Academic literature on the topic 'Slag'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Slag.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Slag"
Zhang, Kaitian, Jianhua Liu, and Heng Cui. "Investigation on the Slag-Steel Reaction of Mold Fluxes Used for Casting Al-TRIP Steel." Metals 9, no. 4 (April 1, 2019): 398. http://dx.doi.org/10.3390/met9040398.
Full textLi, Qi Nan, Guo Jun Ma, Xiang Zhang, and Xun Cai. "Characteristics of Metallurgical Waste Slag and its Heating Behavior in a Microwave Field." Key Engineering Materials 680 (February 2016): 574–79. http://dx.doi.org/10.4028/www.scientific.net/kem.680.574.
Full textGupta, Avishek Kumar, Matti Aula, Jouni Pihlasalo, Pasi Mäkelä, Marko Huttula, and Timo Fabritius. "Preparation of Synthetic Titania Slag Relevant to the Industrial Smelting Process Using an Induction Furnace." Applied Sciences 11, no. 3 (January 27, 2021): 1153. http://dx.doi.org/10.3390/app11031153.
Full textZhao, Qiang, Lang Pang, and Dengquan Wang. "Adverse Effects of Using Metallurgical Slags as Supplementary Cementitious Materials and Aggregate: A Review." Materials 15, no. 11 (May 26, 2022): 3803. http://dx.doi.org/10.3390/ma15113803.
Full textLong, Xiao, Wenbo Luo, Guohong Lu, Falou Chen, Xiaoning Zheng, Xingfan Zhao, and Shaolei Long. "Iron Removal from Metallurgical Grade Silicon Melts Using Synthetic Slags and Oxygen Injection." Materials 15, no. 17 (September 1, 2022): 6042. http://dx.doi.org/10.3390/ma15176042.
Full textLiu, Xingbei, Chao Zhang, Huanan Yu, Guoping Qian, Xiaoguang Zheng, Hongyu Zhou, Lizhang Huang, Feng Zhang, and Yixiong Zhong. "Research on the Properties of Steel Slag with Different Preparation Processes." Materials 17, no. 7 (March 28, 2024): 1555. http://dx.doi.org/10.3390/ma17071555.
Full textPotysz, Anna, Bartosz Mikoda, and Michał Napieraj. "(Bio)dissolution of Glassy and Diopside-Bearing Metallurgical Slags: Experimental and Economic Aspects." Minerals 11, no. 3 (March 3, 2021): 262. http://dx.doi.org/10.3390/min11030262.
Full textZhou, Sheng Bo, Ai Qin Shen, and Geng Fei Li. "Interaction between Slag and Clinker during Cement Hydration Process." Advanced Materials Research 857 (December 2013): 70–74. http://dx.doi.org/10.4028/www.scientific.net/amr.857.70.
Full textPfeiffer, Andreas, Kathrin Thiele, Gerald Wimmer, and Johannes Schenk. "Laboratory Scale Evaluation of the Slag Foaming Behavior." IOP Conference Series: Materials Science and Engineering 1309, no. 1 (May 1, 2024): 012007. http://dx.doi.org/10.1088/1757-899x/1309/1/012007.
Full textJiang, Dongbin, Xiaoxuan Peng, Ying Ren, Wen Yang, and Lifeng Zhang. "Water modeling on slag entrainment in the slab continuous casting mold." Metallurgical Research & Technology 119, no. 6 (2022): 601. http://dx.doi.org/10.1051/metal/2022083.
Full textDissertations / Theses on the topic "Slag"
Nassyrov, Dmitri. "Slag solidification modeling." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119538.
Full textDeux modèles capables de prédire les diagrammes temps-température-transformation (TTT) pour des oxydes et oxyfluorures liquides ont été développés. Un des modèles est basé sur l'équation de Johnson-Mehl-Avrami-Kolmogorov (JMAK), et l'autre – utilisant la théorie classique de la nucléation (TCN). La base de données la plus récente a été utilisée pour calculer les propriétés thermodynamiques des phases liquides et solides. Le modèle basé sur l'équation JMAK a démontré un accordement avec les données expérimentales bien meilleur que la TCN. Le modèle développé dans cette étude peut être utilisé pour prédire des diagrammes TTT pour les oxydes contenant pas plus que 50 % massique de SiO2 et pour quelques oxyfluorures.
Sulasalmi, P. (Petri). "Modelling of slag emulsification and slag reduction in CAS-OB process." Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526214160.
Full textTiivistelmä CAS-OB -prosessi on sulametallurgiassa käytettävä senkkakäsittelyprosessi, joka on kehitetty teräksen kemialliseen lämmittäseen ja seostukseen. CAS-OB-prosessin pääprosessivaiheet ovat lämmitysvaihe, mahdollinen seostusvaihe ja kuonan pelkistysvaihe. CAS-OB -prosessilla tavoitellaan teräksen koostumuksen homogenisointiin ja lämpötilan kontrollointiin. Tässä tutkimuksessa kehitettiin matemaattinen reaktiomalli CAS-OB -prosessin kuonan pelkistysvaiheen kuvaamiseen. Kuonan pelkistys tapahtuu senkan pohjassa olevien huuhtelutiilien avulla suoritettavan voimakkaan kaasuhuuhtelun avulla. Pohjahuuhtelu aiheuttaa kiertävän teräsvirtauksen senkassa. Teräsvirtaus irrottaa teräksen päällä olevasta kuonakerroksesta pisaroita ja kuonan ja teräksen välinen reaktiopinta-ala kasvaa voimakkaasti. Tämä tarjoaa suotuisat olosuhteet pelkistysreaktiolle senkassa. Pelkistysreaktioiden mallintamiseksi tässä työssä kehitettiin CFD-simulaatioiden avulla alimalli, jonka avulla voidaan kuvata teräksen ja kuonan välisen pinta-alan suuruutta. Pelkistysvaiheen mallissa huomioidaan reaktioiden lisäksi myös systeemissä tapahtuva lämmösiirto. Pelkistysmalli validoitiin mittausdatalla, joka hankittiin SSAB Raahen terässulaton CAS-OB -asemalla järjestetyssä validointikampanjassa. Tutkimuksessa havaittiin, että malli kykenee hyvin ennustamaan teräksen ja kuonan koostumuksen sekä teräksen lämpötilan
Muhmood, Luckman. "Investigations of thermophysical properties of slags with focus on slag-metal interface." Doctoral thesis, KTH, Materialens processvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26611.
Full textQC 20101130
Isaksson, Jenny. "Slag Cleaning of a Reduced Iron Silicate Slag by Settling : Influence of Process Parameters and Slag Modification on Copper Content." Licentiate thesis, Luleå tekniska universitet, Mineralteknik och metallurgi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84798.
Full textWang, Shao-Dong. "Alkaline activation of slag." Thesis, Imperial College London, 1995. http://hdl.handle.net/10044/1/7767.
Full textNg, Ka Wing 1965. "Skimming of fluid slag." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33340.
Full textBerryman, Eleanor. "Carbonation of steel slag." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110434.
Full textL'industrie du fer et de l'acier est en pleine croissance et sa production mondiale a augmenté de 65% au cours des dix dernières années (World Steel Association, 2012). Malheureusement, elle est également responsable d'un quart des émissions industrielles de CO2 ce qui en fait la plus importante source industrielle de CO2 atmosphérique (International Energy Agency (IEA), 2007).La carbonatation minérale fournit une méthode robuste pour la séquestration permanente du CO2 sous une forme écologiquement inerte. La larnite (Ca2SiO4), constituant principal des scories d'acier, réagit aisément avec le CO2 aqueux (Santos et al., 2009). Par conséquent, sa carbonatation offre une importante occasion de réduire à la source les émissions de CO2. Un avantage potentiel supplémentaire de ce traitement est de rendre les scories d'acier convenables pour le recyclage. Cette étude examine l'impact de la température, le flux molaire surfacique du fluide carbonaté, et d'un gradient de réaction sur la dissolution et la carbonatation des scories d'acier. Elle s'inscrit dans une étude plus large visant à déterminer les conditions optimisant la conversion de la larnite, et d'autres silicates de calcium, à la calcite.Des expériences ont été menées sur des grains de scories d'acier d'un diamètre de 2 à 3 mm fournis par Tata Steel RD&T. Un mélange de CO2-H2O a été pompé à travers un réacteur continu contenant ces grains et maintenu à une température entre 120°C et 200°C, une pression de 250 bar et à des flux molaires surfaciques de 0.8 à 6 mmol/cm2min. Chaque expérience a duré de 3 à 7 jours. Le fluide CO2-H2O a réagi avec les grains de scories d'acier et a formé des minéraux de carbonate de calcium contenant du phosphore. À flux molaire surfacique élevé, soit 6 mL/cm2min, ces phases sont dissoutes aux bords des grains, laissant place à une bordure poreuse d'oxydes d'aluminum et de fer. Une augmentation de la température a augmenté la vitesse de cette réaction. A valeur intermédaire de flux molaire surfacique, 0.8 mL/cm2min, le degré de carbonatation a augmenté. Au lieu laisser des bordures poreuses d'oxydes, les minéraux de calcium primaires en marge des grains ont plutôt été remplacés par des phases de calcium carbonate contenant du phosphore. En plus, l'usage d'un réacteur plus long a créé un gradient de réaction et maintenu la supersaturation du fluide relative au carbonate de calcium qui a enrobé les grains. Les scories d'acier exposées au fluide dans un réacteur discontinu (sans flux de fluide) ont été moins carbonatées; la dissolution non-congruente de la scorie a pris place suivie par l'enrobage des grains de scories par le carbonate, et ce dernier a réduit la surface de réaction de la scorie avec le fluide.Les résultats de cette étude démontrent que la carbonatation par le CO2 aqueux des scories d'acier à granulométrie relativement grossière est possible et qu'elle peut être optimisée en variant le flux molaire surfacique du fluide. Les expériences de ce type contribueront à la réduction éventuelle des émissions industrielles globales de CO2.
Ekengård, Johan. "Aspects on slag/metal equilibrium calculations and metal droplet characteristics in ladle slags." Licentiate thesis, KTH, Materials Science and Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1788.
Full textIn the present work the mixing between the metal and slagphase during the ladle refining process from tapping from theelectric arc furnace to casting in two different Swedish steelplants has been studied.
Three slag models and the sulphur-oxygen equilibrium betweenslag and steel was used together with the dilute solution modelfor the liquid steel phase to predict the equilibrium oxygenactivity in steel bulk and metal droplets in top slag inequilibrium with the top slag. The predicted oxygen activitieswere compared with measured oxygen activities from the steelbulk. The results show significant discrepancies between thecalculated and measured oxygen activities and the reasons forthe differences are discussed.
Metal droplet distribution in slag samples have also beendetermined using classification according to the Swedishstandard SS111116. It was found that most metal droplets arefound in the slag samples taken before vacuum degassing. Thetotal area between steel droplets and slag has been determinedto be 3 to 14 times larger than the projected flat interfacearea between top slag and steel. The effect of slag viscosityand reactions between steel and slag on the metal dropletformation in slags is also discussed.
The chemical composition of the metal droplets in the topslag was determined and possible reactions taking place betweenthe steel droplets and the slag was studied. Differencesbetween steel droplet compositions and the bulk steelcomposition are discussed. The results show significantdifferences between steel droplet and bulk steelcomposition.
Key words:oxygen activity, metal droplets, sulphur,slag, ladle, refining, distribution.
Johnston, Murray. "Thermodynamics of selenium and tellurium in molten metallurgical slags and alloys." University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0064.
Full textGautier, Annaig. "Luminescence dating of archaeometallurgical slag." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326805.
Full textBooks on the topic "Slag"
1947-, Hare David, ed. Slag. London]: Bloomsbury, 2013.
Find full textPrunty, Andersen. Slag attack. Portland, OR: Eraserhead Press, 2010.
Find full textZamalloa, V. Manuel. Slag foaming. Ottawa: National Library of Canada, 1992.
Find full textEisenhüttenleute, Verein Deutscher, and Verein Deutscher Eisenhüttenleute. Ausschuss für Metallurgische Grundlagen, eds. Slag atlas. Düsseldorf: Verlag Stahleisen, 1995.
Find full textSmirnova, L. A., dokt. tekhn. nauk., Deri͡a︡bina A. A, and Uralʹskiĭ nauchno-issledovatelʹskiĭ institut chernykh metallov., eds. Shlaki chernoĭ metallurgii, ikh pererabotka i ispolʹzovanie. Sverdlovsk: Uralʹskiĭ nauchno-issl. in-t chernykh metallov, 1990.
Find full textBril, Martin. De Franse slag. Amsterdam: Uitgeverij 521, 2004.
Find full textDorsman, Leen. 1600, slag bij Nieuwpoort. Hilversum: Verloren, 2000.
Find full textDudley, Anton. Slag heap: A play. New York: Playscripts, Inc., 2011.
Find full textWaa, Frits van der, 1954-, ed. De slag van Andriessen. Amsterdam: De Bezige Bij, 1993.
Find full textVries, Izak De. Kom slag ʼn bees. Kaapstad: Tafelberg, 1998.
Find full textBook chapters on the topic "Slag"
Ying, Qu, and Xu Kuangdi. "Slag." In The ECPH Encyclopedia of Mining and Metallurgy, 1–2. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_1171-1.
Full textGooch, Jan W. "Weld Slag." In Encyclopedic Dictionary of Polymers, 809. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12782.
Full textShamsuddin, Mohammad. "Metallurgical Slag." In Physical Chemistry of Metallurgical Processes, Second Edition, 107–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58069-8_4.
Full textThanh, H. T., M. J. Tapas, J. Chandler, and V. Sirivivatnanon. "Creep of Slag Blended Cement Concrete with and Without Activator." In Lecture Notes in Civil Engineering, 177–85. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_19.
Full textLv, Xuewei, and Zhiming Yan. "Slag Structure of High Alumina Blast Furnace Slag." In High Temperature Physicochemical Properties of High Alumina Blast Furnace Slag, 43–76. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3288-5_3.
Full textIguchi, Manabu, and Olusegun J. Ilegbusi. "Slag–Metal Interaction." In Modeling Multiphase Materials Processes, 215–46. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7479-2_6.
Full textLiu, Liu, and Xu Kuangdi. "Slag Splashing Technology." In The ECPH Encyclopedia of Mining and Metallurgy, 1–2. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_993-1.
Full textLubyanoi, Dmitriy, Evgeniy Kuzin, Evgeniy Zvarych, Dmitriy Malyshkin, and Olga Semenova. "Transportation of Liquid Slag in Cast Iron Slag Bowls." In Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2022), 1–10. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-37978-9_1.
Full textPerederiy, llya, Vladimiros G. Papangelakis, and Indje Mihaylov. "Nickel Smelter Slag Microstructure and Its Effect on Slag Leachability." In T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, 225–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118364833.ch20.
Full textHe, Mingsheng, Bowen Li, Wangzhi Zhou, Huasheng Chen, Meng Liu, and Long Zou. "Preparation and Characteristics of Steel Slag Ceramics from Converter Slag." In The Minerals, Metals & Materials Series, 13–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72484-3_2.
Full textConference papers on the topic "Slag"
Hamama, Ayoub, M. Harrami, M. Saadi, A. Assani, and Adeljebbar Diouri. "Physico-Chemical Characterization of the Electric Arc Furnace Slag (EAFS) of the Sonasid-Jorf Steelworks - Morocco." In 4th International Conference on Bio-Based Building Materials. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/www.scientific.net/cta.1.691.
Full textGudenau, H. W., H. Hoberg, and A. Mayerhofer. "Hot Gas Cleaning for Combined Cycle Based on Pressurized Coal Combustion." In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-417.
Full textLiu, Sheng, and Yingli Hao. "A Critical Review of Slag Properties of Chinese Coals for Entrained Flow Coal Gasifier." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43307.
Full textSun, Xiaowei, Wanyang Niu, and Jingbo Zhao. "Performance Research on Slag-Steel Slag Based Composite Portland Cement." In 2015 International Conference on Advanced Engineering Materials and Technology. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icaemt-15.2015.142.
Full textDunster, A. "The use of blastfurnace slag and steel slag as aggregates." In Proceedings of the Fourth European Symposium on Performance of Bituminous and Hydraulic Materials in Pavements, Bitmat 4. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203743928-38.
Full textLee, Junesuk, Geon-Tae Ahn, Byoung-Ju Yun, and Soon-Yong Park. "Slag Removal Path Estimation by Slag Distribution and Deep Learning." In 15th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008944602460252.
Full textEne, Nicoleta Mariana, Carmen Răcănel, and Adrian Burlacu. "The study of moisture susceptibility for asphalt mixtures containing blast furnace slags." In 6th International Conference on Road and Rail Infrastructure. University of Zagreb Faculty of Civil Engineering, 2021. http://dx.doi.org/10.5592/co/cetra.2020.1049.
Full textYatsenko, E. A., B. M. Goltsman, V. A. Smolii, and A. S. Kosarev. "Foamed slag glass - eco-friendly insulating material based on slag waste." In 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2015. http://dx.doi.org/10.1109/eeeic.2015.7165270.
Full textYanzhao, L., J. Chenxi, W. Leichuan, S. Wei, C. Yang, and T. Zhihong. "Double Slag Modification Method for Reducing Slag Oxidation of IF Steel." In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017/mst_2017_622_627.
Full textYanzhao, L., J. Chenxi, W. Leichuan, S. Wei, C. Yang, and T. Zhihong. "Double Slag Modification Method for Reducing Slag Oxidation of IF Steel." In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017mst/2017/mst_2017_622_627.
Full textReports on the topic "Slag"
Gorman, Patrick K. Slag recycling of irradiated vanadium. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/115735.
Full textSolomon, P. R., and J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/7152112.
Full textSolomon, P. R., and J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7169639.
Full textSolomon, P. R., and J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/7249623.
Full textSolomon, P. R., and J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/7008009.
Full textSolomon, P. R., J. R. Markham, P. E. Best, and Zhen-Zhong Yu. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/7054651.
Full textVerian, Kho Pin, Parth Panchmatia, and Jan Olek. Investigation of Use of Slag Aggregates and Slag Cements in Concrete Pavements to Reduce the Maintenance Cost. Purdue University, May 2018. http://dx.doi.org/10.5703/1288284316362.
Full textYildirim, Irem, and Monica Prezzi. Use of Steel Slag in Subgrade Applications. West Lafayette, Indiana: Purdue University, 2011. http://dx.doi.org/10.5703/1288284314275.
Full textMcDaniel, E. (Immobilization of technetium in blast furnace slag). Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5385009.
Full textRudisill, T. S., J. H. Gray, D. G. Karraker, and G. T. Chandler. Canyon dissolution of sand, slag, and crucible residues. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/574512.
Full text