Academic literature on the topic 'Skeletal adaption'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Skeletal adaption.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Skeletal adaption"

1

Yan, Zhen. "Exercise, PGC-1α, and metabolic adaptation in skeletal muscleThis paper article is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic Machines, and has undergone the Journal’s usual peer review process." Applied Physiology, Nutrition, and Metabolism 34, no. 3 (June 2009): 424–27. http://dx.doi.org/10.1139/h09-030.

Full text
Abstract:
Endurance exercise promotes skeletal muscle adaptation, and exercise-induced peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α) gene expression may play a pivotal role in the adaptive processes. Recent applications of mouse genetic models and in vivo imaging in exercise studies have started to delineate the signaling-transcription pathways that are involved in the regulation of the Pgc-1α gene. These studies revealed the importance of p38 mitogen-activated protein kinase/activating transcription factor 2 and protein kinase D/histone deacetylase 5 signaling transcription axes in exercise-induced Pgc-1α transcription and metabolic adaptation in skeletal muscle. The signaling-transcription network that is responsible for exercise-induced skeletal muscle adaption remains to be fully elucidated.
APA, Harvard, Vancouver, ISO, and other styles
2

Brugger, Daniel, and Wilhelm M. Windisch. "Adaption of body zinc pools in weaned piglets challenged with subclinical zinc deficiency." British Journal of Nutrition 121, no. 8 (January 29, 2019): 849–58. http://dx.doi.org/10.1017/s0007114519000187.

Full text
Abstract:
AbstractThe effects of subclinical Zn deficiency on depletion and redistribution of body Zn were studied in weaned piglets. Forty-eight weaned piglets (German-Large-White×Land-Race×Piétrain; 50 % female, 50 % male-castrated; body weight 8·5 (sd 0·27) kg) were fed restrictively (450 g/d) a basal maize–soyabean meal-based diet supplemented with varying amounts of ZnSO4.7H2O (analysed dietary Zn: 28·1, 33·6, 38·8, 42·7, 47·5, 58·2, 67·8, 88·0 mg/kg diet) for an experimental period of 8 d. Analyses comprised Zn concentrations in soft tissues. Statistical analyses included regression models and k-means cluster analysis. Jejunum and kidney Zn correlated positively with dietary Zn (P<0·05). Other Zn pools responded in a non-linear fashion by declining (colon, epidermis, spleen) or increasing (mesenteric lymph follicles, thymus, skeletal muscle) below 63·6, 48·0, 47·5, 68·0, 43·0 and 53·1 mg Zn/kg diet, respectively (P<0·01). Above these thresholds, Zn concentrations in epidermis, mesenteric lymph follicles and skeletal muscle plateaued (P<0·0001), whereas they exhibited a decrease in colon and thymus (P<0·01) as well as a numerical increase in spleen. Clustering by dietary Zn concentration indicated clusters of varying Zn supply status and pathophysiological status. Clustering by biological matrices revealed a discrimination between storage, transport and excretion media as well as soft tissues. Taken together, novel response patterns indicated compensation reactions in tissues that are essential for the acute survival of growing animals (heart, skeletal muscle, immune tissues). Furthermore, this is to our knowledge the first study that mapped the gross Zn requirement by clustering tissue Zn concentrations between treatment groups.
APA, Harvard, Vancouver, ISO, and other styles
3

Minari, André Luis Araujo, Felipe Avila, Lila Missae Oyama, and Ronaldo Vagner Thomatieli-Santos. "Skeletal muscles induce recruitment of Ly6C+ macrophage subtypes and release inflammatory cytokines 3 days after downhill exercise." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 317, no. 4 (October 1, 2019): R597—R605. http://dx.doi.org/10.1152/ajpregu.00163.2019.

Full text
Abstract:
Macrophages are one of the most versatile cells of the immune system that can express distinct subtypes and functions depending on the physiological challenge. After skeletal muscle damage, inflammatory macrophage subtypes aid muscles to regenerate and are implicated in physical training adaption. Based on this information, this study aimed to evaluate two classic mice macrophage subtypes and determine whether some inflammatory cytokines might be involved in the muscle adaption process after exercise. For this purpose, mice were exposed to an intermittent experimental protocol of downhill exercise (18 bouts of running, each bout 5 min with a 2-min rest interval, slope −16°) and were euthanized before [control (CTRL)] and 1, 2 (D2), and 3 (D3) days after exercise. After euthanasia, the triceps brachii was harvested and submitted to protein extraction, immunostaining, and mononuclear digestion procedures. The muscle size, macrophage accumulation, and cytokines were determined. We observed an increase in the Ly6C+ macrophage subtype ( P ≤ 0.05) in D2 and D3 compared with CTRL, as well as a significant inverse correlation coefficient (−0.52; P ≤ 0.05) between Ly6C+ and Ly6C− macrophage subtypes. Moreover, we also observed elevation in several cytokines (IL-1β, IFN-γ, TNF-α, IL-6, and IL-13) at D3, although not IL-4, which tended to decrease at this time point ( P = 0.06). Downhill exercises preferentially recruited Ly6C+ macrophages with important proinflammatory cytokine elevation at D3. Moreover, despite the elevation of several cytokines involved with myogenesis, an increase in IL-6 and IL-13, which potentially involve muscle adaption training after acute exercise, was also observed.
APA, Harvard, Vancouver, ISO, and other styles
4

Feng, Han-Zhong, Min Chen, Lee S. Weinstein, and J. P. Jin. "Improved fatigue resistance in Gsα-deficient and aging mouse skeletal muscles due to adaptive increases in slow fibers." Journal of Applied Physiology 111, no. 3 (September 2011): 834–43. http://dx.doi.org/10.1152/japplphysiol.00031.2011.

Full text
Abstract:
Genetically modified mice with deficiency of the G protein α-subunit (Gsα) in skeletal muscle showed metabolic abnormality with reduced glucose tolerance, low muscle mass, and low contractile force, along with a fast-to-slow-fiber-type switch (Chen M, Feng HZ, Gupta D, Kelleher J, Dickerson KE, Wang J, Hunt D, Jou W, Gavrilova O, Jin JP, Weinstein LS. Am J Physiol Cell Physiol 296: C930–C940, 2009). Here we investigated a hypothesis that the switching to more slow fibers is an adaptive response with specific benefit. The results showed that, corresponding to the switch of myosin isoforms, the thin-filament regulatory proteins troponin T and troponin I both switched to their slow isoforms in the atrophic soleus muscle of 3-mo-old Gsα-deficient mice. This fiber-type switch involving coordinated changes of both thick- and thin-myofilament proteins progressed in the Gsα-deficient soleus muscles of 18- to 24-mo-old mice, as reflected by the expression of solely slow isoforms of myosin and troponin. Compared with age-matched controls, Gsα-deficient soleus muscles with higher proportion of slow fibers exhibited slower contractile and relaxation kinetics and lower developed force, but significantly increased resistance to fatigue, followed by a better recovery. Gsα-deficient soleus muscles of neonatal and 3-wk-old mice did not show the increase in slow fibers. Therefore, the fast-to-slow-fiber-type switch in Gsα deficiency at older ages was likely an adaptive response. The benefit of higher fatigue resistance in adaption to metabolic deficiency and aging provides a mechanism to sustain skeletal muscle function in diabetic patients and elderly individuals.
APA, Harvard, Vancouver, ISO, and other styles
5

Mendias, Christopher L., Andrew J. Schwartz, Jeremy A. Grekin, Jonathan P. Gumucio, and Kristoffer B. Sugg. "Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy." Journal of Applied Physiology 122, no. 3 (March 1, 2017): 571–79. http://dx.doi.org/10.1152/japplphysiol.00719.2016.

Full text
Abstract:
Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic biological mechanisms of muscle fiber hypertrophy.
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Xiuying, Daniel Brobst, Wing Suen Chan, Margaret Chui Ling Tse, Oana Herlea-Pana, Palak Ahuja, Xinyi Bi, et al. "Muscle-generated BDNF is a sexually dimorphic myokine that controls metabolic flexibility." Science Signaling 12, no. 594 (August 13, 2019): eaau1468. http://dx.doi.org/10.1126/scisignal.aau1468.

Full text
Abstract:
The ability of skeletal muscle to switch between lipid and glucose oxidation for ATP production during metabolic stress is pivotal for maintaining systemic energy homeostasis, and dysregulation of this metabolic flexibility is a dominant cause of several metabolic disorders. However, the molecular mechanism that governs fuel selection in muscle is not well understood. Here, we report that brain-derived neurotrophic factor (BDNF) is a fasting-induced myokine that controls metabolic reprograming through the AMPK/CREB/PGC-1α pathway in female mice. Female mice with a muscle-specific deficiency in BDNF (MBKO mice) were unable to switch the predominant fuel source from carbohydrates to fatty acids during fasting, which reduced ATP production in muscle. Fasting-induced muscle atrophy was also compromised in female MBKO mice, likely a result of autophagy inhibition. These mutant mice displayed myofiber necrosis, weaker muscle strength, reduced locomotion, and muscle-specific insulin resistance. Together, our results show that muscle-derived BDNF facilitates metabolic adaption during nutrient scarcity in a gender-specific manner and that insufficient BDNF production in skeletal muscle promotes the development of metabolic myopathies and insulin resistance.
APA, Harvard, Vancouver, ISO, and other styles
7

Strenzke, Maximilian, Paolo Alberton, Attila Aszodi, Denitsa Docheva, Elisabeth Haas, Christian Kammerlander, Wolfgang Böcker, and Maximilian Michael Saller. "Tenogenic Contribution to Skeletal Muscle Regeneration: The Secretome of Scleraxis Overexpressing Mesenchymal Stem Cells Enhances Myogenic Differentiation In Vitro." International Journal of Molecular Sciences 21, no. 6 (March 13, 2020): 1965. http://dx.doi.org/10.3390/ijms21061965.

Full text
Abstract:
Integrity of the musculoskeletal system is essential for the transfer of muscular contraction force to the associated bones. Tendons and skeletal muscles intertwine, but on a cellular level, the myotendinous junctions (MTJs) display a sharp transition zone with a highly specific molecular adaption. The function of MTJs could go beyond a mere structural role and might include homeostasis of this musculoskeletal tissue compound, thus also being involved in skeletal muscle regeneration. Repair processes recapitulate several developmental mechanisms, and as myotendinous interaction does occur already during development, MTJs could likewise contribute to muscle regeneration. Recent studies identified tendon-related, scleraxis-expressing cells that reside in close proximity to the MTJs and the muscle belly. As the muscle-specific function of these scleraxis positive cells is unknown, we compared the influence of two immortalized mesenchymal stem cell (MSC) lines—differing only by the overexpression of scleraxis—on myoblasts morphology, metabolism, migration, fusion, and alignment. Our results revealed a significant increase in myoblast fusion and metabolic activity when exposed to the secretome derived from scleraxis-overexpressing MSCs. However, we found no significant changes in myoblast migration and myofiber alignment. Further analysis of differentially expressed genes between native MSCs and scleraxis-overexpressing MSCs by RNA sequencing unraveled potential candidate genes, i.e., extracellular matrix (ECM) proteins, transmembrane receptors, or proteases that might enhance myoblast fusion. Our results suggest that musculotendinous interaction is essential for the development and healing of skeletal muscles.
APA, Harvard, Vancouver, ISO, and other styles
8

Avenatti, R. C., K. H. McKeever, D. W. Horohov, and K. Malinowski. "Effects of age and exercise on inflammatory cytokines, HSP70 and HSP90 gene expression and protein content in Standardbred horses." Comparative Exercise Physiology 14, no. 1 (February 23, 2018): 27–46. http://dx.doi.org/10.3920/cep170020.

Full text
Abstract:
We hypothesised that the cortisol response to acute exercise, markers of oxidative stress, expression of inflammatory cytokines, heat shock protein (HSP)70 and HSP90 expression in whole blood and skeletal muscle, and HSP70 and HSP90 protein concentrations in skeletal muscle are altered by age and in response to acute submaximal exercise in horses. Young (n=6; 5.5±2.8 year) and aged (n=6; 22.6±2.25 year) unconditioned Standardbred mares underwent an acute submaximal exercise test. Blood samples were collected and analysed for plasma cortisol and malondialdehyde (MDA) concentrations, and for cytokine and HSP gene expression pre- and post-exercise. Gluteus medius biopsies were obtained for analysis of cytokine and HSP gene expression pre- and at 0, 4, 24 and 48 h post-exercise. Data were analysed for main effects using a two-way ANOVA for repeated measures. Post-hoc comparisons of means were conducted using Student-Neuman-Keuls for pair-wise multiple comparisons where appropriate. Acute submaximal exercise increased plasma cortisol concentration in both young and aged mares, and the duration of the post-exercise rise in cortisol was altered in aged horses. Plasma MDA concentration and expression of tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 were unchanged in blood and muscle. Exercise increased IL-1β expression in whole blood of young and aged mares, with young mares having greater exercise-induced expression at 2 (P<0.001) and 4 (P=0.019) h post-exercise. Both young and aged horses had increased HSP70 expression in whole blood following acute exercise, with young horses exhibiting 3-fold greater HSP70 expression than aged mares at 2 h post-exercise. HSP90 expression in whole blood following exercise was increased only in young horses. Both young and aged horses had increased HSP90 expression in skeletal muscle following exercise, but there was no difference due to age. However, the timing of HSP70 expression was different between young and aged horses. The age-related changes in cortisol and IL-1β expression following acute submaximal exercise can have implications for energy homeostasis and the adaption to such disturbances at a cellular and whole animal level. Quantification of HSP expression in whole blood may be a useful biomarker, with implications for cellular adaptation and survival in aged horses.
APA, Harvard, Vancouver, ISO, and other styles
9

Del Favero, Giorgia, Alois Bonifacio, Teisha J. Rowland, Shanshan Gao, Kunhua Song, Valter Sergo, Eric D. Adler, Luisa Mestroni, Orfeo Sbaizero, and Matthew R. G. Taylor. "Danon Disease-Associated LAMP-2 Deficiency Drives Metabolic Signature Indicative of Mitochondrial Aging and Fibrosis in Cardiac Tissue and hiPSC-Derived Cardiomyocytes." Journal of Clinical Medicine 9, no. 8 (July 31, 2020): 2457. http://dx.doi.org/10.3390/jcm9082457.

Full text
Abstract:
Danon disease is a severe X-linked disorder caused by deficiency of the lysosome-associated membrane protein-2 (LAMP-2). Clinical manifestations are phenotypically diverse and consist of hypertrophic and dilated cardiomyopathies, skeletal myopathy, retinopathy, and intellectual dysfunction. Here, we investigated the metabolic landscape of Danon disease by applying a multi-omics approach and combined structural and functional readouts provided by Raman and atomic force microscopy. Using these tools, Danon patient-derived cardiac tissue, primary fibroblasts, and human induced pluripotent stem cells differentiated into cardiomyocytes (hiPSC-CMs) were analyzed. Metabolic profiling indicated LAMP-2 deficiency promoted a switch toward glycolysis accompanied by rerouting of tryptophan metabolism. Cardiomyocytes’ energetic balance and NAD+/NADH ratio appeared to be maintained despite mitochondrial aging. In turn, metabolic adaption was accompanied by a senescence-associated signature. Similarly, Danon fibroblasts appeared more stress prone and less biomechanically compliant. Overall, shaping of both morphology and metabolism contributed to the loss of cardiac biomechanical competence that characterizes the clinical progression of Danon disease.
APA, Harvard, Vancouver, ISO, and other styles
10

Tegtbur, U., MW Busse, and H. Meyer. "Lactate Catabolism during Exercise Induced Acidosis as an Indicator for Skeletal Muscle Adaption in Triathletes and Patients with Coronary Artery Disease (CAD)." Clinical Science 87, s1 (January 1, 1994): 16–17. http://dx.doi.org/10.1042/cs087s016.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Skeletal adaption"

1

Hayes, Jasmine Marie. "Skeletal Muscle Adaption to 5 days of High-Fat Feeding in Humans." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85059.

Full text
Abstract:
Skeletal muscle is highly involved in macronutrient metabolism. To maintain proper energy metabolism and physiology, skeletal muscle must adapt to nutrient supply. Thus, diet macronutrient composition is an important modulator of skeletal muscle metabolism. Evidence from rodent and human models show high-fat diets contribute to impaired insulin signaling, as well as decreased fatty acid and glucose oxidation. Utilizing proteomic analysis of metabolic proteins in humans may lead to the mechanism behind skeletal muscle adaption to macronutrient composition, potentially providing the groundwork for characterizing the etiology of high-fat feeding induced metabolic disease. The objective of this study was to compare the substrate oxidation patterns and the levels of metabolic proteins in the fasted skeletal muscle of lean, healthy males that either increased fatty acid oxidation in response to the high-fat diet, termed responders, or males that decreased fatty acid oxidation, termed non-responders. We employed a controlled feeding study design, where the participants served as their own controls. Following a 2-week control diet (30% fat, 55% carbohydrate and 15% protein), participants came to the lab fasted overnight and a muscle biopsy was taken from their vastus lateralis muscle. Participants were then placed on a 5-day high-fat diet (50% fat [45% saturated fat], 35% carbohydrate, and 15% protein). Following this diet, participants again came to the lab fasted overnight and another muscle biopsy was taken from their vastus lateralis muscle. Both the control and the high-fat diets were isocaloric to habitual diets. Muscle from the biopsies were utilized for substrate metabolism measures and mass spectrometry. We did not observe any significant differences in glucose oxidation between responders and non-responders, prior to or following the high-fat diet. Our proteomic analysis identified 81 proteins and protein subunits involved in substrate metabolism but only 6 were differentially regulated by the high-fat diet. Independent of the high-fat diet, compared to non-responders, responders contained an overall higher content of protein subunits belonging to Complex I and ATP synthase. The findings from this study suggest that adaption to high-fat feeding is individual specific and proteomic changes alone cannot explain high-fat feeding induced metabolic changes.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
2

Wiebe, Peter N., and res cand@acu edu au. "Effects of Different Loading Intensities on Skeletal Adaptation to Exercise in Prepubertal Girls." Australian Catholic University. School of Exercise Science, 2004. http://dlibrary.acu.edu.au/digitaltheses/public/adt-acuvp62.29082005.

Full text
Abstract:
This study involved a 28-week school-based exercise trial of single-leg drop-landing exercise with 42 girls (Tanner stage 1; 6-10 yr old) randomly assigned to control (C), low-drop (LD) or high-drop(HD) exercise groups. The latter two groups performed single-leg drop-landings (3 sessions.wk-1 and 50 landings.session-1) from 14cm and 28cm, respectively using the non-dominant leg. Single-leg peak ground-reaction impact forces (PGRIF) in a sub-sample ranged between 2.5 – 4.4 x body-weight (BW). No differences (p>0.05) among groups at baseline for age, stature, lean tissue mass (LTM - DXA - Lunar 3.6-DPX), leisure time physical activity or average daily calcium intake were detected. No significant within group changes for between leg differences from baseline to post-training and no significant differences among groups at baseline, or in magnitude of change for any of the dominant or non-dominant (loaded) leg bone mineral content (BMC g) measures determined by DXA – loaded leg total - 19.06, 25.5, 25.46 [p=.156], femoral neck - 0.14, 0.11, 0.15 [p=.959], greater trochanter - 0.37, 0.06, 0.26 [p=.733], mid femoral shaft - 3.87, 3.87, 3.42 [p=.677] for the C, LD and HD groups, respectively, after adjusting for the covariates baseline body and fat mass, and change in LTM (ANCOVA) were observed. Similarly, following ANCOVA adjustments no significant differences for changes in calcaneal speed of sound and broadband ultrasound attenuation (CUBA Clinical), DXA derived changes in femoral neck (-0.009, 0.033, -0.009; p=.189) and total MFS (0.029, 0.041, 0.053; p=.447) volumetric BMD (g.cm-3), or MFS cortical volumetric BMD, the latter derived by a new technique combining MRI and DXA were identified. TBBMC changed by 79.6g-C, 100.2g-LD and 91.9g-HD (p=.339). Combining data from both exercise groups to increase statistical power produced similar results. No significant within group changes for between leg differences from baseline to post-training and no significant differences among groups at baseline, or in magnitude of change for any of the dominant or non-dominant (loaded) leg bone geometrical (area cm2) determined by MRI using ANALYZE® software of proximal - 22.18, 12.91, 19.86 [p=.248], mid - 19.83, 15.91, 19.64 [p=.233], or distal - 14.78, 16.07, 13.35 [p=.792], slice cortical area for the C, LD and HD groups, respectively, after adjusting for the covariates baseline body and fat mass, and change in LTM (ANCOVA) were detected. Similarly there were no significant biomechanical cross sectional moment of inertia (CSMI cm4) changes determined by Scion Image® (Frederick, Maryland: Version-Beta 3B) and a custom macro program of proximal - 896, 815, 649 [p=.415], mid - 1054, 806, 1087 [p=.471], or distal - 1197, 1079, 966 [p=.606], slice CSMI for the C, LD and HD groups, respectively after adjusting for the same covariates. In contrast to some recent reports, our findings suggest that strictly controlled uni-modal; uni-directional single-leg drop-landing exercises involving low-moderate peak ground-reaction impact forces are not osteogenic in the developing prepubertal female skeleton.
APA, Harvard, Vancouver, ISO, and other styles
3

Kinnunen, S. (Sanni). "Molecular mechanisms in energy metabolism during seasonal adaptation:aspects relating to AMP-activated protein kinase, key regulator of energy homeostasis." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526219554.

Full text
Abstract:
Abstract Non-pathological change in body weight and adiposity is one distinct adaptive feature that seasonal species undergo, and it can offer a novel way to study the mechanisms underlying body weight regulation and energy homeostasis. Changes in the expression and activity of metabolic enzymes are essential for the physiological adaptation seasonal species exhibit. AMP-activated protein kinase (AMPK) is a key regulatory enzyme that controls the energy homeostasis both on cellular and whole-body level. In this thesis, the main focus was to clarify how seasonal adaptation affects AMPK and its downstream target in lipid metabolism, acetyl-CoA carboxylase (ACC), in different metabolic tissues of two model species with diverse wintering strategies: the raccoon dog and the Djungarian hamster. In addition, the effect of periodic fasting on the raccoon dog skeletal muscle was studied. It was observed that seasonal differences in AMPK and ACC expression were evident mainly in adipose tissues of both species. AMPK was down-regulated in white adipose tissue (WAT) of the winter-adapted raccoon dog, whereas in the Djungarian hamster WAT, the abundance of AMPK increased in response to winter acclimatization. ACC expression was maintained or increased in winter in both species. The seasonal changes in AMPK and ACC expression observed, in particular, in adipose tissues reflects the wintering strategy of the species and presumably facilitates the lipid usage and/or preservation during wintertime scarcity. Raccoon dogs were quite resistant to the prolonged wintertime fast, as no changes were observed in AMPK and ACC expression levels in the WAT, liver or hypothalamus between the fasted and fed groups. Skeletal muscle function also appears to be well preserved, as there were no changes in the expression of proteins involved in insulin signaling, and the fiber type composition and muscle energy reserves were not affected. This thesis offers novel information on protein level changes in metabolic adaptation
Tiivistelmä Useat luonnonvaraiset eläinlajit ovat fysiologisesti sopeutuneet ravinnonsaannin vuodenaikaisiin vaihteluihin. Vuodenaikaisrytmiin kytketty rasvakudoksen määrän vaihtelu ja siihen liittyvät aineenvaihdunnalliset muutokset tarjoavat mielenkiintoisen tutkimuskohteen ruumiinpainon säätelyn ja energiatasapainon ylläpidon molekulaaristen mekanismien selvittämiseen. Oleellinen osa fysiologista sopeutumista ovat muutokset energia-aineenvaihduntaa säätelevien proteiinien ekspressio- ja aktiivisuustasoissa. Yksi keskeinen elimistön energiatasapainoa kontrolloiva entsyymi on AMP-aktivoituva proteiinikinaasi (AMPK). AMPK toimii solunsisäisenä energiasensorina ja säätelee energiametaboliaa koko kehon tasolla. Tässä väitöskirjatutkimuksessa selvitettiin talviadaptaation vaikutusta AMPK:n ja sen kohdemolekyylin, rasvahappojen biosynteesiä säätelevän asetyyli-CoA karboksylaasin (ACC), ilmenemiseen ja aktiivisuuteen eri kudoksissa. Mallieläiminä käytettiin kahta eri talvehtimisstrategian omaavaa ja eri lailla ruumiinpainoaan säätelevää lajia, kääpiöhamsteria ja supikoiraa. Lisäksi tutkittiin pitkäaikaisen talvipaaston vaikutusta supikoiran luustolihakseen. Tulokset osoittivat, että molemmilla lajeilla AMPK- ja ACC-pitoisuuksissa on vuodenaikaisia eroja erityisesti rasvakudoksessa. Supikoiralla AMPK:n määrä väheni talviadaptaation seurauksena, kun taas kääpiöhamstereilla talviakklimatisaatio johti korkeampaan AMPK-pitoisuuteen rasvakudoksissa. ACC-pitoisuus puolestaan säilyi samana tai oli korkeampi talviadaptoituneilla yksilöillä. Havaitut muutokset AMPK:n ja ACC:n ilmenemisessä kuvastavat supikoiran ja kääpiöhamsterin eroja talvehtimisessa ja havainnollistavat entsyymien oleellista osaa rasvavarastojen vuodenaikaisessa säätelyssä ja käytössä, mikä on edellytys eläinten selviämiselle yli talven niukkuuden. Lisäksi havaittiin talviadaptoituneen supikoiran olevan melko resistentti 10 viikon paastolle tutkittujen parametrien suhteen. AMPK- ja ACC-pitoisuus tai aktiivisuus ei muuttunut aineenvaihdunnallisesti oleellisissa kudoksissa (rasvakudos, maksa, hypotalamus) paasto- ja kontrolliryhmän välillä. Supikoiran lihasten toimintakyky vaikuttaisi säilyvän, sillä insuliinisignalointiin liittyvien entsyymien pitoisuus, lihasten solutyyppikoostumus tai energiavarastot eivät muuttuneet paaston myötä. Tämä tutkimus tarjoaa uutta tietoa proteiinitason muutoksista osana fysiologista sopeutumista
APA, Harvard, Vancouver, ISO, and other styles
4

Ellman, Rachel. "Skeletal adaptation to reduced mechanical loading." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/107612.

Full text
Abstract:
Thesis: Ph. D. in Medical Engineering and Bioastronautics, Harvard-MIT Program in Health Sciences and Technology, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 126-139).
Bone adapts its mass and architecture in response to its mechanical environment. Yet control of this process by mechanical cues is poorly understood, particularly for unloading. Defining the fundamental mechano-regulation of bone adaptation is critical for the better understanding and mitigation of bone loss in astronauts as well as clinical conditions such as spinal cord injury, stroke, muscular dystrophy, and bed rest. The overall goal of this work was to study skeletal adaptation to varying amounts of reduced loading to help delineate the relationship between mechanical stimuli and skeletal adaptation. We first examined the relative contribution of muscle and gravitational forces to the maintenance of skeletal health in mice, using botulinum toxin (BTX) to induce muscle paralysis and hindlimb unloading to eliminate external loading on the hindlimbs, alone and in combination. BTX led to greater bone loss than hindlimb unloading, while the combination of interventions led to the most detrimental effects overall, suggesting that both muscle and gravitational forces play a role in skeletal maintenance, with greater contributions from muscle forces. We then characterized skeletal adaptation to controlled reductions in mechanical loading of varying degrees employing a novel model that enables long-term exposure of mice to partial weightbearing (PWB). We found that declines in bone mass and architecture were linearly related to the degree of unloading. Even mice bearing 70% of their body weight exhibited significant bone loss, suggesting that the gravity of the moon (0.16 G) and Mars (0.38 G) will not be sufficient to prevent bone loss on future exploration missions. Finally, since bone remodeling is highly site-specific, we used gait analysis and inverse dynamics to determine the mechanical environment during PWB, and then developed a finite element model of the tibia to resolve the local strain-related stimulus proposed to drive changes in bone mass. We found modest correlations between cortical bone architecture at different PWB levels and strain energy density. Altogether this work provides a critical foundation and rationale for future studies that incorporate detailed quantification of the mechanical stimuli and longitudinal changes in bone architecture to further advance our understanding of the skeletal response to reduced loading.
by Rachel Ellman.
Ph. D. in Medical Engineering and Bioastronautics
APA, Harvard, Vancouver, ISO, and other styles
5

Eliman, Rachel. "Skeletal adaptation to reduced mechanical loading." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95861.

Full text
Abstract:
Thesis: Ph. D., Harvard-MIT Program in Health Sciences and Technology, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 126-139).
Bone adapts its mass and architecture in response to its mechanical environment. Yet control of this process by mechanical cues is poorly understood, particularly for unloading. Defining the fundamental mechanoregulation of bone adaptation is critical for the better understanding and mitigation of bone loss in astronauts as well as clinical conditions such as spinal cord injury, stroke, muscular dystrophy, and bed rest. The overall goal of this work was to study skeletal adaptation to varying amounts of reduced loading to help delineate the relationship between mechanical stimuli and skeletal adaptation. We first examined the relative contribution of muscle and gravitational forces to the maintenance of skeletal health in mice, using botulinum toxin (BTX) to induce muscle paralysis and hindlimb unloading to eliminate external loading on the hindlimbs, alone and in combination. BTX led to greater bone loss than hindlimb unloading, while the combination of interventions led to the most detrimental effects overall, suggesting that both muscle and gravitational forces play a role in skeletal maintenance, with greater contributions from muscle forces. We then characterized skeletal adaptation to controlled reductions in mechanical loading of varying degrees employing a novel model that enables long-term exposure of mice to partial weightbearing (PWB). We found that declines in bone mass and architecture were linearly related to the degree of unloading. Even mice bearing 70% of their body weight exhibited significant bone loss, suggesting that the gravity of the moon (0.16 G) and Mars (0.38 G) will not be sufficient to prevent bone loss on future exploration missions. Finally, since bone remodeling is highly site-specific, we used gait analysis and inverse dynamics to determine the mechanical environment during PWB, and then developed a finite element model of the tibia to resolve the local strain-related stimulus proposed to drive changes in bone mass. We found modest correlations between cortical bone architecture at different PWB levels and strain energy density. Altogether this work provides a critical foundation and rationale for future studies that incorporate detailed quantification of the mechanical stimuli and longitudinal changes in bone architecture to further advance our understanding of the skeletal response to reduced loading.
by Rachel Eliman.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
6

Kohn, Tertius A. "Characteristics and adaptation of skeletal muscle to endurance exercise." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/16517.

Full text
Abstract:
Thesis (PhD)--University of Stellenbosch, 2005.
ENGLISH ABSTRACT: Skeletal muscle adapts to stimuli by modifying structural and metabolic protein expression. Furthermore, a muscle group may vary within itself to accommodate specialisation in regions. Structural and metabolic characteristics of an individual are regulated partly by genotype, but contraction duration and intensity may play a greater role in muscle phenotype. The aims of this dissertation were to investigate: structural and metabolic regionalisation in a muscle group, possible relationships between training volume and intensity and hybrid fibres, muscle characteristics of athletes from two different ethnic groups, and muscle adaptation in already well-trained athletes subjected to high intensity interval training. Myosin heavy chain (MHC) isoform content and citrate synthase (CS) activities were measured in the Quadriceps femoris (QF) muscle of 18 female rats. Muscle was divided into superficial, middle and deep, distal, central and proximal parts. MHC IIb and IIx were more abundant in superficial regions (P < 0.05) with low CS activities compared to deeper parts. Isoform content varied along the length of deep regions. This study showed that the QF has regional specialisation. Therefore, standardisation of sampling site is important. Hybrid fibre proportions in muscle biopsies of 12 middle distance runners and 12 non-runners were investigated. MHC IIa/IIx correlated with training volume/week in runners (r = -0.66, P < 0.05) and MHC IIa/IIx correlated with exercise hours/week in non-runners (r = -0.72, P < 0.01). Average preferred racing distance (PRDA) correlated better with MHC IIa/IIx in runners (r = -0.85, P < 0.001). MHC IIa/IIx may therefore be more closely related to exercise intensity than previously thought. Fibre type characteristics and performance markers were investigated in 13 Xhosa and 13 Caucasian distance runners, matched for performance, training volume and PRDA. Xhosa runners had less MHC I and more MHC IIa fibres in muscle biopsies than Caucasian runners (P < 0.05). Xhosa runners had lower plasma lactate at 80% peak treadmill speed (PTS) (P < 0.05), but higher lactate dehydrogenase (LDH) (P < 0.01) and phosphofructokinase (P = 0.07) activities in homogenate muscle samples. LDH activities in MHC I (P = 0.05) and IIa (P < 0.05) fibre pools were higher in Xhosa runners. Xhosa athletes may thus have a genetic advantage or they may have adapted to running at a higher intensity. Six weeks of individually standardised high intensity interval treadmill training (HIIT) were investigated in 15 well-trained runners. PTS increased after HIIT (P < 0.01), while maximum oxygen consumption (VO2max) only showed a tendency to have increased as a result of HIIT (P = 0.06). Sub-maximal tests showed lower plasma lactate at 64% PTS (P = 0.06), with lower heart rates at workloads from 64% to 80% PTS (P < 0.01) after HIIT. No changes were observed for cross-sectional area, capillary supply and enzyme activities in homogenates muscle samples. LDH activity showed a trend (P = 0.06) to have increased in MHC IIa pools after HIIT. Higher HIIT speed was related to decreases in MHC I fibres, but increases in MHC IIa/IIx fibres (r = -0.70 and r = 0.68, respectively, P < 0.05). Therefore, HIIT may alter muscle fibre composition in well-trained runners, with a concomitant improvement in performance markers.
AFRIKAANSE OPSOMMING: Skeletspier kan adapteer deur strukturele en metaboliese protein ekspressie te verander as gevolg van stimulante. ‘n Spiergroep kan ook intern verskil om spesialisering in spierdele toe te laat. Strukturele en metaboliese karaktereienskappe van ‘n individu word deels gereguleer deur gene, maar kontraksie tydperk en intensiteit mag ‘n groter rol speel in spierfenotipe. Die doelwitte van hierdie tesis was om ondersoek in te stel in: strukturele en metaboliese eienskappe in spiergroepstreke, moontlike verhoudings tussen oefeningsvolume of intensiteit en baster vesels, spier eienskappe in atlete van twee etniese groepe, en spier adaptasie in goed geoefende atlete blootgestel aan hoë intensiteit interval oefening. Miosien swaar ketting (MSK) isovorm inhoud en sitraat sintase (SS) aktiwiteite is gemeet in die Quadriceps femoris (QF) spier van 18 wyfie rotte. Spiere was opgedeel in oppervlakkig, middel en diep, asook distaal, sentraal en proksimale dele. MSK IIb en IIx was meer oorvloedig in oppervlakkige dele (P < 0.05) met lae SS aktiwiteite in vergelyking met dieper dele. Isovorm inhoud het ook verskil oor die lengte van diep dele. Dus bevat die QF gespesialiseerde streke en is die area van monsterneming belangrik. Baster vesel proporsies is ondersoek in spiermonsters van 12 middel afstand hardlopers en 12 niehardlopers. MSK IIa/IIx van hardlopers het met oefeningsvolume/week gekorreleer (r = -0.66, P < 0.05), asook MSK IIa/IIx van nie-hardlopers met oefeningsure/week (r = -0.72, P < 0.01). Gemiddelde voorkeur wedloop afstand (VWAG) het beter met MSK IIa/IIx gekorreleer in hardlopers (r = -0.85, P < 0.001). MSK IIa/IIx mag dus meer verwant wees aan oefeningsintensiteit. Veseltipe eienskappe en prestasie merkers was ondersoek in 13 Xhosa en 13 Caucasian langafstand atlete, geëweknie vir prestasie, oefeningsvolume en VMAG. Xhosa hardlopers het minder tipe I en meer tipe IIA vesels in hul spiermonsters gehad as die Caucasian hardlopers (P < 0.05). Xhosa hardlopers het laer plasma laktaat by 80% van hul maksimale trapmeul spoed (MTS) (P < 0.05), maar hoër laktaat dihidrogenase (LDH) (P < 0.01) en fosfofruktokinase (P = 0.07) aktiwiteite in homogene spiermonsters gehad. LDH aktiwiteite in MSK I (P = 0.05) en IIa (P < 0.05) veselbondels was hoër in Xhosa hardlopers. Xhosa atlete mag dus ‘n genetiese voorsprong geniet, of hulle het geadapteer om by hoër intensiteite te hardloop. Ses weke van geïndividualiseerde gestandardiseerde hoë intensiteit interval trapmeul oefening (HIIT) was ondersoek in 15 goed geoefende hardlopers. MTS het verhoog na HIIT (P < 0.01), en maksimale surrstof verbruik (VO2max) het ‘n neiging getoon om te verhoog het na HIIT (P = 0.07). Submaksimale toetse het laer plasma laktaat by 64% MTS getoon (P = 0.06), met laer harttempos by werkladings 64% tot 80% MTS (P < 0.01). Geen veranderings was gemerk vir deursnit area, kapillêre toevoer en ensiem aktiwiteite in homogene spiermonsters nie. LDH aktiwiteit het ‘n neiging getoon om te verhoog het (P = 0.06) in MSK IIa veselbondels na HIIT. Hoër HIIT snelhede was verwant aan ‘n daling in MSK I vesels, maar ‘n verhoging in MSK IIa/IIx vesels (r = -0.70 en r = 0.68, respektiwelik, P < 0.05). HIIT mag dus spier veseltipe verander in goed geoefende hardlopers, met gevolglike verbetering in prestasie merkers.
APA, Harvard, Vancouver, ISO, and other styles
7

Beckitt, Timothy. "Skeletal muscle adaptation following a supervised exercise programme for claudication." Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.539766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morton, Alison J. "Adaptive growth of uterine and skeletal muscles in the rat." Thesis, Queen's University Belfast, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hirschberg, Jens. "Simulations of mechanical adaptation and their relationship to stress bearing in skeletal tissue." University of Western Australia. School of Anatomy and Human Biology, 2005. http://theses.library.uwa.edu.au/adt-WU2005.0095.

Full text
Abstract:
[Truncated abstract] In this work a computer simulation program, similar to a finite element program, is used to study the relationship between skeletal tissue structure and function. Though other factors affect the shape of bone (e.g., genetics, hormones, blood supply), the skeleton adapts its shape mainly in response to the mechanical environment to which it is exposed throughout life. The specific relationship between the mechanical environment and the mechanical adaptation response of the skeleton is reviewed. Theories of mechanical adaptation are applied to the sites of tendon attachment to bone (entheses), the adaptation of generalised trabecular bone (i.e., Wolff’s Law of trabecular architecture), sesamoid bones that are often found where a tendon wraps around a bony pulley, and the internal trabecular structure of a whole bony sesamoid such as the patella. The relative importance of compression rather than tension in bone adaptation theories is still not fully understood. Some mechanical adaptation theories suggest that an overwhelming tensile stress at a skeletal location does not stimulate bone deposition, but would instead lead to bone resorption. The skeletal locations studied in this work were chosen because they have been proposed to be in tension. Computer simulations involving models are an ideal method to analyse the mechanical environment of a skeletal location. They are able to determine the mechanical stresses at, and the stress patterns around, complex biological situations. This study uses a two dimensional computer simulation program, Fast Lagrangian Analysis of Continua (Flac), to analyse the stress at the skeletal locations, and to test theories of mechanical adaptation over time by simulating physiological adaptation. The initial purpose of this study is to examine the stress in the skeletal tissue in generalised trabeculae, anatomical sites where a tendon wraps around a bony pulley, in the trabecular networks that fill the patella, and at tendon attachments. A secondary purpose, that follows directly from the first, is to relate the results of these initial stress analyses to existing and hypothetical skeletal tissue remodelling theories, to suggest how the complex skeletal structures might be generated solely in response to their mechanical environment. The term “remodelling” is used throughout this work to refer to mechanical adaptation of bone, usually at a surface of bone, rather than the internal regeneration of osteons (Haversion systems)
APA, Harvard, Vancouver, ISO, and other styles
10

Svensson, Michael B. "Endogenous antioxidants in human skeletal muscle and adaptation in energy metabolism : with reference to exercise-training, exercise-related factors and nutrition /." Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-433-X.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Skeletal adaption"

1

Ruff, Christopher B., ed. Skeletal Variation and Adaptation in Europeans. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781118628430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bigrigg, Jonathan Kent. Carbohydrate refeeding rapidly reverses the adaptive upregulation of human skeletal muscle pyruvate dehydrogenase kinase following a high fat diet. St. Catharines, Ont: Brock University, Dept. of Physical Education and Kinesiology, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dinser, Robert, and Ulf Müller-Ladner. Skeletal muscle physiology and damage. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0055.

Full text
Abstract:
This chapter summarizes muscle structure and physiology, the genesis and adaptions of muscle throughout life, and clinical assessment of muscle disease. The anatomical and molecular structure of muscle tissue is described, as well as the basic function of the neuromuscular junction, the energy metabolism of muscle tissue, and the mechanisms of fatigue. Key elements of embryological myogenesis, the adaptions of muscle to exercise and damage, and physiological ageing are depicted. A summary of the clinical analysis of muscle function including laboratory, electrophysiological, and imaging testing is provided.
APA, Harvard, Vancouver, ISO, and other styles
4

Dinser, Robert, and Ulf Müller-Ladner. Skeletal muscle physiology and damage. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199642489.003.0055_update_001.

Full text
Abstract:
This chapter summarizes muscle structure and physiology, the genesis and adaptions of muscle throughout life, and clinical assessment of muscle disease. The anatomical and molecular structure of muscle tissue is described, as well as the basic function of the neuromuscular junction, the energy metabolism of muscle tissue, and the mechanisms of fatigue. Key elements of embryological myogenesis, the adaptions of muscle to exercise and damage, and physiological ageing are depicted. A summary of the clinical analysis of muscle function including laboratory, electrophysiological, and imaging testing is provided.
APA, Harvard, Vancouver, ISO, and other styles
5

Morton, Alison Jane. Adaptive growth of uterine and skeletal muscles in the rat. 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mechanobiology: Osteoarthritis and Skeletal Regeneration, and Osteoporosis and Bone Functional Adaptation. Diane Pub Co, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ruff, Christopher B. Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century. Wiley & Sons, Incorporated, John, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century. Wiley-Blackwell, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ruff, Christopher B. Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century. Wiley & Sons, Incorporated, John, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Strasser, Elizabeth. The Primate Postcranial Skeleton: Studies in Adaptation and Evolution. Academic Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Skeletal adaption"

1

Ruff, Christopher B. "Quantifying Skeletal Robusticity." In Skeletal Variation and Adaptation in Europeans, 39–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118628430.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ruff, Christopher B. "Introduction." In Skeletal Variation and Adaptation in Europeans, 1–13. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118628430.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ruff, Christopher B., and Heather Garvin. "Iberia." In Skeletal Variation and Adaptation in Europeans, 281–314. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118628430.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sládek, Vladimír, Margit Berner, Eliška Makajevová, Petr Velemínský, Martin Hora, and Christopher B. Ruff. "Central Europe." In Skeletal Variation and Adaptation in Europeans, 315–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118628430.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Niskanen, Markku, Heli Maijanen, Juho-Antti Junno, Sirpa Niinimäki, Anna-Kaisa Salmi, Rosa Vilkama, Tiina Väre, Kati Salo, Anna Kjellström, and Petra Molnar. "Scandinavia and Finland." In Skeletal Variation and Adaptation in Europeans, 355–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118628430.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ruff, Christopher B., and Brigitte Holt. "The Balkans." In Skeletal Variation and Adaptation in Europeans, 397–418. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118628430.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ruff, Christopher B., Brigitte Holt, Markku Niskanen, Vladimir Sládek, and Margit Berner. "Conclusions." In Skeletal Variation and Adaptation in Europeans, 419–26. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118628430.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Niskanen, Markku, and Christopher B. Ruff. "Body Size and Shape Reconstruction." In Skeletal Variation and Adaptation in Europeans, 15–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118628430.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Niskanen, Markku, Christopher B. Ruff, Brigitte Holt, Vladimir Sládek, and Margit Berner. "Temporal and Geographic Variation in Body Size and Shape of Europeans from the Late Pleistocene to Recent Times." In Skeletal Variation and Adaptation in Europeans, 49–89. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118628430.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Holt, Brigitte, Erin Whittey, Markku Niskanen, Vladimir Sládek, Margit Berner, and Christopher B. Ruff. "Temporal and Geographic Variation in Robusticity." In Skeletal Variation and Adaptation in Europeans, 91–132. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118628430.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Skeletal adaption"

1

Khayyeri, Hanifeh, and Patrick J. Prendergast. "Simulation of the Emergence of the Endochondral Ossification Process in Evolution." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53714.

Full text
Abstract:
The ability of tissues to adapt to the mechanical environment is a remarkable feature of the skeleton. Although the mechano-regulation process is very complex, several mechano-regulation theories for musculo-skeletal tissues have successfully predicted the tissue differentiation and remodelling process in various scenarios with reasonable accuracy (1,2); but how did mechano-regulated bone differentiation emerge in evolution? Early vertebrates, like cartilaginous fishes, could modulate their tissues to the mechanical environment and it is likely that evolution worked with the regulatory genes for skeletal tissues, rather than changes in structural genes, i.e. adapting skeletal tissues to the local conditions rather than involving major changes in cells or tissue types (3).
APA, Harvard, Vancouver, ISO, and other styles
2

Joo, Heon, and John P. Swensen. "Design and Experimentation of a Tunably-Compliant Robotic Finger Using Low Melting Point Metals." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9147.

Full text
Abstract:
In this paper, we describe the fabrication and testing of a tunably-compliant tendon-driven finger implemented through the geometric design of a skeleton made of the low-melting point Field’s metal encased in a silicone rubber. The initial prototype consists of a skeleton comprised of two rods of the metal, with heating elements in thermal contact with the metal at various points along its length, embedded in an elastomer. The inputs to the systems are both the force exerted on the tendon to bend the finger and the heat introduced to liquefy the metal locally or globally along the length of the finger. Selective localized heating allows multiple joints to be created along the length of the finger. Fabrication was accomplished via a multiple step process of elastomer casting and liquid metal casting. Heating elements such as power resistors or Ni-Cr wire with electric connections were added as an intermediate step before the final elastomer casting. The addition of a tradition tendon actuation was inserted after all casting steps had been completed. While preliminary, this combination of selective heating and engineered geometry of the low-melting point skeletal structure will allow for further investigation into the skeletal geometry and its effects on local and global changes in device stiffness.
APA, Harvard, Vancouver, ISO, and other styles
3

Hartl, Darren J., Gregory W. Reich, and Philip S. Beran. "Additive Topological Optimization of Muscular-Skeletal Structures via Genetic L-System Programming." In 24th AIAA/AHS Adaptive Structures Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hartl, Darren J., Brent Bielefeldt, Gregory W. Reich, and Philip S. Beran. "Multi-fidelity Analysis and Experimental Characterization of Muscular-Skeletal Structures Optimized via Genetic Programming." In 25th AIAA/AHS Adaptive Structures Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-1442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Qin, Yi-Xian, Hoyan Lam, and Murtaza Malbari. "The Effects of Loading Rate and Duration on Mitigation of Osteopenia by Dynamic Muscle Stimulation." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206685.

Full text
Abstract:
Musculoskeletal adaptations to aging and disuse environment have significant physiological effects on skeletal health, i.e., osteopenia and bone loss. Osteoporosis often occurs together with muscle loss. Such musculoskeletal complications cause severe physiologic changes and have been proposed the synergistic effects of muscle function and bone adaptation. The role of mechanobiology in the skeletal tissue may be closely related to load-induced transductive signals, e.g., bone fluid flow, which is proposed to be a critical mediator of bone and muscle adaptation. The skeletal muscle may serve as a muscle pump that may mediate bone mechanotransduction via modulation of intramedullary pressure. Muscular stimulation (MS) is proposed to be used to simultaneously treat both muscle and bone loss. Indeed, our recent data have demonstrated that high frequency, short duration stimulation can inhibit bone loss and muscle atrophy. Although 10 min dynamic loading can effectively attenuate bone loss, it cannot totally recover disuse osteopenia. The optimal parameters required for such treatment are unclear. Studies have separately investigated the optimal signal parameters for bone or muscle. Insertion of recovery periods during high frequency stimulations to extend the loading cycles have shown potential to reduce muscle atrophy by minimizing fatigue and mimicking physiologic contractions, and demonstrated enhancement of bone remodeling. The overall hypothesis for this study is that dynamic MS can enhance anabolic activity in bone, and inhibit bone loss in a functional disuse condition. Combined high frequency and sufficient loading cycle may be able to completely mitigate bone loss induced by disuse osteopenia.
APA, Harvard, Vancouver, ISO, and other styles
6

Bunget, Gheorghe, Stefan Seelecke, and Thomas J. Place. "Design and Fabrication of a Bio-Inspired Flapping Flight Micro-Air Vehicle." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-574.

Full text
Abstract:
The main objective of the BATMAV project is the development of a biologically-inspired Micro Aerial Vehicle (MAV) with flexible and foldable wings for flapping flight. While flapping flight in MAV has been previously studied and a number of models were realized they usually had unfoldable wings actuated with DC motors and mechanical transmission to provide the flapping motion, a system that brings the disadvantage of a heavy flight platform. This phase of the BATMAV project presents a flight platform that features bat-inspired wings with a number of flexible joints to allow mimicking the kinematics of the real mammalian flyer. The bat was chosen after an extensive analysis of the flight parameters of small birds, bats and large insects characterized by a superior maneuverability and wind gust rejection. Morphological and aerodynamic parameters were collected from existing literature and compared concluding that bat wing present a suitable platform that can be actuated efficiently using artificial muscles. Due to their wing camber variation, the bat species can operate effectively at a large rage of speeds and allow remarkably maneuverable and agile flight. Bat skeleton measurements were taken and modeled in SolidWorks to accurately reproduce bones and body via rapid prototyping machines. Much attention was paid specifically to achieving the comparable strength, elasticity, and range of motion of a naturally occurring bat. Therefore, a desktop model was designed, fabricated and assembled in order to study and optimize the effect of various flapping patterns on thrust and lift forces. As a whole, the BATMAV project consists of four major stages of development: the current phase — design and fabrication of the skeletal structure of the flight platform, selection and testing different materials for the design of a compliant bat-like membrane, analysis of the kinematics and kinetics of bat flight in order to design a biomechanical muscle system for actuation, and design of the electrical control architecture to coordinate the platform flight.
APA, Harvard, Vancouver, ISO, and other styles
7

Qin, Y. X., M. Hu, F. Serra-Hsu, J. Cheng, S. Ferreri, Y. Huang, Z. K. Zhang, L. Lin, and D. Evangelista. "Local and Distant Intramedullary Pressure and Bone Strain by Dynamic Hydraulic Stimulation." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-54017.

Full text
Abstract:
Osteoporosis gives rise to fragile bones that have higher fracture risks due to diminished bone mass and altered bone microarchitecture [1]. Mechanical loading mediated bone adaptation has demonstrated promising potentials as a non-pharmacological alteration for both osteogenic response and attenuation of osteopenia [2]. Intramedullary pressure (ImP) has been proposed as a key factor for fluid flow initiation and mechanotransductive signal inductions in bone. It is also suggested that integration of strain signals over time allows low-level mechanical strain in the skeleton to trigger osteogenic activities. The potential bone fluid flow induced by strain and ImP mediates adaptive responses in the skeleton [3]. Previous in vivo studies using oscillatory electrical stimulations showed that dynamic muscle contractions can generate ImP and bone strain to mitigate disuse osteopenia in a frequency-dependent manner. To apply ImP alteration as a means for bone fluid flow regulation, it may be necessary to develop a new method that could couple external loading with internal bone fluid flow. In order to further study the direct effect of ImP on bone adaptation, it was hypothesized that external dynamic hydraulic stimulation (DHS) can generate ImP with minimal strain in a frequency-dependent manner. The aim of this study was to evaluate the immediate effects on local and distant ImP and bone strain induced by a novel, non-invasive dynamic external pressure stimulus in response to a range of loading frequencies.
APA, Harvard, Vancouver, ISO, and other styles
8

Stacey, Benjamin J., and Peter Thomas. "Initial Analysis of a Novel Biomimetic Span-Wise Morphing Wing Concept." In ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5567.

Full text
Abstract:
Abstract Morphing wings and the adaptive systems they form have been developed significantly over recent decades. Increased efficiency and control performance can be achieved with their implementation, while advances in material technology, system integration and control, have allowed concepts to present a realistic alternative to fixed-wing and aft-tail aircraft. Set out in this paper is the preliminary design and development for a novel span-wise morphing concept which employs and heavily implements biomimetic design. Specifically, the skeletal structure of the bird wing by mimicking the humerus, ulna/radius, and carpometacarpus of birds of prey as they exhibit the most versatile wing shape enabling multiple manoeuvre and flight types. The concept comprises three sections corresponding to the skeletal structure, each consisting of a leading edge D-spar and an internal structural member onto which trailing edge plates are mounted. Pneumatic artificial muscle (PAM) actuators are presented as a drive for a biologically derived ‘drawing-parallels’ mechanism, through which a 75% semi-span length change and variable sweep angle, can be obtained. Analysis of initial CFD results is discussed in comparison with similar concepts in the field and a proposal for small scale wind tunnel verification put forward. While a rapid prototype is printed to confirm the viability of the concept.
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Z., R. L. Harne, and K. W. Wang. "Muscle-Like Characteristics With an Engineered Metastructure." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7746.

Full text
Abstract:
Combining adaptable supporting structure, large compliance, and intricate energy management, skeletal muscle is a natural system that exhibits numerous attractive characteristics. Recent mechanical modeling of muscle suggests some of the intriguing macroscale features are due to the assembly of nanoscale, metastable cross-bridge constituents. Inspired by the multifunctionality and versatility of muscle’s architectural composition, this research investigates a new paradigm of modular structure-material development to achieve significant system adaptivity by utilizing building blocks possessing metastability. The proposed, assembled systems belong to the class of metastructures, a new concept for engineering adaptive structures from basic, functional units in ways such that the systems exhibit unprecedented characteristics resulting from a synergy of their elements. A modular and metastable building block is created to emulate the effective passive functionality of muscle’s cross-bridge. Analytical and experimental results reveal that metastructures assembled from the metastable modules may supply unique changes in reaction force when the end displacement is prescribed, adapting not only the magnitude of force but also the direction, in addition to yielding a multitude of globally stable topologies. The investigations provide clear evidence that a metastructure may realize orders of magnitude change in stiffness for a constant system shape, and also enables the variation in required energy expense to globally deform the system. From these findings, the metastructural design framework represents a major leap forward in adaptive structures and material systems and has the potential to find broad future application.
APA, Harvard, Vancouver, ISO, and other styles
10

Qin, Yi-Xian, and Hoyan Lam. "Bone Formation and Inhibition of Bone Loss by Dynamic Muscle Stimulation With Altered Interstitial Fluid Pressure." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176607.

Full text
Abstract:
Tissue-level mechanisms and functions, including bone strain and muscle, are the potential key players in bone physiology and adaptation [1,2,3]. However, the mechanisms are not yet fully understood. Exercise such as muscle contraction appears to increase blood flow to the skeletal tissues, i.e., bone and muscle. These evidences imply that bone fluid flow induced by muscle dynamics may be an important role in regulating fluid flow through coupling of muscle and bone via microvascular system.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Skeletal adaption"

1

Turner, Russel. Bone-97 Alcohol and Skeletal Adaptation to Mechanical Usage. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada415959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography