Journal articles on the topic 'Skyrmion dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Skyrmion dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yu, X. Z., D. Morikawa, K. Nakajima, et al. "Motion tracking of 80-nm-size skyrmions upon directional current injections." Science Advances 6, no. 25 (2020): eaaz9744. http://dx.doi.org/10.1126/sciadv.aaz9744.
Full textShimojima, Takahiro, Asuka Nakamura, Xiuzhen Yu, et al. "Nano-to-micro spatiotemporal imaging of magnetic skyrmion’s life cycle." Science Advances 7, no. 25 (2021): eabg1322. http://dx.doi.org/10.1126/sciadv.abg1322.
Full textShu, Yun, Qianrui Li, Jing Xia, et al. "Realization of the skyrmionic logic gates and diodes in the same racetrack with enhanced and modified edges." Applied Physics Letters 121, no. 4 (2022): 042402. http://dx.doi.org/10.1063/5.0097152.
Full textZhao, Xuebing, Chiming Jin, Chao Wang, et al. "Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks." Proceedings of the National Academy of Sciences 113, no. 18 (2016): 4918–23. http://dx.doi.org/10.1073/pnas.1600197113.
Full textLin, Jia-Qiang, Ji-Pei Chen, Zhen-Yu Tan, et al. "Manipulation of Skyrmion Motion Dynamics for Logical Device Application Mediated by Inhomogeneous Magnetic Anisotropy." Nanomaterials 12, no. 2 (2022): 278. http://dx.doi.org/10.3390/nano12020278.
Full textBao, Bei, Mingming Yang, and Ming Yan. "Asymmetric Motion of Magnetic Skyrmions in Ferromagnetic Nanotubes Induced by a Magnetic Field." Symmetry 14, no. 6 (2022): 1195. http://dx.doi.org/10.3390/sym14061195.
Full textCoelho, Rodrigo C. V., Mykola Tasinkevych, and Margarida M. Telo da Gama. "Dynamics of flowing 2D skyrmions." Journal of Physics: Condensed Matter 34, no. 3 (2021): 034001. http://dx.doi.org/10.1088/1361-648x/ac2ca9.
Full textCoelho, Rodrigo C. V., Mykola Tasinkevych, and Margarida M. Telo da Gama. "Dynamics of flowing 2D skyrmions." Journal of Physics: Condensed Matter 34, no. 3 (2021): 034001. http://dx.doi.org/10.1088/1361-648x/ac2ca9.
Full textBrearton, Richard, Maciej W. Olszewski, Shilei Zhang, et al. "Skyrmions in anisotropic magnetic fields: strain and defect driven dynamics." MRS Advances 4, no. 11-12 (2019): 643–50. http://dx.doi.org/10.1557/adv.2019.43.
Full textLi, Yang, and Hua Pang. "The skyrmion annihilations induced by local reversal of background field in a skyrmion lattice." Journal of Physics D: Applied Physics 55, no. 20 (2022): 205303. http://dx.doi.org/10.1088/1361-6463/ac4a39.
Full textLiu, Jiahao, Zidong Wang, Teng Xu, et al. "The 20-nm Skyrmion Generated at Room Temperature by Spin-Orbit Torques." Chinese Physics Letters 39, no. 1 (2022): 017501. http://dx.doi.org/10.1088/0256-307x/39/1/017501.
Full textZhong, Anruo, Xiaoming Lan, Yangfan Hu, and Biao Wang. "Dynamics and stability of skyrmions in a bent nano-beam." New Journal of Physics 24, no. 3 (2022): 033019. http://dx.doi.org/10.1088/1367-2630/ac3a82.
Full textWu, Kai, Sheng Yang, Yuelei Zhao, Xue Liang, Xiangjun Xing, and Yan Zhou. "Tunable skyrmion–edge interaction in magnetic multilayers by interlayer exchange coupling." AIP Advances 12, no. 5 (2022): 055210. http://dx.doi.org/10.1063/5.0084546.
Full textAhrens, Valentin, Luca Gnoli, Domenico Giuliano, et al. "Skyrmion velocities in FIB irradiated W/CoFeB/MgO thin films." AIP Advances 12, no. 3 (2022): 035325. http://dx.doi.org/10.1063/9.0000287.
Full textTrukhanova, Mariya Iv. "Quantum hydrodynamics approach for the research of magnetic skyrmions." Modern Physics Letters B 34, no. 18 (2020): 2050204. http://dx.doi.org/10.1142/s0217984920502048.
Full textDai, Y. Y., H. Wang, T. Yang, and Z. D. Zhang. "Resonant excitation of coupled skyrmions by spin-transfer torque." International Journal of Modern Physics B 30, no. 02 (2016): 1550254. http://dx.doi.org/10.1142/s0217979215502549.
Full textDavis, Timothy J., David Janoschka, Pascal Dreher, Bettina Frank, Frank-J. Meyer zu Heringdorf, and Harald Giessen. "Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution." Science 368, no. 6489 (2020): eaba6415. http://dx.doi.org/10.1126/science.aba6415.
Full textAndrade Santece, Isaac, Josiel Carlos Souza Gomes, Danilo Toscano, et al. "Quantitative behavior study of velocity, radius and topological charge on skyrmion/edge interaction dynamics on Co/Pt nanotrack." Quarks: Brazilian Electronic Journal of Physics, Chemistry and Materials Science 3, no. 1 (2020): 50–65. http://dx.doi.org/10.34019/2674-9688.2020.v3.31402.
Full textChoi, Byoung, Mukesh Aryal, Minyeong Choi, and Yang-Ki Hong. "Spin–orbit torque driven nano-oscillators based on synthetic Néel-like skyrmion in magnetic tunnel junction." AIP Advances 12, no. 5 (2022): 055013. http://dx.doi.org/10.1063/5.0088199.
Full textZhao, Xuefeng, Di Wang, Hao Zhang, et al. "Tailoring skyrmion motion dynamics via magnetoelectric coupling: Toward highly energy-efficient and reliable non-volatile memory applications." Journal of Applied Physics 132, no. 8 (2022): 084902. http://dx.doi.org/10.1063/5.0103237.
Full textMAITY, ARUN. "SKYRME MODEL OF BARYONS AND WEAK RADIATIVE DECAYS." International Journal of Modern Physics A 09, no. 19 (1994): 3353–65. http://dx.doi.org/10.1142/s0217751x94001321.
Full textCastillo-Sepúlveda, Sebastián, Javier A. Vélez, Rosa M. Corona, Vagson L. Carvalho-Santos, David Laroze, and Dora Altbir. "Skyrmion Dynamics in a Double-Disk Geometry under an Electric Current." Nanomaterials 12, no. 18 (2022): 3086. http://dx.doi.org/10.3390/nano12183086.
Full textChen, Xing, Wang Kang, Daoqian Zhu, et al. "Skyrmion dynamics in width-varying nanotracks and implications for skyrmionic applications." Applied Physics Letters 111, no. 20 (2017): 202406. http://dx.doi.org/10.1063/1.5005953.
Full textZUK, JOSEF A. "ASYMPTOTIC BEHAVIOUR OF THE VACUUM ENERGY FOR SMALL SKYRMIONS." International Journal of Modern Physics A 05, no. 18 (1990): 3549–97. http://dx.doi.org/10.1142/s0217751x90001549.
Full textZhao, Rongzhi, Wenchao Chen, Chenglong Hu, et al. "Tuning Resonance Frequency of Spin Wave Localized in an Isolated Skyrmion by Magnetoelectric Couplings." SPIN 09, no. 03 (2019): 1950009. http://dx.doi.org/10.1142/s2010324719500097.
Full textLee, Oscar, Jan Sahliger, Aisha Aqeel, et al. "Tunable gigahertz dynamics of low-temperature skyrmion lattice in a chiral magnet." Journal of Physics: Condensed Matter 34, no. 9 (2021): 095801. http://dx.doi.org/10.1088/1361-648x/ac3e1c.
Full textLim, Zhi Shiuh, Hariom Jani, T. Venkatesan, and A. Ariando. "Skyrmionics in correlated oxides." MRS Bulletin 46, no. 11 (2021): 1053–62. http://dx.doi.org/10.1557/s43577-021-00227-9.
Full textYokouchi, Tomoyuki, Shintaro Hoshino, Naoya Kanazawa, et al. "Current-induced dynamics of skyrmion strings." Science Advances 4, no. 8 (2018): eaat1115. http://dx.doi.org/10.1126/sciadv.aat1115.
Full textDiep, H. T., Sahbi El Hog, and Aurélien Bailly-Reyre. "Skyrmion crystals: Dynamics and phase transition." AIP Advances 8, no. 5 (2018): 055707. http://dx.doi.org/10.1063/1.5006269.
Full textFerrer, A. Villares, and A. O. Caldeira. "Skyrmion dynamics in quantum Hall ferromagnets." Physical Review B 61, no. 4 (2000): 2755–64. http://dx.doi.org/10.1103/physrevb.61.2755.
Full textDin, A. M., and W. J. Zakrzewski. "Skyrmion dynamics in 2 + 1 dimensions." Nuclear Physics B 259, no. 4 (1985): 667–76. http://dx.doi.org/10.1016/0550-3213(85)90006-9.
Full textPiette, Bernard, and Wojtek J. Zakrzewski. "Skyrmion dynamics in (2 + 1) dimensions." Chaos, Solitons & Fractals 5, no. 12 (1995): 2495–508. http://dx.doi.org/10.1016/0960-0779(94)e0111-2.
Full textZhang, Zhiyu, Min Xu, Guiqian Jiang, et al. "High-density racetrack memory based on magnetic skyrmion bags controlled by voltage gates." Journal of Applied Physics 132, no. 11 (2022): 113901. http://dx.doi.org/10.1063/5.0098999.
Full textCharilaou, Michalis. "Bloch point dynamics in exchange-spring heterostructures." APL Materials 10, no. 7 (2022): 071103. http://dx.doi.org/10.1063/5.0097610.
Full textKim, Joo-Von, and Myoung-Woo Yoo. "Current-driven skyrmion dynamics in disordered films." Applied Physics Letters 110, no. 13 (2017): 132404. http://dx.doi.org/10.1063/1.4979316.
Full textKim, Tae-Hoon, Licong Peng, Ying Zhang, et al. "Formation and Relaxation Dynamics of Magnetic Skyrmion." Microscopy and Microanalysis 25, S2 (2019): 36–37. http://dx.doi.org/10.1017/s1431927619000916.
Full textMartinez, J. C., and M. B. A. Jalil. "Current-Induced Dynamics in a Skyrmion Lattice." IEEE Transactions on Magnetics 51, no. 11 (2015): 1–4. http://dx.doi.org/10.1109/tmag.2015.2436401.
Full textGareeva, Zukhra V., and Konstantin Y. Guslienko. "Magnetic skyrmion dynamics in thin cylindrical dots." physica status solidi (RRL) - Rapid Research Letters 10, no. 3 (2016): 227–32. http://dx.doi.org/10.1002/pssr.201510419.
Full textReinhardt, H., and D. Ebert. "Extended skyrmion model from quark flavour dynamics." Physics Letters B 173, no. 4 (1986): 459–64. http://dx.doi.org/10.1016/0370-2693(86)90415-6.
Full textIwasaki, Junichi, Masahito Mochizuki, and Naoto Nagaosa. "Current-induced skyrmion dynamics in constricted geometries." Nature Nanotechnology 8, no. 10 (2013): 742–47. http://dx.doi.org/10.1038/nnano.2013.176.
Full textLuis, Ricardo Francisco, Victor Raposo, Oscar Alejos, and Eduardo Martinez. "Current-Driven Skyrmion Dynamics Along Curved Tracks." IEEE Transactions on Magnetics 55, no. 7 (2019): 1–8. http://dx.doi.org/10.1109/tmag.2019.2898011.
Full textGreen, A. G. "Quantum-critical dynamics of the Skyrmion lattice." Physical Review B 61, no. 24 (2000): R16299—R16302. http://dx.doi.org/10.1103/physrevb.61.r16299.
Full textYasin, Fehmi, Kosuke Karube, Akiko Kikkawa, Yasujiro Taguchi, Yoshinori Tokura, and Xiuzhen Yu. "Current-driven Dynamics of Magnetic Skyrmion Bunches." Microscopy and Microanalysis 27, S1 (2021): 382–83. http://dx.doi.org/10.1017/s1431927621001896.
Full textGoto, Minori, Hikaru Nomura, and Yoshishige Suzuki. "Stochastic skyrmion dynamics under alternating magnetic fields." Journal of Magnetism and Magnetic Materials 536 (October 2021): 167974. http://dx.doi.org/10.1016/j.jmmm.2021.167974.
Full textCui, Shuting, Mingmin Zhu, Yang Qiu, et al. "Micromagnetic prediction strain and current co-mediated spindynamics in skyrmion-based spin-torque nano-oscillator." Journal of Physics D: Applied Physics 55, no. 17 (2022): 175003. http://dx.doi.org/10.1088/1361-6463/ac4dcb.
Full textBATTYE, RICHARD A., and PAUL M. SUTCLIFFE. "SKYRMIONS, FULLERENES AND RATIONAL MAPS." Reviews in Mathematical Physics 14, no. 01 (2002): 29–85. http://dx.doi.org/10.1142/s0129055x02001065.
Full textSavchenko, Andrii S., Vladyslav M. Kuchkin, Filipp N. Rybakov, Stefan Blügel, and Nikolai S. Kiselev. "Chiral standing spin waves in skyrmion lattice." APL Materials 10, no. 7 (2022): 071111. http://dx.doi.org/10.1063/5.0097651.
Full textChen, Xing, Wang Kang, Daoqian Zhu, et al. "A compact skyrmionic leaky–integrate–fire spiking neuron device." Nanoscale 10, no. 13 (2018): 6139–46. http://dx.doi.org/10.1039/c7nr09722k.
Full textAllder, A. E., S. E. Koonin, R. Seki, and H. M. Sommermann. "Dynamics of Skyrmion Collisions in 3 + 1 Dimensions." Physical Review Letters 59, no. 25 (1987): 2836–39. http://dx.doi.org/10.1103/physrevlett.59.2836.
Full textAng, Calvin Ching Ian, Weiliang Gan, and Wen Siang Lew. "Bilayer skyrmion dynamics on a magnetic anisotropy gradient." New Journal of Physics 21, no. 4 (2019): 043006. http://dx.doi.org/10.1088/1367-2630/ab1171.
Full text