Academic literature on the topic 'Sklearn'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sklearn.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sklearn"
Кубегенова, Айгуль Даулетовна, and Казизат Такуадинович Искаков. "DATA MINING ТЕХНОЛОГИЯСЫНЫҢ КӨМЕГІМЕН, МЕДИЦИНАДА ИНТЕЛЛЕКТУАЛДЫ ТАЛДАУ ЖАСАУ ЖӘНЕ ӘДІСТЕРДІ ҚОЛДАНУ АСПЕКТІЛЕРІ." Bulletin of Toraighyrov University. Energetics series, no. 1.2021 (March 29, 2021): 184–95. http://dx.doi.org/10.48081/uovu7003.
Full textAbugharsa, Azza. "Sentiment Analysis in Poems in Misurata Sub-dialect." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 21 (September 15, 2021): 103–14. http://dx.doi.org/10.24297/ijct.v21i.9105.
Full textRetnoningsih, Endang, and Rully Pramudita. "Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python." BINA INSANI ICT JOURNAL 7, no. 2 (December 28, 2020): 156. http://dx.doi.org/10.51211/biict.v7i2.1422.
Full textKulin, N. I., and S. B. Muravyov. "A meta-feature selection method based on the Auto-sklearn framework." Scientific and Technical Journal of Information Technologies, Mechanics and Optics 21, no. 5 (October 1, 2021): 702–8. http://dx.doi.org/10.17586/2226-1494-2021-21-5-702-708.
Full textVaganov, A. V., Z. V. Pokalyakin, and L. A. Khvorova. "Complex solution on solving problems of estimating plant resources by GIS and climate model methods." Проблемы ботаники южной сибири и монголии 20, no. 1 (September 14, 2021): 87–91. http://dx.doi.org/10.14258/pbssm.2021018.
Full textPatel, Sharad, Gurkeerat Singh, Samson Zarbiv, Kia Ghiassi, and Jean-Sebastien Rachoin. "Mortality Prediction Using SaO2/FiO2 Ratio Based on eICU Database Analysis." Critical Care Research and Practice 2021 (November 8, 2021): 1–9. http://dx.doi.org/10.1155/2021/6672603.
Full textAdugna, Tesfaye, Wenbo Xu, and Jinlong Fan. "Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images." Remote Sensing 14, no. 3 (January 25, 2022): 574. http://dx.doi.org/10.3390/rs14030574.
Full textChen, Hongsong, Caixia Meng, and Jingjiu Chen. "DDoS Attack Simulation and Machine Learning-Based Detection Approach in Internet of Things Experimental Environment." International Journal of Information Security and Privacy 15, no. 3 (July 2021): 1–18. http://dx.doi.org/10.4018/ijisp.2021070101.
Full textSerpuhovitin, Dmitry. "Prospective directions of state support of the national innovation system of Russia." SHS Web of Conferences 128 (2021): 04009. http://dx.doi.org/10.1051/shsconf/202112804009.
Full textLiu, Sijia, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble, Horst Samulowitz, Dakuo Wang, Andrew Conn, and Alexander Gray. "An ADMM Based Framework for AutoML Pipeline Configuration." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 4892–99. http://dx.doi.org/10.1609/aaai.v34i04.5926.
Full textDissertations / Theses on the topic "Sklearn"
Jindra, Jakub. "Detekce stresu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400971.
Full textAlklid, Jonathan. "Time to Strike: Intelligent Detection of Receptive Clients : Predicting a Contractual Expiration using Time Series Forecasting." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-106217.
Full textKonečný, Antonín. "Využití umělé inteligence v technické diagnostice." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443221.
Full textDimopoulos, Vasileios Verfasser], and Martin [Akademischer Betreuer] [Spitzer. "Langzeitergebnisse skleral-fixierter Hinterkammer-Intraokularlinsen-Implantation mit der knotenlosen modifizierten Z-Naht-Technik / Vasileios Dimopoulos ; Betreuer: Martin Spitzer." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2019. http://d-nb.info/1192442725/34.
Full textDimopoulos, Vasileios [Verfasser], and Martin [Akademischer Betreuer] Spitzer. "Langzeitergebnisse skleral-fixierter Hinterkammer-Intraokularlinsen-Implantation mit der knotenlosen modifizierten Z-Naht-Technik / Vasileios Dimopoulos ; Betreuer: Martin Spitzer." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2019. http://d-nb.info/1192442725/34.
Full textSchulz, Udo [Verfasser]. "Photoablation an der Sklera mit dem 308-nm Excimer-Laser zur kontrollierten fistulierenden OP / Udo Schulz." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2014. http://d-nb.info/1046832654/34.
Full textHoell, Bernadette [Verfasser]. "Herstellung eines Modells zur refraktiven Chirurgie der Sklera beim Menschen anhand von Nahttechnik beziehungsweise physikalischer Einwirkung / Bernadette Hoell." Greifswald : Universitätsbibliothek Greifswald, 2013. http://d-nb.info/1031485074/34.
Full textKörber, Nicole. "Ein neuer therapeutischer Ansatz zur vorbeugenden Behandlung der pathologischen Myopie - Einfluss des skleralen Riboflavin/Blaulicht Cross-Linkings auf das Augenwachstum junger Kaninchen." Doctoral thesis, Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-220353.
Full textCunietti, Stefano. "Identify popular hotspots through the analysis of movement patterns from social networks in rural areas: Case study of the Borbera Valley in North Italy." Master's thesis, 2022. http://hdl.handle.net/10362/135045.
Full textSocial networks are now an increasingly used tool, but analysis possibilities have not yet been fully exploited. In particular, the extraction of information from users' profiles and their processing could give different information. In this work we will focus on the possibilities of using this information to analyse the patterns of rural spaces. The work will be carried out through a review of the available bibliography on the topic, the construction of an application, and the subsequent analysis of the data extracted through the application. Based on the findings, suggestions are made about the intensity of people within an area or the changes that have occurred in social activities.
Santos, Rodrigo Daniel Garrilha. "Construction of machine learning models to predict pharmacology properties of molecules." Master's thesis, 2019. http://hdl.handle.net/10451/41459.
Full textO processo de desenvolvimento de drogas é altamente condicionado pela qualidade dos modelos com os quais se realiza a seleção dos primeiros compostos. Este trabalho procurou avaliar vários metodologias e descobrir qual a melhor abordagem para a construção de modelos de QSAR (relação quantitativa estrutura-propriedade/atividade) usando um conjunto grande de problemas. Usando um banco de dados de modelação de problemas desenvolvidos no projeto de pesquisa MIMED, 500 conjunto de dados foram extraídos de forma a serem usados para a construção de modelos QSAR. Quarenta metodologias diferentes, resultantes na combinação de quatro algoritmos de machine learning, dois fingerprints e cinco valores de bits, foram usados para fazer os modelos. Com o uso destas metodologias forma criados 18000 modelos, dos quais após análise surgiu a abordagem que melhor generaliza os modelos. Esta é a combinação dos seguintes parâmetros: random forest without maximum depth com Extended-Connectivity Fingerprints de raio 2 usando 2048 bits. Esta abordagem após validação construiu modelos com valores RMSE (Root Mean Square Error) de 0.17 e valores PVE (Proportion of Variance Explained) de 0.63. Por fim, procurou-se otimizar o processo de construção de modelos QSAR com a utilização da técnica de feature selection. Daqui resultou uma redução no conjunto de variáveis utilizadas pelo algoritmo resultando na construção de modelos mais robustos, mantendo o mesmo desempenho, RMSE de 0.17 e PVE de 0.59. Por fim a metodologia escolhida foi comparada com uma abordagem construída usando KNIME de forma a ter a perceção do fitness dos modelos construídos.
The drug development process is highly conditioned by the quality of the mathematical models with which the first compounds are selected. In this work, we tried to evaluate various methods and find out which are the best parameters for building Quantitative Structure-Activity Relationship (QSAR) models using a large set of problems. Using a database of modelling problems developed within the research project MIMED, 500 datasets were extracted to be used for building QSAR models. Forty different methodologies, resulting from the combination of four machine learning algorithms, two fingerprints and five bit values, were used to make the models. Using these methodologies, 18000 models were created, from which after analysis came the approach that best generalizes the models. This is the combination of the following parameters: random forest without maximum depth with Extended-Connectivity Fingerprints of radius 2 using 2048 bits. This approach after validation builds models with Root Mean Square Error (RMSE) values of 0.17 and Proportion of Variance Explained (PVE) values of 0.63. After the choice of the methodology, we tried to optimize the process of building QSAR models using the feature selection technique. This resulted in a reduction in the set of variables used by the algorithm resulting in the construction of more robust models, maintaining the same performance, RMSE of 0.17 and PVE of 0.59. Finally, the chosen methodology was compared with an approach built using KNIME to have the perception of the fitness of the built models.
Books on the topic "Sklearn"
Trappenberg, Thomas P. Fundamentals of Machine Learning. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828044.001.0001.
Full textMorgan, Chris. Milan Sklenar: Photographs. Behaviour Publishing, 2000.
Find full textZervopoulou, Tasoula. Ta Sklera Chronia Tes Phaies. Ekdotikos Organismos Livane, 2002.
Find full textSklenar, Zdenek. Sklenar: Poznamky o zivote a dile (Prace galerie). Krajska galerie v Hradci Kralove, 1989.
Find full textSchaupp, Walter, and Wolfgang Kröll, eds. Spannungsfeld Pflege. Nomos Verlagsgesellschaft mbH & Co. KG, 2020. http://dx.doi.org/10.5771/9783748909507.
Full textBook chapters on the topic "Sklearn"
Komer, Brent, James Bergstra, and Chris Eliasmith. "Hyperopt-Sklearn." In Automated Machine Learning, 97–111. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05318-5_5.
Full textFeurer, Matthias, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, and Frank Hutter. "Auto-sklearn: Efficient and Robust Automated Machine Learning." In Automated Machine Learning, 113–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05318-5_6.
Full textFabris, Fabio, and Alex A. Freitas. "Analysing the Overfit of the Auto-sklearn Automated Machine Learning Tool." In Machine Learning, Optimization, and Data Science, 508–20. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37599-7_42.
Full textAngarita-Zapata, Juan S., Antonio D. Masegosa, and Isaac Triguero. "General-Purpose Automated Machine Learning for Transportation: A Case Study of Auto-sklearn for Traffic Forecasting." In Information Processing and Management of Uncertainty in Knowledge-Based Systems, 728–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50143-3_57.
Full textBergua, Antonio. "Sklera." In Das menschliche Auge in Zahlen, 45–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-47284-2_9.
Full textGrehn, Franz. "Lederhaut (Sklera)." In Augenheilkunde, 189–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59154-3_9.
Full textPlange, Niklas. "Hornhaut, Sklera." In Springer-Lehrbuch, 161–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-52801-3_12.
Full textGrehn, Franz. "Lederhaut (Sklera)." In Augenheilkunde, 143–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-11333-8_9.
Full textGrehn, Franz. "Lederhaut (Sklera)." In Augenheilkunde, 155–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05918-0_8.
Full textFreyler, Heinrich. "Lederhaut = Sklera." In Augenheilkunde, 170–76. Vienna: Springer Vienna, 1985. http://dx.doi.org/10.1007/978-3-7091-2264-8_9.
Full textConference papers on the topic "Sklearn"
Komer, Brent, James Bergstra, and Chris Eliasmith. "Hyperopt-Sklearn: Automatic Hyperparameter Configuration for Scikit-Learn." In Python in Science Conference. SciPy, 2014. http://dx.doi.org/10.25080/majora-14bd3278-006.
Full textZhu, Xuebin, Wangzhou Lin, Jiang Su, and Zhenghong Yu. "Adaptive optimization modeling of district warehouse heating network based on Sklearn." In 2021 Third International Conference on Electronics and Communication, Network and Computer Technology, edited by Md Khaja Mohiddin, Siting Chen, and Said Fathy EL-Zoghdy. SPIE, 2022. http://dx.doi.org/10.1117/12.2628651.
Full textTang, Linyun, Yue Li, Guo Yue, and Deliang Li. "Blackhole -A flying paddle algorithm platform and its actual application to quantify the financial sklearn framework." In 2021 2nd International Conference on Big Data Economy and Information Management (BDEIM). IEEE, 2021. http://dx.doi.org/10.1109/bdeim55082.2021.00062.
Full textHu, Brian, Evan Gunnell, and Yu Sun. "Smart Tab Predictor: A Chrome Extension to Assist Browser Task Management using Machine Learning and Data Analysis." In 10th International Conference on Natural Language Processing (NLP 2021). Academy and Industry Research Collaboration Center (AIRCC), 2021. http://dx.doi.org/10.5121/csit.2021.112318.
Full textReports on the topic "Sklearn"
Qi, Fei, Zhaohui Xia, Gaoyang Tang, Hang Yang, Yu Song, Guangrui Qian, Xiong An, Chunhuan Lin, and Guangming Shi. A Graph-based Evolutionary Algorithm for Automated Machine Learning. Web of Open Science, December 2020. http://dx.doi.org/10.37686/ser.v1i2.77.
Full text