Journal articles on the topic 'Sitinakite'

To see the other types of publications on this topic, follow the link: Sitinakite.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 journal articles for your research on the topic 'Sitinakite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Panikorovskii, Taras L., Galina O. Kalashnikova, Anatoly I. Nikolaev, Igor A. Perovskiy, Ayya V. Bazai, Victor N. Yakovenchuk, Vladimir N. Bocharov, Natalya A. Kabanova, and Sergey V. Krivovichev. "Ion-Exchange-Induced Transformation and Mechanism of Cooperative Crystal Chemical Adaptation in Sitinakite: Theoretical and Experimental Study." Minerals 12, no. 2 (February 15, 2022): 248. http://dx.doi.org/10.3390/min12020248.

Full text
Abstract:
The microporous titanosilicate sitinakite, KNa2Ti4(SiO4)2O5(OH)·4H2O, was first discovered in the Khibiny alkaline massif. This material is also known as IONSIV IE-911 and is considered as one of the most effective sorbents for Cs+ and Sr2+ from water solutions. We investigate a mechanism of cooperative crystal chemical adaptation caused by the incorporation of La3+ ions into sitinakite structure by the combination of theoretical (geometrical–topological analysis, Voronoi migration map calculation, structural complexity calculation) and empirical methods (PXRD, SCXRD, Raman spectroscopy, scanning electron microscopy). The natural crystals of sitinakite (a = 7.8159(2), c = 12.0167(3) Å) were kept in a 1M solution of La(NO3)3 for 24 h. The ordering of La3+ cations in the channels of the ion-exchanged form La3+Ti4(SiO4)2O5(OH)·4H2O (a = 11.0339(10), b = 11.0598(8), c = 11.8430(7) Å), results in the symmetry breaking according to the group–subgroup relation P42/mcm → Cmmm.
APA, Harvard, Vancouver, ISO, and other styles
2

Milne, Nicholas A., Christopher S. Griffith, John V. Hanna, Maria Skyllas-Kazacos, and Vittorio Luca. "Lithium Intercalation into the Titanosilicate Sitinakite." Chemistry of Materials 18, no. 14 (July 2006): 3192–202. http://dx.doi.org/10.1021/cm0523337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dyer, Alan, Jon Newton, Luke O’Brien, and Scott Owens. "Studies on a synthetic sitinakite-type silicotitanate cation exchanger." Microporous and Mesoporous Materials 117, no. 1-2 (January 2009): 304–8. http://dx.doi.org/10.1016/j.micromeso.2008.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luca, Vittorio, John V. Hanna, Mark E. Smith, Michael James, David R. G. Mitchell, and John R. Bartlett. "Nb-substitution and Cs+ ion-exchange in the titanosilicate sitinakite." Microporous and Mesoporous Materials 55, no. 1 (August 2002): 1–13. http://dx.doi.org/10.1016/s1387-1811(02)00353-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tripathi, Akhilesh, Dmitri G. Medvedev, May Nyman, and Abraham Clearfield. "Selectivity for Cs and Sr in Nb-substituted titanosilicate with sitinakite topology." Journal of Solid State Chemistry 175, no. 1 (October 2003): 72–83. http://dx.doi.org/10.1016/s0022-4596(03)00145-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thorogood, Gordon J., Brendan J. Kennedy, Christopher S. Griffith, Maragaret M. Elcombe, Maxim Avdeev, John V. Hanna, Samantha K. Thorogood, and Vittorio Luca. "Structure and Phase Transformations in the Titanosilicate, Sitinakite. The Importance of Water." Chemistry of Materials 22, no. 14 (July 27, 2010): 4222–31. http://dx.doi.org/10.1021/cm100727h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Perovskiy, Igor A., Elena V. Khramenkova, Evgeny A. Pidko, Pavel V. Krivoshapkin, Alexandr V. Vinogradov, and Elena F. Krivoshapkina. "Efficient extraction of multivalent cations from aqueous solutions into sitinakite-based sorbents." Chemical Engineering Journal 354 (December 2018): 727–39. http://dx.doi.org/10.1016/j.cej.2018.08.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Medvedev, Dmitri G., Akhilesh Tripathi, Abraham Clearfield, Aaron J. Celestian, John B. Parise, and Jonathan Hanson. "Crystallization of Sodium Titanium Silicate with Sitinakite Topology: Evolution from the Sodium Nonatitanate Phase." Chemistry of Materials 16, no. 19 (September 2004): 3659–66. http://dx.doi.org/10.1021/cm049479a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gainey, Seth R., Matheus T. Lauar, Christopher T. Adcock, Jacimaria R. Batista, Kenneth Czerwinski, and David W. Hatchett. "The influence of thermal processing on the sorption of Cs and Sr by sitinakite." Microporous and Mesoporous Materials 296 (April 2020): 109995. http://dx.doi.org/10.1016/j.micromeso.2019.109995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Celestian, A. J., M. Powers, and S. Rader. "In situ Raman spectroscopic study of transient polyhedral distortions during cesium ion exchange into sitinakite." American Mineralogist 98, no. 7 (July 1, 2013): 1153–61. http://dx.doi.org/10.2138/am.2013.4349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Liu, Yao, Dong Yang, Renhe Wang, Jingyuan Liu, Duan Bin, Haifeng Zhu, Kun Liu, Jianhang Huang, Yong-Gang Wang, and Yong-Yao Xia. "Niobium-Doped Titanosilicate Sitinakite Anode with Low Working Potential and High Rate for Sodium-Ion Batteries." ACS Sustainable Chemistry & Engineering 7, no. 4 (January 21, 2019): 4399–405. http://dx.doi.org/10.1021/acssuschemeng.8b06326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ferdov, Stanislav, Rute A. Sá Ferreira, and Zhi Lin. "Optical properties and local structure of Eu3+-doped synthetic analogue of the microporous titanosilicate mineral sitinakite." Journal of Luminescence 128, no. 7 (July 2008): 1108–12. http://dx.doi.org/10.1016/j.jlumin.2007.11.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Milcent, Théo, Audrey Hertz, Yves Barré, and Agnès Grandjean. "Influence of the Nb content and microstructure of sitinakite-type crystalline silicotitanates (CSTs) on their Sr2+ and Cs+ sorption properties." Chemical Engineering Journal 426 (December 2021): 131425. http://dx.doi.org/10.1016/j.cej.2021.131425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dyer, Alan, Jon Newton, Luke O’Brien, and Scott Owens. "Studies on a synthetic sitinakite-type silicotitanate cation exchanger. Part 2. Effect of alkaline earth and alkali metals on the uptake of Cs and Sr radioisotopes." Microporous and Mesoporous Materials 120, no. 3 (April 2009): 272–77. http://dx.doi.org/10.1016/j.micromeso.2008.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hall, Reece, and Jennifer Readman. "EXAFS studies of the metal coordination environments in mixed Ti/Zr silicates." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1526. http://dx.doi.org/10.1107/s2053273314084733.

Full text
Abstract:
Microporous materials have a wide range of commercial uses from ion-exchangers to catalysts and have been used in the treatment of nuclear waste. The acidity associated with legacy waste pools often limits the effectiveness of these zeolites due to a loss of crystallinity. Microporous titanium silicates display different structural characteristics compared to conventional zeolites. Sitinakite, KNa2Ti4Si2O13(OH)·4H2O and the synthetic niobium doped analogue are being used as ion-exchange materials for the removal of Cs+and Sr2+from nuclear waste . Natisite is a layered titanium silicate with titanium in an unusual 5 coordinate square pyramidal environment. Natisite, Na2TiSiO5, crystallises in the tetragonal space group P4/nmm. [1, 2] A series of samples have been prepared with varying levels of zirconium doping ranging from 10% to 50%. Powder x-ray diffraction (PXRD) showed no obvious impurities attributed to zirconium containing phase. X-Ray Fluorescence (XRF) was carried out and showed the presence of zirconium indicating that doping had been successful. Ion-exchange experiments were carried out on the doped and undoped natiste samples using Cs and Co containing solutions. It was found that increasing the levels of zirconium increased the affinity towards Cs with the undoped materials taking up very little Cs. The rate of exchange with Co seemed to increase as the zirconium level was increased within the sample. This suggests that the presence of zirconium in the framework has a considerable effect on the ion-exchange properties of natisite. EXAFS has been useful in determining the coordination environment of titanium and zirconium in order to help fully understand the chemistry of this material. Also it has helped with determining if the exchanged Cs and Co have a preference for the sites close to Zr rather than Ti. It is therefore believed that the inclusion of zirconium in the natisite framework has potential use as an ion-exchanger in the nuclear industry.
APA, Harvard, Vancouver, ISO, and other styles
16

Milne, Nicholas A., Christopher S. Griffith, John V. Hanna, Maria Skyllas-Kazacos, and Vittorio Luca. "Lithium Intercalation into the Titanosilicate Sitinakite." ChemInform 37, no. 39 (September 26, 2006). http://dx.doi.org/10.1002/chin.200639015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

"Titanosilicate Sitinakite Compound As a Low-Potential Anode for Sodium-Ion Battery." ECS Meeting Abstracts, 2019. http://dx.doi.org/10.1149/ma2019-03/2/109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography