, and not all oxygen is used for ATP regeneration, but oxygen consumption is often the simplest and most practical way to measure the rate of intermediary metabolism and the errors in doing so are believed to be small. The costs of existence, as estimated by resting metabolism, represent only a part (~ 25%) of the daily energy expenditure of organisms. The costs of the organism’s ecology (growth, reproduction, movement and so on) are additional to existence costs. Resting metabolic rate increases with cell temperature, indicating that it costs more energy to maintain a warm cell than it does a cool or cold cell. The temperature sensitivity of resting metabolism is highly conserved across organisms.

Book chapters on the topic "Small Heat Schok Protein":

1

Boelens, Wilbert C. "Role of Small Heat Shock Protein HspB5 in Cancer." In Heat Shock Proteins, 301–14. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16077-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Voellmy, R., Y. Luo, R. Mestril, J. Amin, and J. Ananthan. "Mechanisms of Regulation of Small Heat Shock Protein Genes in Drosophila." In Heat Shock, 35–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76679-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Török, Zsolt, Ana-Maria Pilbat, Imre Gombos, Enikö Hocsák, Balázs Sümegi, Ibolya Horváth, and László Vígh. "Evidence on Cholesterol-Controlled Lipid Raft Interaction of the Small Heat Shock Protein HSPB11." In Heat Shock Proteins, 75–85. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4740-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Norris, Carol E., and Lawrence E. Hightower. "Discovery of Two Distinct Small Heat Shock Protein (HSP) Families in the Desert Fish Poeciliopsis." In Small Stress Proteins, 19–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56348-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Härndahl, Ulrika, Niklas Gustavsson, Roberta Buffoni, Janet F. Bornman, Carin Jarl-Sunesson, and Cecilia Sundby. "The Chloroplast Small Heat Shock Protein in Transgenic Arabidopsis Thaliana." In Photosynthesis: Mechanisms and Effects, 2461–64. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Osteryoung, Katherine W., Brian Pipes, Nadja Wehmeyer, and Elizabeth Vierling. "Studies of a Chloroplast-Localized Small Heat Shock Protein in Arabidopsis." In Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, 97–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79133-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

van Noort, Johannes M. "Microbial infection generates pro-inflammatory autoimmunity against the small heat shock protein alpha B-crystallin and provides the fuel for the development of multiple sclerosis." In Heat Shock Proteins and Inflammation, 245–56. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8028-2_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arce, D. P., F. J. Krsticevic, M. R. Bertolaccini, J. Ezpeleta, S. D. Ponce, and E. Tapia. "Analysis of Small Heat Shock Protein Gene Family Expression (RNA-Seq) during the Tomato Fruit Maturation." In VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014, 679–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13117-7_173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gustavsson, N., A. Emanuelsson, U. Härndahl, and C. Sundby. "The Chloroplast Small Heat Shock Protein Studied by Peptide Mapping and Mass Spectrometry Using Purified Recombinant Protein From Arabidopsis Thaliana and Pea." In Photosynthesis: Mechanisms and Effects, 2457–60. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klosterhalfen, B., C. Töns, H. M. Klein, L. Tietze, C. Mittermayer, M. Anurov, B. S. Titkova, and A. Öttinger. "Zinc Induces Heat Shock Protein-70 and Metallothionein Expression in the Small Bowel and Protects Against Ischemia." In Peritoneal Adhesions, 64–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60433-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Small Heat Schok Protein":

1

Doseff, AI, OH Voss, and ME Gonzalez-Mejia. "The Small Heat Shock Protein 27 Regulates Monocyte/Macrophage Survival and Differentiation." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a1354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cai, Wenhao, and Lingyun Chen. "Fabrication of strong heat-induced protein gels by combing soluble pea protein aggregates and κ-carrageenan." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/iryd5248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Pea protein has attracted attentions as an alternative for soy protein, but its weaker gelling properties have limited applications in food formulations. In this study, heat induced soluble pea protein aggregates were prepared in the first step, followed by the heat induced gelation of the soluble pea protein aggregates in the presence of small amount of κ-carrageenan. The mechanical property measurement indicated that the complex gel strength can be modulated by modifying the pea protein aggregate properties to achieve compressive strength up to 14.15 kPa. In addition, such strong gels were achieved at relatively low concentration of protein (7.5%) and κ-carrageenan (0.5%), thus are advantageous for practical applications. The surface hydrophobicity, transmission electron microscopy (TEM) and FTIR characterizations suggest that pea protein particulate aggregates with hydrophobic patches on surface can serve as the active building blocks to establish a homogenous three-dimensional network of highly crosslinked structures with small pore size, thus leading to gels of superior mechanical strength when compared to gels prepared from pea protein isolate with κ-carrageenan. This research has provided a novel approach for structuring and texturization of plant protein based foods by using protein aggregates and contributed to the understanding of mechanism of gel formation from pea protein aggregates in the presence of κ-carrageenan.
3

Kwon, Jin-Sun, An-Na Moon, Joon-Tae Park, Soo-Jung Hong, Jin-Ah Jeong, Sung-Wook Kwon, Myong-Jae Lee, et al. "Abstract 2768: IDH1057, A novel, synthetic, small molecule inhibitor of heat shock protein 90(Hsp90)." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Balaburski, Gregor M., Julie Leu, Seth A. Hayik, Mark Andrake, Roland Dunbrack, Donna George, and Maureen E. Murphy. "Abstract 3771: Identification of novel small molecule inhibitors of the inducible heat shock protein Hsp70." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hendrix, A., D. Maynard, P. Pauwels, G. Braems, H. Denys, R. Van den Broecke, S. Van Belle, et al. "The Secretory Small GTPase Rab27B Regulates Invasive Tumor Growth and Metastasis through Extracellular Heat Shock Protein 90α." In Abstracts: Thirty-Second Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 10‐13, 2009; San Antonio, TX. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.sabcs-09-6144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Komiya, Atsuki, Shigenao Maruyama, and Shuichi Moriya. "Development of Precise Visualization System for Small Transient Diffusion Field of Protein Using Phase Shifting Interferometer." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper deals with a development of precise visualization system for mass diffusion field of micro quantity proteins by using phase shifting interferometer. The visualization system developed in this study could solve several measurement difficulties and accomplish quick and precise measurement of mass diffusion coefficient. For the observation of small transient diffusion field, Mach-Zehnder type phase shifting interferometer and small shearing cell were utilized. The designed small shearing cell requires only 10 micro liter solutions to form the transient diffusion field. As a target protein, lysozyme extracted from hen egg white was used. For the avoidance of protein denaturation, the lysozyme was dissolved in universal buffer solution over a wide pH range from pH 4.29 to 8.44. This range corresponds to that of digestive system in human body. Also, to investigate concentration dependency of mass diffusion coefficient, solutions over a wide range of concentration were prepared. The experimental results indicated that the concentration profile in a diffusion field could be detected clearly even though the field of view is smaller than 1.0mm square. The mass diffusion coefficient was derived by an analytical method proposed by authors. This method can derive mass diffusion coefficient as a function of concentration from one measurement datum. From the experimental data, the dependency of pH value of surrounding buffer and that of concentration on diffusion phenomena were discussed.
7

Chen, Hongpeng, Xiaofeng Tan, and Fangming Hu. "Cloning, Bioinformatics Analysis and Functional Identification of a Novel Small Heat Shock Protein Gene from Camellia oleifera Seed." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Taldone, Tony, Pallav D. Patel, Yanlong Kang, Anna Rodina, Tanaji T. Talele, and Gabriela Chiosis. "Abstract 3895: Rational design of small molecule inhibitors that bind to an allosteric pocket on human heat shock protein 70 (Hsp70)." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dong, H., X. Wan, J. Zhang, C. Ye, W. Zhong, and S. Cai. "Targeting Extracellular Heat Shock Protein 90α to Overcome Resistance to Gefitinib in Non Small Cell Lung Cancer via Epithelial to Mesenchymal Transition." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a3963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Du, Jiangzhou, and Hangming Dong. "1G6-D7 regulates the extracellular heat shock protein 90 involved in DNA damage repair affecting tumor immunity in non-small cell lung cancer." In ERS International Congress 2023 abstracts. European Respiratory Society, 2023. http://dx.doi.org/10.1183/13993003.congress-2023.oa1446.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Small Heat Schok Protein":

1

Hiremath, Shiv, Kirsten Lehtoma, and Gopi K. Podila. Identification of a small heat-shock protein associated with a ras-mediated signaling pathway in ectomycorrhizal symbiosis. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station, 2009. http://dx.doi.org/10.2737/nrs-rp-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography