To see the other types of publications on this topic, follow the link: Small-angle light scattering.

Journal articles on the topic 'Small-angle light scattering'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Small-angle light scattering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kuščer, Ivan. "Multiple small-angle scattering of light." Progress in Nuclear Energy 34, no. 4 (January 1999): 355–59. http://dx.doi.org/10.1016/s0149-1970(98)00016-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ng, T. W. "Scattering-angle calibration in an automated small-angle light-scattering apparatus." Journal of Applied Polymer Science 62, no. 4 (October 24, 1996): 617–19. http://dx.doi.org/10.1002/(sici)1097-4628(19961024)62:4<617::aid-app4>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Hua, Jianjun Xie, Marco Lattuada, and Massimo Morbidelli. "Scattering Structure Factor of Colloidal Gels Characterized by Static Light Scattering, Small-Angle Light Scattering, and Small-Angle Neutron Scattering Measurements." Langmuir 21, no. 8 (April 2005): 3291–95. http://dx.doi.org/10.1021/la047403n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Priore, Brian E., and Lynn M. Walker. "Coalescence analysis through small-angle light scattering." AIChE Journal 47, no. 12 (December 2001): 2644–52. http://dx.doi.org/10.1002/aic.690471204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Holoubek, Jaroslav, Čestmír Koňák, and Petr Štěpánek. "Time-Resolved Small-Angle Light Scattering Apparatus." Particle & Particle Systems Characterization 16, no. 3 (August 1999): 102–5. http://dx.doi.org/10.1002/(sici)1521-4117(199908)16:3<102::aid-ppsc102>3.0.co;2-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Champion, J. V., A. Killey, and G. H. Meeten. "Small-angle polarized light scattering by spherulites." Journal of Polymer Science: Polymer Physics Edition 23, no. 7 (July 1985): 1467–76. http://dx.doi.org/10.1002/pol.1985.180230709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Asnaghi, Daniela, Marina Carpineti, Marzio Giglio, and Alberto Vailati. "Small angle light scattering studies concerning aggregation processes." Current Opinion in Colloid & Interface Science 2, no. 3 (June 1997): 246–50. http://dx.doi.org/10.1016/s1359-0294(97)80031-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Tuan W. "Eikonal Approximation Method for Small-angle Light Scattering." Journal of Modern Optics 35, no. 4 (April 1988): 743–52. http://dx.doi.org/10.1080/09500348814550771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thill, A., S. Désert, and M. Delsanti. "Small angle static light scattering: absolute intensity measurements." European Physical Journal Applied Physics 17, no. 3 (March 2002): 201–8. http://dx.doi.org/10.1051/epjap:2002013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ding, J., and Y. Yang. "Small Angle Light Scattering from Bipolar Nematic Droplets." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 257, no. 1 (December 1994): 63–87. http://dx.doi.org/10.1080/10587259408033765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ding, Jiandong, and Yuliang Yang. "Small Angle Light Scattering from Axial Nematic Droplets." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 238, no. 1 (January 1994): 47–60. http://dx.doi.org/10.1080/10587259408046915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Koyuncu, B., and J. C. Earnshaw. "Semi-automatic determination of scattering vector in small-angle light scattering." Journal of Physics E: Scientific Instruments 18, no. 10 (October 1985): 830–33. http://dx.doi.org/10.1088/0022-3735/18/10/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Allen, A. J., P. R. Jemian, D. R. Black, H. E. Burdette, R. D. Spal, S. Krueger, and G. G. Long. "Ultra-small-angle X-ray scattering to bridge the gap between visible light scattering and standard small-angle scattering cameras." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 347, no. 1-3 (August 1994): 487–90. http://dx.doi.org/10.1016/0168-9002(94)91933-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Montagna, G., M. Moretti, O. Nicrosini, A. Pallavicini, and F. Piccinini. "Light pair correction to Bhabha scattering at small angle." Nuclear Physics B 547, no. 1-2 (May 1999): 39–59. http://dx.doi.org/10.1016/s0550-3213(99)00064-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Gilbert, P. H., and A. J. Giacomin. "Small-angle light scattering in large-amplitude oscillatory shear." Physics of Fluids 31, no. 10 (October 1, 2019): 103104. http://dx.doi.org/10.1063/1.5121632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Meeten, G. H., and P. Navard. "Cholesteric hydroxypropylcellulose solutions: Microscopy and small-angle light scattering." Journal of Polymer Science Part B: Polymer Physics 26, no. 2 (February 1988): 413–19. http://dx.doi.org/10.1002/polb.1988.090260214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ravey, Jean-Claude. "Small Angle Light Scattering Patterns from Micrometer-Sized Spheroids." Particle & Particle Systems Characterization 4, no. 1-4 (1987): 134–40. http://dx.doi.org/10.1002/ppsc.19870040128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Beebe, E. V., R. L. Coalson, and R. H. Marchessault. "Characterization of cellulose gels by small angle light scattering." Journal of Polymer Science Part C: Polymer Symposia 13, no. 1 (March 7, 2007): 103–22. http://dx.doi.org/10.1002/polc.5070130109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gałeski, A., T. Pakuła, and M. Kryszewski. "Small-angle light scattering (SALS) from helically twisted fibers." Journal of Polymer Science: Polymer Symposia 61, no. 1 (March 8, 2007): 35–44. http://dx.doi.org/10.1002/polc.5070610106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

CZLONKOWSKA-KOHUTNICKA, ZOFIA, TADEUSZ LIPOWIECKI, and IRENA DANIEWSKA. "Diffractometer for small-angle laser light scattering (SALLS) measurements." Polimery 37, no. 11/12 (November 1992): 520–22. http://dx.doi.org/10.14314/polimery.1992.520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

L�uger, J�rg, and Wolfram Gronski. "A melt rheometer with integrated small angle light scattering." Rheologica Acta 34, no. 1 (1995): 70–79. http://dx.doi.org/10.1007/bf00396055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Borsali, Redouane, Marguerite Rinaudo, and Laurence Noirez. "Light Scattering and Small-Angle Neutron Scattering from Polyelectrolyte Solutions: The Succinoglycan." Macromolecules 28, no. 4 (July 1995): 1085–88. http://dx.doi.org/10.1021/ma00108a040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wilcox, Thomas J. "Transport of light in a scattering medium through multiple small-angle scattering." Physical Review A 44, no. 2 (July 1, 1991): 1321–27. http://dx.doi.org/10.1103/physreva.44.1321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Castelletto, V., and I. W. Hamley. "Capillary flow behavior of worm-like micelles studied by small-angle X-ray scattering and small angle light scattering." Polymers for Advanced Technologies 17, no. 3 (2006): 137–44. http://dx.doi.org/10.1002/pat.712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Holoubek, Jaroslav, and Josef Baldrian. "Speckle patterns in small angle light scattering: The spatial autocorrelation function." Collection of Czechoslovak Chemical Communications 50, no. 12 (1985): 2873–83. http://dx.doi.org/10.1135/cccc19852873.

Full text
Abstract:
The study deals with the determination of the spatial autocorrelation function of speckle patterns caused by the small-angle light scattering from polymer films. The autocorrelation function determines the shape, size and anisometry of the speckle. The effect of the inner structure and orientation of samples (polypropylene foil, poly(decamethylene terephthalate) and a sample of polypropylene filaments) is discussed; it is shown that under the usual experimental conditions the spatial autocorrelation function of speckle patterns can be determined on the basis of the van Cittert-Zernike theorem of the classical coherence theory. The good agreement between the theoretical and experimental dependences of anisometry, the angular dependence of speckle size and the dependence of speckle size on the sample thickness confirm the suitability of a uniform description based on the classical theory of coherence. From the standpoint of the theory of speckle effect, the results presented in this study allow us to infer that in the light scattering from polymer films under usual conditions the assumptions of the application of the central limit theorem are fulfilled: in the scattering volume there is a sufficient number of scattering units, and path fluctuations due to the scattering foil exceed the wavelength of light.
APA, Harvard, Vancouver, ISO, and other styles
26

Carsughi, F., R. P. May, R. Plenteda, and J. Saroun. "Sample geometry effects on incoherent small-angle scattering of light water." Journal of Applied Crystallography 33, no. 1 (February 1, 2000): 112–17. http://dx.doi.org/10.1107/s0021889899013643.

Full text
Abstract:
Light water is frequently used as a standard for calibrating small-angle neutron scattering (SANS) data. The intensities collected for 1 and 2 mm of light water in standard quartz cells may differ by up to about 50% due to the presence of multiple and inelastic scattering [Rennie & Heenan (1993).Proceedings of ISSI Meeting, Dubna,pp. 254–260, Report E3-93-65; Teixeira (1992).Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution, edited by S. H. Chen, pp. 625–658. Dordrecht: Kluwer Academic Publishers]. Multiple scattering increases with the thickness of the sample. The use of only elastically scattered neutrons may lead to an absolute intensity of the SANS data of about a factor of 2 higher than that obtained by taking into account all of the neutrons on the detector [Ghosh & Rennie (1990).Inst. Phys. Conf. Ser.107, 233–244]. However, it is shown here that the scattering intensities collected with different ratios of sample-to-beam dimension do present large differences as a function of sample thickness. In particular, ratios smaller and larger than unity are considered and the results are discussed and compared with Monte Carlo simulations.
APA, Harvard, Vancouver, ISO, and other styles
27

Henderson, Stephen J. "Isotope effects in solution small-angle X-ray scattering." Journal of Applied Crystallography 32, no. 1 (February 1, 1999): 113–14. http://dx.doi.org/10.1107/s0021889898010498.

Full text
Abstract:
While the difference between using heavy and light water as solvents for small-angle neutron scattering experiments is well known, the lesser difference for the case of small-angle X-ray scattering with these same isotopes of water has, as yet, not been reported. This difference for the case of X-rays is discussed and quantified for several familiar materials: polystyrene latexes, proteins and lipids.
APA, Harvard, Vancouver, ISO, and other styles
28

Zhou, Jiamin, and Jing Sheng. "Small angle light backscattering of polymer blends: 1. Multiple scattering." Polymer 38, no. 15 (July 1997): 3727–31. http://dx.doi.org/10.1016/s0032-3861(96)00966-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Loiko, V. A., U. Maschke, V. Ya Zyryanov, A. V. Konkolovich, and A. A. Misckevich. "Small-angle light scattering from polymer-dispersed liquid-crystal films." Journal of Experimental and Theoretical Physics 107, no. 4 (October 2008): 692–98. http://dx.doi.org/10.1134/s1063776108100178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Stone, S., G. Bushell, R. Amal, Z. Ma, H. G. Merkus, and B. Scarlett. "Characterization of large fractal aggregates by small-angle light scattering." Measurement Science and Technology 13, no. 3 (February 8, 2002): 357–64. http://dx.doi.org/10.1088/0957-0233/13/3/318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chen, Tuan W. "Superposition principle in small‐angle light scattering at high frequency." Journal of Applied Physics 70, no. 2 (July 15, 1991): 1031–32. http://dx.doi.org/10.1063/1.349686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cipelletti, Luca, Marina Carpineti, and Marzio Giglio. "Two-color cross-correlation in small-angle static light scattering." Physical Review E 57, no. 3 (March 1, 1998): 3485–93. http://dx.doi.org/10.1103/physreve.57.3485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tabar, R. J., R. S. Stein, and D. E. Rose. "The effect of spherulitic truncation on small-angle light scattering." Journal of Polymer Science: Polymer Physics Edition 23, no. 10 (October 1985): 2059–84. http://dx.doi.org/10.1002/pol.1985.180231007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wissler, G. E., and B. Crist. "Small-angle light scattering from a distribution of spherulite sizes." Journal of Polymer Science: Polymer Physics Edition 23, no. 11 (November 1985): 2395–406. http://dx.doi.org/10.1002/pol.1985.180231112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bisyarin, Mikhail A., Mikhail A. Eronyan, Alexey Yu Kulesh, Igor K. Meshkovskiy, Alexander A. Reutsky, Artem A. Shcheglov, and Sergey V. Ustinov. "Light-emitting optical fibers with controllable anomalous small-angle scattering." Journal of the Optical Society of America B 34, no. 11 (October 23, 2017): 2396. http://dx.doi.org/10.1364/josab.34.002396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Tuan W., and Lei Ming Yang. "Simple formula for small-angle light scattering by a spheroid." Optics Communications 123, no. 4-6 (February 1996): 437–42. http://dx.doi.org/10.1016/0030-4018(95)00549-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Vogel, H. J., G. Baur, and W. Burchard. "Quantitative determination of large structures by small-angle light scattering." Colloid & Polymer Science 279, no. 2 (February 5, 2001): 166–70. http://dx.doi.org/10.1007/s003960000314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Geissler, Erik, Anne-Marie Hecht, Cyrille Rochas, Ferenc Horkay, and Peter J. Basser. "Light, Small Angle Neutron and X-Ray Scattering from Gels." Macromolecular Symposia 227, no. 1 (July 2005): 27–38. http://dx.doi.org/10.1002/masy.200550903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Rongrui, and Heng Zhao. "A Novel Method for Online Extraction of Small-Angle Scattering Pulse Signals from Particles Based on Variable Forgetting Factor RLS Algorithm." Sensors 21, no. 17 (August 26, 2021): 5759. http://dx.doi.org/10.3390/s21175759.

Full text
Abstract:
The small-angle optical particle counter (OPC) can detect particles with strong light absorption. At the same time, it can ignore the properties of the detected particles and detect the particle size singly and more accurately. Reasonably improving the resolution of the low pulse signal of fine particles is key to improving the detection accuracy of the small-angle OPC. In this paper, a new adaptive filtering method for the small-angle scattering signals of particles is proposed based on the recursive least squares (RLS) algorithm. By analyzing the characteristics of the small-angle scattering signals, a variable forgetting factor (VFF) strategy is introduced to optimize the forgetting factor in the traditional RLS algorithm. It can distinguish the scattering signal from the stray light signal and dynamically adapt to the change in pulse amplitude according to different light absorptions and different particle sizes. To verify the filtering effect, small-angle scattering pulse extraction experiments were carried out in a simulated smoke box with different particle properties. The experiments show that the proposed VFF-RLS algorithm can effectively suppress system stray light and background noise. When the particle detection signal appears, the algorithm has fast convergence and tracking speed and highlights the particle pulse signal well. Compared with that of the traditional scattering pulse extraction method, the resolution of the processed scattering pulse signal of particles is greatly improved, and the extraction of weak particle scattering pulses at a small angle has a greater advantage. Finally, the effect of filter order in the algorithm on the results of extracting scattering pulses is discussed.
APA, Harvard, Vancouver, ISO, and other styles
40

Nishida, Koji, Hiroki Ogawa, Go Matsuba, Takashi Konishi, and Toshiji Kanaya. "A high-resolution small-angle light scattering instrument for soft matter studies." Journal of Applied Crystallography 41, no. 4 (June 6, 2008): 723–28. http://dx.doi.org/10.1107/s002188980801265x.

Full text
Abstract:
A small-angle light scattering (SALS) instrument with a high resolution at low angles and a high signal-to-noise ratio has been developed. Both a wide dynamic range and a wide scattering vector range are achieved using a two-dimensional array of complementary metal oxide semiconductor image sensors. These instrument characteristics have enabled us to obtain high-quality light scattering data from soft matter systems. This setup is especially well suited to studies of systems with a weak scattering power and/or a time-dependent structure evolution in a wide spatial range from submicrometre to submillimetre. An application of this instrument to a polyelectrolyte blend and an extremely thin blend film are reported.
APA, Harvard, Vancouver, ISO, and other styles
41

GANOULIS, N., and M. HATZIS. "LIGHT SCATTERING BY AN AXIONIC DOMAIN WALL." Modern Physics Letters A 01, no. 06 (September 1986): 409–14. http://dx.doi.org/10.1142/s0217732386000518.

Full text
Abstract:
We discuss the electromagnetic scattering of a plane wave by an axionic domain wall, under an arbitrary incident angle. We estimate the reflection coefficient which depends on the plane wave frequency and angle and take always a very small value. The two independent circular polarizations propagate with different velocities through the wall.
APA, Harvard, Vancouver, ISO, and other styles
42

Izumi, Atsushi, Takeshi Takeuchi, Toshio Nakao, and Mitsuhiro Shibayama. "Dynamic light scattering and small-angle neutron scattering studies on phenolic resin solutions." Polymer 52, no. 19 (September 2011): 4355–61. http://dx.doi.org/10.1016/j.polymer.2011.06.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Borsali, Redouane, Huy Nguyen, and R. Pecora. "Small-Angle Neutron Scattering and Dynamic Light Scattering from a Polyelectrolyte Solution: DNA." Macromolecules 31, no. 5 (March 1998): 1548–55. http://dx.doi.org/10.1021/ma970919b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mazeron, P., S. Muller, and H. El Azouzi. "Deformation of Erythrocytes Under Shear: A Small-Angle Light Scattering Study." Biorheology 34, no. 2 (June 1, 1997): 99–110. http://dx.doi.org/10.3233/bir-1997-34202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Maugey, J., T. Van Nuland, and P. Navard. "Small angle light scattering investigation of polymerisation induced phase separation mechanisms." Polymer 42, no. 9 (April 2001): 4353–66. http://dx.doi.org/10.1016/s0032-3861(00)00743-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Maugey, Jérôme, and Patrick Navard. "Small angle light scattering investigation of polymer dispersed liquid crystal composites." Polymer 43, no. 25 (January 2002): 6829–37. http://dx.doi.org/10.1016/s0032-3861(02)00568-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Inocêncio da Luz, R. A., H. M. Mavoko, I. Crandall, S. Deshpande, P. Lutumba, and J. P. Van geertruyden. "Small angle light scattering assay for the detection of malaria infection." Talanta 147 (January 2016): 473–77. http://dx.doi.org/10.1016/j.talanta.2015.10.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

MAZERON, P., S. MULLER, and H. ELAZOUZI. "Deformation of erythrocytes under shear: A small-angle light scattering study." Biorheology 34, no. 2 (March 1997): 99–110. http://dx.doi.org/10.1016/s0006-355x(97)00007-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Alexander, Marcela, and F. Ross Hallett. "Small-angle light scattering: instrumental design and application to particle sizing." Applied Optics 38, no. 19 (July 1, 1999): 4158. http://dx.doi.org/10.1364/ao.38.004158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Takebe, Tomoaki, Takeji Hashimoto, Benoit Ernst, Patrick Navard, and Richard S. Stein. "Small‐angle light scattering of polymer liquid crystals under shear flow." Journal of Chemical Physics 92, no. 2 (January 15, 1990): 1386–96. http://dx.doi.org/10.1063/1.458150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography