Academic literature on the topic 'SIZING OF SVC'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SIZING OF SVC.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "SIZING OF SVC"
Mohd Ali, Nur Zahirah, Ismail Musirin, and Hasmaini Mohamad. "Effect of SVC installation on loss and voltage in power system congestion management." Indonesian Journal of Electrical Engineering and Computer Science 14, no. 1 (April 1, 2019): 428. http://dx.doi.org/10.11591/ijeecs.v14.i1.pp428-435.
Full textAbdullah, Ali Najim, Ahmed Majeed Ghadhban, Hayder Salim Hameed, and Husham Idan Hussein. "Enhancement the stability of power system using optimal location of FACTS devices." Indonesian Journal of Electrical Engineering and Computer Science 18, no. 2 (May 1, 2020): 648. http://dx.doi.org/10.11591/ijeecs.v18.i2.pp648-655.
Full textDuraisamy, Prasanth, and Arul Ponnusamy. "Power System Performance Improvement by Optimal Placement and Sizing of SVC using Genetic Algorithm." International Journal of Applied Power Engineering (IJAPE) 6, no. 2 (August 1, 2017): 55. http://dx.doi.org/10.11591/ijape.v6.i2.pp55-62.
Full textDuraisamy, Prasanth, and Arul Ponnusamy. "Power System Performance Improvement by Optimal Placement and Sizing of SVC using Genetic Algorithm." International Journal of Applied Power Engineering (IJAPE) 6, no. 2 (August 1, 2017): 56. http://dx.doi.org/10.11591/ijape.v6.i2.pp56-63.
Full textSuyono, Hadi, Rini Nur Hasanah, and Paramita Dwi Putri Pranyata. "Optimization of the Thyristor Controlled Phase Shifting Transformer using PSO Algorithm." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 6 (December 1, 2018): 5472. http://dx.doi.org/10.11591/ijece.v8i6.pp5472-5483.
Full textSantamaria-Henao, Nicolas, Oscar Danilo Montoya, and César Leonardo Trujillo-Rodríguez. "Optimal Siting and Sizing of FACTS in Distribution Networks Using the Black Widow Algorithm." Algorithms 16, no. 5 (April 27, 2023): 225. http://dx.doi.org/10.3390/a16050225.
Full textThasnas, Natakorn, and Apirat Siritaratiwat. "Static Voltage Stability Margin Enhancement Using Shunt Capacitor, SVC and STATCOM." Applied Mechanics and Materials 781 (August 2015): 288–91. http://dx.doi.org/10.4028/www.scientific.net/amm.781.288.
Full textHasma Abdullah, Nor Rul, Mahaletchumi A. P Morgan, Mahfuzah Mustafa, Rosdiyana Samad, and Dwi Pebrianti. "Multi-Objective Evolutionary Programming for Static VAR Compensator (SVC) in Power System Considering Contingencies (N-m)." International Journal of Power Electronics and Drive Systems (IJPEDS) 9, no. 2 (June 1, 2018): 880. http://dx.doi.org/10.11591/ijpeds.v9.i2.pp880-888.
Full textMohd Ali, N. Z., I. Musirin, and H. Mohamad. "Clonal evolutionary particle swarm optimization for congestion management and compensation scheme in power system." Indonesian Journal of Electrical Engineering and Computer Science 16, no. 2 (November 1, 2019): 591. http://dx.doi.org/10.11591/ijeecs.v16.i2.pp591-598.
Full textPrasath, R. Arun, M. Vimalraj, M. Riyas Ahamed, and K. Srinivasa Rao. "Power System Loadability Maximization by Optimal Placement of Multiple-Type FACTS Devices Using PSO Based GUI." Advanced Materials Research 984-985 (July 2014): 1286–94. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.1286.
Full textDissertations / Theses on the topic "SIZING OF SVC"
Gopalakrishnan, Harish. "Energy Reduction for Asynchronous Circuits in SoC Applications." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1324264498.
Full textStackler, Caroline. "Transformateurs électroniques pour applications ferroviaires." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0015.
Full textCurrent on-board converters, running on AC catenaries, are mainly composed by a low frequency transformer, then rectifiers, supplying traction motors through three-phase inverters. Due to volume and mass constraints on the converter, the efficiency of the transformer is limited. Moreover, this transformer is quite bulky and heavy. Thanks to the development of high voltage and high power semiconductors, such as Si IGBTs or SiC MOSFETs, and of medium frequency transformer, i.e. operating at a few kilohertz, new topologies of on-board converters, named Power Electronic Traction Transformer (PETT), are studied. Though several structures have been studied in the literature, they have never been compared. The main objective of this thesis is, thus, to develop a methodology to size PETT topologies, in order to compare them. In the first chapter, a state of the art of the PETT structures proposed in literature is presented. The second chapter is dedicated to the comparison of indirect topologies. A methodology, optimising the sizing of each structure to maximise its efficiency under mass and volume constraints, is developed. It is applied on topologies using SiC MOSFETs, contrary to Si IGBT structures developed in the literature. The magnetizing inductance is also considered to insure soft switching and reduce the losses. In the third chapter, an novel active filter, included in the DC-DCs of the converter, is proposed. The aim is to reduce the volume of the filtering capacitors on the intermediate buses, and thus, of the entire converter, without impacting the intrinsic reliability of the converter. Its impact on the losses of the DC-DC is studied. The last chapter deals with the interactions between the on-board converter and the infrastructure. Thus, the 25 kV-50 Hz railway network is modeled. It includes a novel circuit, modelling the skin effect in the catenary. Some resonances, dependant on the sector geometry and the train position, are highlighted in the impedance seen by a train. Moreover, the models are implemented in a numerical simulator to supply a small scale mock-up of a PETT. PHIL tests have, a priori, never been carried on a PETT. A conclusion and some perspectives of future work close thisdissertation
Brandelero, Julio Cezar. "Conception et réalisation d'un convertisseur multicellulaire DC/DC isolé pour application aéronautique." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/14246/1/Brandelero.pdf.
Full textPANDEY, PRASHANT. "APPLICATION OF PARTICLE SWARM OPTIMIZATION TECHNIQUE IN OPTIMAL LOCATION AND SIZING OF SVC." Thesis, 2013. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15674.
Full text(9158723), Supriyo Maji. "Efficient Minimum Cycle Mean Algorithms And Their Applications." Thesis, 2020.
Find full textMinimum cycle mean (MCM) is an important concept in directed graphs. From clock period optimization, timing analysis to layout optimization, minimum cycle mean algorithms have found widespread use in VLSI system design optimization. With transistor size scaling to 10nm and below, complexities and size of the systems have grown rapidly over the last decade. Scalability of the algorithms both in terms of their runtime and memory usage is therefore important.
Among the few classical MCM algorithms, the algorithm by Young, Tarjan, and Orlin (YTO), has been particularly popular. When implemented with a binary heap, the YTO algorithm has the best runtime performance although it has higher asymptotic time complexity than Karp's algorithm. However, as an efficient implementation of YTO relies on data redundancy, its memory usage is higher and could be a prohibitive factor in large size problems. On the other hand, a typical implementation of Karp's algorithm can also be memory hungry. An early termination technique from Hartmann and Orlin (HO) can be directly applied to Karp's algorithm to improve its runtime performance and memory usage. Although not as efficient as YTO in runtime, HO algorithm has much less memory usage than YTO. We propose several improvements to HO algorithm. The proposed algorithm has comparable runtime performance to YTO for circuit graphs and dense random graphs while being better than HO algorithm in memory usage.
Minimum balancing of a directed graph is an application of the minimum cycle mean algorithm. Minimum balance algorithms have been used to optimally distribute slack for mitigating process variation induced timing violation issues in clock network. In a conventional minimum balance algorithm, the principal subroutine is that of finding MCM in a graph. In particular, the minimum balance algorithm iteratively finds the minimum cycle mean and the corresponding minimum-mean cycle, and uses the mean and cycle to update the graph by changing edge weights and reducing the graph size. The iterations terminate when the updated graph is a single node. Studies have shown that the bottleneck of the iterative process is the graph update operation as previous approaches involved updating the entire graph. We propose an improvement to the minimum balance algorithm by performing fewer changes to the edge weights in each iteration, resulting in better efficiency.
We also apply the minimum cycle mean algorithm in latency insensitive system design. Timing violations can occur in high performance communication links in system-on-chips (SoCs) in the late stages of the physical design process. To address the issues, latency insensitive systems (LISs) employ pipelining in the communication channels through insertion of the relay stations. Although the functionality of a LIS is robust with respect to the communication latencies, such insertion can degrade system throughput performance. Earlier studies have shown that the proper sizing of buffer queues after relay station insertion could eliminate such performance loss. However, solving the problem of maximum performance buffer queue sizing requires use of mixed integer linear programming (MILP) of which runtime is not scalable. We formulate the problem as a parameterized graph optimization problem where for every communication channel there is a parameterized edge with buffer counts as the edge weight. We then use minimum cycle mean algorithm to determine from which edges buffers can be removed safely without creating negative cycles. This is done iteratively in the similar style as the minimum balance algorithm. Experimental results suggest that the proposed approach is scalable. Moreover, quality of the solution is observed to be as good as that of the MILP based approach.
Books on the topic "SIZING OF SVC"
Yarlagadda, Venu, A. Giriprasad, Lakshminarayana Gadupudi, O. Sobhana, and M. Naga Jyothi, eds. Optimal Placement and Sizing of SVC in Power Systems for Voltage Stability Enhancement. AkiNik Publications, 2021. http://dx.doi.org/10.22271/ed.book.1358.
Full textBook chapters on the topic "SIZING OF SVC"
Libby, Alex. "Sizing SVG." In Beginning SVG, 95–123. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3760-1_4.
Full textNakao, Wataru, Shihomi Abe, and Kotoji Ando. "SiC Nanometer Sizing Effect on Self Healing Ability of Structural Ceramics." In Mechanical Properties and Performance of Engineering Ceramics and Composites IV, 137–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470584262.ch12.
Full textNguyen, Khai Phuc, Dieu Ngoc Vo, and Goro Fujita. "Hybrid Cuckoo Search Algorithm for Optimal Placement and Sizing of Static VAR Compensator." In Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics, 288–326. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9644-0.ch011.
Full textConference papers on the topic "SIZING OF SVC"
Bhattacharya, Bidishna, Niladri Chakraborty, and Kamal K. Mandal. "Multiobjective optimal placement and sizing of SVC using cultural algorithm." In 2014 Annual IEEE India Conference (INDICON). IEEE, 2014. http://dx.doi.org/10.1109/indicon.2014.7030625.
Full textJumaat, Siti Amely, Ismail Musirin, Muhammad Mutadha Othman, and Hazlie Mokhlis. "Optimal Location and Sizing of SVC Using Particle Swarm Optimization Technique." In 2011 First International Conference on Informatics and Computational Intelligence (ICI). IEEE, 2011. http://dx.doi.org/10.1109/ici.2011.58.
Full textKhai Phuc Nguyen, Goro Fujita, Nguyen Duc Tuyen, Vo Ngoc Dieu, and Toshihisa Funabashi. "Optimal placement and sizing of SVC by using various meta-heuristic optimization methods." In 2014 International Conference on Power Engineering and Renewable Energy (ICPERE). IEEE, 2014. http://dx.doi.org/10.1109/icpere.2014.7067226.
Full textBalachennaiah, P., P. Harshavardhan Reddy, and Upendram Naveen Kumar Raju. "A novel algorithm for voltage stability augmentation through optimal placement and sizing of SVC." In 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES). IEEE, 2015. http://dx.doi.org/10.1109/spices.2015.7091477.
Full textAgrawal, Rahul, S. K. Bharadwaj, and D. P. Kothari. "Optimal location and sizing of SVC considering transmission loss and installation cost using TLBO." In 2015 Annual IEEE India Conference (INDICON). IEEE, 2015. http://dx.doi.org/10.1109/indicon.2015.7443110.
Full textNadeem, Muhammad, M. Zulqarnain Zeb, Kashif Imran, and Abdul Kashif Janjua. "Optimal Sizing and Allocation of SVC and TCSC for reactive Power planning in Meshed Network." In 2019 International Conference on Applied and Engineering Mathematics (ICAEM). IEEE, 2019. http://dx.doi.org/10.1109/icaem.2019.8853728.
Full textDixit, Shishir, Laxmi Srivastava, and Ganga Agnihotri. "Optimal Location and Sizing of SVC for Minimization of Power Loss and Voltage Deviation Using NSGA II." In 2014 International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2014. http://dx.doi.org/10.1109/csnt.2014.200.
Full textUdgir, Shraddha, Laxmi Srivastava, and Manjaree Pandit. "Optimal placement and sizing of SVC for loss minimization and voltage security improvement using differential evolution algorithm." In 2014 Recent Advances and Innovations in Engineering (ICRAIE). IEEE, 2014. http://dx.doi.org/10.1109/icraie.2014.6909310.
Full textNadeem, Muhammad, M. Zulqarnain Zeb, Kashif Imran, and Abdul Kashif Janjua. "Optimal Sizing and Allocation of SVC and TCSC in Transmission Network by combined Sensitivity index and PSO." In 2019 International Conference on Applied and Engineering Mathematics (ICAEM). IEEE, 2019. http://dx.doi.org/10.1109/icaem.2019.8853759.
Full textBashir Jannat, Mohamed, and Alexandar Savic. "Using of Genetic Algorithms (GAs) to find the optimal location and sizing of static VAR compensator (SVC) to minimize real power loss." In ICEMIS'21: The 7th International Conference on Engineering & MIS 2021. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3492547.3492627.
Full textReports on the topic "SIZING OF SVC"
Rose and Luo. L52069 Guided Wave Sizing and Discrimination for SCC Magnetostriction ILI Inspection. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2003. http://dx.doi.org/10.55274/r0011179.
Full textSelby and Spanner. L52004 Sizing Stress Corrosion Cracking in Pipeline Specimens from the Outside Surface. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2005. http://dx.doi.org/10.55274/r0011064.
Full textHayford. L51566 Ultralow Frequency Eddy Current Instrument for the Detection and Sizing of Stress Corrosion Cracks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1988. http://dx.doi.org/10.55274/r0010601.
Full textMalinowski, Owen, Jason Van Velsor, and Scott Riccardella. PR-335-203810-R02 Review of X-Ray Computed Tomography for Nondestructive Evaluation of Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 2021. http://dx.doi.org/10.55274/r0012075.
Full textUnknown, Author. L51630 In-Line Detection and Sizing of Stress Corrosion Cracks Using EMAT Ultrasonics. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 1990. http://dx.doi.org/10.55274/r0010616.
Full textAlders, George. L51630A In-Line Detection and Sizing of Stress Corrosion Cracks Using EMAT Ultrasonics - Phase II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 1991. http://dx.doi.org/10.55274/r0011370.
Full textRiccardella, Scott, and Jason Van Velsor. PR-335-173844-R01 NDE Crack Depth Sizing Performance Validation for Multiple UT Techniques. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2020. http://dx.doi.org/10.55274/r0011676.
Full textNeuert, Mark, and Smitha Koduru. PR-244-173856-R01 In-line Inspection Crack Tool Reliability and Performance Evaluation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2019. http://dx.doi.org/10.55274/r0011599.
Full textGinzel. L51748 Detection of Stress Corrosion Induced Toe Cracks-Advancement of the Developed Technique. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), March 1996. http://dx.doi.org/10.55274/r0010659.
Full textTandon, Samarth, Ming Gao, and Ravi Krishnamurthy. PR-328-083501-R01 Evaluation of EMAT Tool Performance and Reliability by Monitoring Industry Experience. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2017. http://dx.doi.org/10.55274/r0011442.
Full text