Dissertations / Theses on the topic 'Sister chromatids cohesion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 dissertations / theses for your research on the topic 'Sister chromatids cohesion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Camus, Adrien. "Étude épistatique de RecN, et des liens entre la cohésion des chromatides sœurs et de la réparation de l’ADN chez Escherichia coli." Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLE029.
Full textTo preserve their niche, bacteria frequently produce and secrete antibiotics with genotoxic properties. Molecular processes that maintain genomic integrity are essential for all organisms. This is necessary because DNA damage can arise during every round of genome duplications. These antibiotics have been used for clinical application to treat infections or cancers. In the present work, we analyzed the Genomic Stress Response (GSR) induced by two genotoxic antibiotics: Bleomycin (BLM) and Mitomycin C (MMC). Although MMC and BLM alter DNA in different ways, they both lead to double strand breaks (DSB). The DSBs are suspected to be the major cause of cell death repaired by homologous recombination (HR). Earlier studies revealed that HR is essential to bacteria to survive BLM and MMC toxicity. Pioneer works and recent textbooks tend to attribute a particular DNA damage response (DDR) to each type of lesions. The RecN protein, induced by the SOS regulon, appeared to play important roles in the processing and repair of DNA lesions generated by MMC and BLM. However, the function of RecN in these two repair processes is not yet understood. RecN is a structural maintenance chromosome (SMC)-like protein that binds on single strand DNA where it can catch a second DNA molecule. In vitro, RecN stimulates the ligation of DNA molecules. In vivo, RecN prevents sister chromatid segregation and promotes an extreme nucleoid compaction. RecN overexpression is toxic for the cell and its level is regulated by ClpXP proteasome. Because RecN interacts with RecA and both are equally required to survive I-SCE 1 mediated DSB, they are generally associated in the same epistatic group. However, recent data suggest that RecA and RecN may also function in genetically distinct pathways, important for the DNA repair. In the present study, we took advantage of RecN involvement in the repair of two different types of DNA lesions to investigate the GSR. We demonstrated that sister chromatid dynamics and nucleoid management by RecN differ according to the drug considered. In presence of MMC-induced lesions, RecN requires a pre-processing of the lesions by the nucleotid excision repair (NER) and its activity on sister chromatids occurs early in the repair process. By contrast, in presence of BLM-induced lesions, RecN activity does not require NER processing and occurs later in the recovery phase. Transposition insertion (TIS) analysis revealed that recN is one of the rare DDR genes involved in the GSR of both drugs. A lack of RecN significantly disturbed the GSR, by increasing notably the pressure on the base excision repair (BER) pathway, while reducing concomitantly the importance of homologous recombination. The TIS analysis also highlighted how important drug tolerance pathways such as: efflux systems, oxidative stress management and cell cycle controllers, are for successful recovery from DNA alterations. Moreover, RecN activity influences the balance between different solutions. More generally, this work illustrates that GSR is an integrated process that cells adopt to create the most appropriate conditions for their survival
Liu, Zhe. "Characterization of sister chromatid cohesins having overlapping function and the role of separase, AtESP1, in controlling sister chromatid cohesion in Arabidopsis." Connect to this document online, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=miami1134155133.
Full textTitle from second page of PDF document. Document formatted into pages; contains [3], vi, 124 p. : ill. Includes bibliographical references.
Feytout, Amélie. "Régulation dynamique de l’association des cohésines aux chromosomes, établissement et maintien de la cohésion des chromatides sœurs." Thesis, Bordeaux 2, 2010. http://www.theses.fr/2010BOR21773/document.
Full textFollowing DNA replication, sister chromatids are connected by cohesin to ensure their correct segregation during mitosis. How cohesion is created is still enigmatic. The cohesin subunit Smc3 becomes acetylated by ECO1, a conserved acetyl-transferase, and this change is required for cohesion. As in mammals, fission yeast cohesin is not stably bound to G1 chromosomes but a fraction becomes stable when cohesion is made. The aim of this work was to understand how cohesin dynamics is regulated and how the change in cohesin dynamics creates cohesion.In G1 chromatin bound cohesin exchange with the soluble pool and the unloading reaction relies in part on Wapl. The first part of this study reports on the identification of G1/S factors as new candidate regulators of cohesin dynamics.Following S phase a stable cohesin fraction is made. The acetyl-transferase Eso1 is not required for this reaction when the wpl1 gene is deleted. Yet, it is in wild-type cells, showing that the sole but essential Eso1 function is counteracting Wapl. Eso1 acetylates the cohesin sub-unit Smc3. This renders cohesin less sensitive to Wapl but does not confer the stable binding mode, suggesting the existence of a second Eso1-dependent event. The cohesin sub-unit Pds5 act together with Wapl to promote cohesin removal from G1 chromosomes but after S phase Pds5 is essential for cohesin retention on chromosomes and long term cohesion. Pds5 co-localizes with the stable cohesin fraction whereas Wapl does not. We suggest a model in which cohesion establishment is made by two acetylation events coupled to fork progression leading to Wapl eviction while keeping Pds5 on cohesin complexes intended to make cohesion
Almedawar, Seba. "A SUMO-dependent step during establishment of Sister Chromatid Cohesion." Doctoral thesis, Universitat de Lleida, 2013. http://hdl.handle.net/10803/123807.
Full textLos anillos de cohesina, formados por las proteínas Smc1, SMC3, Scc1 y Scc3, se unen topológicamente al DNA, manteniendo las parejas de cromátidas hermanas unidas desde la duplicación del DNA hasta el comienzo de la anafase. Esta función, conocida como Cohesión entre Cromátidas Hermanas, permite la biorientación de los cromosomas en el huso mitótico y, posteriormente, su correcta segregación. Se trata por lo tanto de una función fundamental para la vida. La cohesión entre cromátidas hermanas también tiene otras funciones, como favorecer la reparación del daño en el DNA a través de recombinación homóloga. Es por estos motivos que la cohesina está sometida a varios niveles de regulación a lo largo del ciclo celular, a través de diferentes factores reguladores y modificaciones post-traduccionales. Por ejemplo, la acetilación de la subunidad Smc3 es necesaria para que los anillos se mantengan establemente unidos a cromatina. Alteraciones en la molécula de cohesina y/o en su regulación pueden provocar el desarrollo de patologías y contribuir a la progresión tumoral. En este estudio, describimos la sumoilación de la cohesina como una nueva modificación post-traduccional necesaria para la cohesión en Saccharomyces cerevisiae. La sumoilación de la cohesina depende, en parte, de la SUMO ligasa Nse2 y de un complejo Smc5/6 plenamente funcional. Todas las subunidades del complejo cohesina se sumoilan in vivo durante la replicación del ADN, después de la formación de los anillos de cohesina y de su reclutamiento en cromatina, en un proceso dependiente de la unión de ATP a las subunidades SMC, e independiente de la acetilación de Smc3. Con el fin de alterar el estado de sumoilación de los anillos de cohesina e identificar la relevancia funcional de esta modificación, hemos diseñado una nueva aproximación experimental que permite eliminar SUMO de todas las proteínas del complejo, basado en la fusión del dominio SUMO peptidasa de Ulp1 (UD) a la proteína Scc1. Las fusiones Scc1-UD se incorporan a los anillos de cohesina, se cargan en la cromatina y se localizan adecuadamente sobre los cromosomas de levadura. Sin embargo, la desumoilación de los anillos de cohesina impide la cohesión entre las cromátidas hermanas, deteniendo el ciclo celular en G2/M y provocando la pérdida de viabilidad de las células. Estos efectos son debidos a la actividad del dominio SUMO peptidasa, y no a problemas estructurales en la proteína de fusión Scc1-UD, ya que la mutación puntual del centro catalítico de UD restaura la cohesión y la viabilidad celular. Experimentos en paralelo sugieren que la sumoilació de la cohesina podría tener funciones similares en células humanas. Sorprendentemente, los anillos de cohesina continúan acetilados en ausencia de sumoilación. Dado que los modelos actuales proponen que los anillos se cierran establemente al ser acetilados, es probable que en ausencia de sumoilación la cohesina se cierre en torno a una sola cromátida. En consecuencia, proponemos que la sumoilación de la cohesina sería necesaria durante la replicación del ADN para atrapar las dos cromátidas hermanas de forma estable en el interior del anillo.
Cohesin rings composed of the Smc1, Smc3, Scc1 and Scc3 proteins topologically bind to DNA, keeping pairs of sister chromatids together from the time of DNA replication until the onset of anaphase. This feature, known as Sister Chromatid Cohesion (SCC), allows the biorientation of chromosomes on the mitotic spindle, and their subsequent segregation. Sister Chromatid Cohesion also has other roles, such as enabling repair of DNA damage through homologous recombination. Thus, it is not surprising that cohesin is subjected to multiple levels of control during the cell cycle by different regulatory factors and post-translational modifications. For example, acetylation of the Smc3 subunit is required to prevent the opening of cohesin rings, keeping them stably bound to chromatin. Alterations in the cohesin molecule itself and/or its regulation may lead to the development of serious pathologies and can contribute to tumor progression. In this study, we describe the sumoylation of cohesin as a new post-translational modification required for Sister Chromatid Cohesion in Saccharomyces cerevisiae. Sumoylation of cohesin is partially dependent on the Nse2 SUMO ligase and the Smc5/6 complex. All subunits of the cohesin complex are sumoylated in vivo during DNA replication, after the formation of cohesin rings and their recruitment onto chromatin, in a process dependent on the binding of ATP to the SMC subunits, and independent of Smc3 acetylation. In order to alter the sumoylation status of cohesin rings and to identify its functional relevance, we designed a new approach to remove SUMO from all cohesin subunits, based on the fusion of the SUMO peptidase domain of Ulp1 (UD) to the Scc1 protein. Scc1-UD fusions are properly incorporated into cohesin rings, loaded onto chromatin and located along yeast chromosomes. However, desumoylation of cohesin rings prevents Sister Chromatid Cohesion, arresting cells in G2/M and causing the loss of cell viability. These effects are due to the activity of the SUMO peptidase domain rather than structural problems in the Scc1-UD fusion, since mutation of the catalytic site in the UD restores cohesion and cell viability. Parallel experiments suggest that sumoylation of cohesin might have similar functions in human cells. Surprisingly, cohesin rings remain acetylated in the absence of sumoylation. Current models propose that cohesin rings are stably locked once they are acetylated. Therefore, it is likely that in the absence of sumoylation cohesin encircles a single chromatid. Consequently, we propose that sumoylation of cohesin is required during DNA replication to entrap the two sister chromatids inside its ring structure.
Page, Andrea Wilder. "The meiotic cell cycle and sister-chromatid cohesion in Drosophila oocytes." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9843.
Full textBorges, V. S. F. "Establishment of sister chromatid cohesion during DNA replication in Saccharomyces cerevisiae." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1370644/.
Full textSundaramoorthy, S. "Mediators of pre-mRNA splicing regulate sister chromatid cohesion in mammalian cells." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1418244/.
Full textVickridge, Elise. "Management of E. coli sister chromatid cohesion in response to genotoxic stress." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS172/document.
Full textMaintaining genome integrity through replication is an essential process for the cell cycle. However, many factors can compromise this replication and thus the genome integrity. Mitomycin C is a genotoxic agent that creates a covalent link between the two DNA strands. When the replication fork encounters the DNA crosslink, it breaks and creates a DNA double strand break (DSB). Escherichia coli (E.coli) is a widely used model for studying complex DNA mechanisms. When facing a DNA DSB, E. coli activates the SOS response pathway. The SOS response comprises over 50 genes that are under the control of a LexA-repressed promoter. Upon a DSB induction, RecA, a central protein of the SOS response will trigger the degradation of LexA and all the SOS genes will be expressed.We have developed a novel molecular biology tool that reveals contacts between sister chromatids that are cohesive. It has been shown in the lab (Lesterlin et al. 2012) that during a regular cell cycle, the two newly replicated sister chromatids stay in close contact for 10 to 20 min before segregating to separate cell halves thanks to the action of Topoisomerase IV. This step is called sister chromatid cohesion. We have used this molecular biology tool to study sister chromatid cohesion upon a genotoxic stress induced by mitomycin C (MMC). We have shown that sister chromatid cohesion is maintained and prolonged when the cell is facing a DSB. Moreover, this sister chromatid cohesion is dependent on RecN, an SOS induced structural maintenance of chromosome-like (SMC-like) protein. In the absence of RecN, the proximity between both sister chromatids is lost and this has a deleterious effect on cell viability. By tagging the chromosome with fluorescent proteins, we have revealed that RecN can also mediated a progressive regression of two previously segregated sister chromatids and this is coordinated with a whole nucleoid compaction. Further studies showed that this genome compaction is orderly and is not the result of a random compaction in response to DNA damage.Interestingly, inhibiting TopoIV in a recN mutant fully restores viability and sister chromatid cohesion suggesting that RecN’s action is mainly structural. Preserving cohesion through precatenanes is sufficient to favor repair and cell viability even in the absence of RecN.An RNA-seq experiment in a WT strain and a recN mutant revealed that the whole SOS response is downregulated in a recN mutant. This suggests that RecN may have an effect on the induction of the SOS response and thus RecA filament formation. This is in good agreement with the change in RecA-mcherry foci formation we observed. In the WT strain, the RecA-mcherry foci are defined as described in previous work. However, in the recN, the RecA-mcherry foci seemed to form bundle like structures. These RecA bundles were previsously described by Lesterlin et al. in the particular case of a DSB occurring on a chromatid that has already been segregated from its homolog. This could mean that in the absence of recN, the sister chromatids segregate and RecA forms bundle like structures in order to perform a search for the intact homologous sister chromatid.Altogether, these results reveal that RecN is an essential protein for sister chromatid cohesion upon a genotoxic stress. RecN favors sister chromatid cohesion by preventing their segregation. Through a whole nucleoid rearrangement, RecN mediates sister chromatid regression, favoring DNA repair and cell viability
Vickridge, Elise. "Management of E. coli sister chromatid cohesion in response to genotoxic stress." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS172.
Full textMaintaining genome integrity through replication is an essential process for the cell cycle. However, many factors can compromise this replication and thus the genome integrity. Mitomycin C is a genotoxic agent that creates a covalent link between the two DNA strands. When the replication fork encounters the DNA crosslink, it breaks and creates a DNA double strand break (DSB). Escherichia coli (E.coli) is a widely used model for studying complex DNA mechanisms. When facing a DNA DSB, E. coli activates the SOS response pathway. The SOS response comprises over 50 genes that are under the control of a LexA-repressed promoter. Upon a DSB induction, RecA, a central protein of the SOS response will trigger the degradation of LexA and all the SOS genes will be expressed.We have developed a novel molecular biology tool that reveals contacts between sister chromatids that are cohesive. It has been shown in the lab (Lesterlin et al. 2012) that during a regular cell cycle, the two newly replicated sister chromatids stay in close contact for 10 to 20 min before segregating to separate cell halves thanks to the action of Topoisomerase IV. This step is called sister chromatid cohesion. We have used this molecular biology tool to study sister chromatid cohesion upon a genotoxic stress induced by mitomycin C (MMC). We have shown that sister chromatid cohesion is maintained and prolonged when the cell is facing a DSB. Moreover, this sister chromatid cohesion is dependent on RecN, an SOS induced structural maintenance of chromosome-like (SMC-like) protein. In the absence of RecN, the proximity between both sister chromatids is lost and this has a deleterious effect on cell viability. By tagging the chromosome with fluorescent proteins, we have revealed that RecN can also mediated a progressive regression of two previously segregated sister chromatids and this is coordinated with a whole nucleoid compaction. Further studies showed that this genome compaction is orderly and is not the result of a random compaction in response to DNA damage.Interestingly, inhibiting TopoIV in a recN mutant fully restores viability and sister chromatid cohesion suggesting that RecN’s action is mainly structural. Preserving cohesion through precatenanes is sufficient to favor repair and cell viability even in the absence of RecN.An RNA-seq experiment in a WT strain and a recN mutant revealed that the whole SOS response is downregulated in a recN mutant. This suggests that RecN may have an effect on the induction of the SOS response and thus RecA filament formation. This is in good agreement with the change in RecA-mcherry foci formation we observed. In the WT strain, the RecA-mcherry foci are defined as described in previous work. However, in the recN, the RecA-mcherry foci seemed to form bundle like structures. These RecA bundles were previsously described by Lesterlin et al. in the particular case of a DSB occurring on a chromatid that has already been segregated from its homolog. This could mean that in the absence of recN, the sister chromatids segregate and RecA forms bundle like structures in order to perform a search for the intact homologous sister chromatid.Altogether, these results reveal that RecN is an essential protein for sister chromatid cohesion upon a genotoxic stress. RecN favors sister chromatid cohesion by preventing their segregation. Through a whole nucleoid rearrangement, RecN mediates sister chromatid regression, favoring DNA repair and cell viability
Lee, Janice Ying 1974. "Localization studies of sister-chromatid cohesion proteins MEI-S332 and RAD21 in Drosophila." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32256.
Full textIncludes bibliographical references.
In cell division, the proper segregation of chromosomes requires sister-chromatid cohesion. This physical attachment between sister chromatids is established during DNA replication, maintained throughout mitosis and released at the metaphase-anaphase transition. In meiosis, sister-chromatid cohesion is released along the chromosome arms in the first meiotic division, but retained at the centromere until the second meiotic division. In this thesis, we have analyzed the localization of two cohesion proteins in Drosophila, MEI-S332 and RAD21. MEI-S332 localizes specifically to the centromere from prometaphase to the metaphase-anaphase transition in mitosis, and from prometaphase I to the metaphase II-anaphase II transition in meiosis. We find that the termini of MEI-S332 are required for its localization to chromosomes; these are also the regions that have homology to MEI-S332-like proteins in other organisms. The localization of MEI-S332 does not require the presence of cohesin, an evolutionarily conserved protein complex that is essential for the establishment and maintenance of cohesion, nor a replicated sister chromatid. However, MEI-S332 delocalization is dependent upon the activity of the separase pathway that regulates cohesin release. We have identified and characterized a key subunit of cohesin in Drosophila, DRAD21, and studied its localization in early stages of meiosis in spermatocytes.
(cont.) DRAD21 is nuclear in prophase I, but is not visibly localized on chromosomes in later stages. Although DRAD21 is concentrated in centromeric regions after prometaphase in mitosis, MEI- S332 and DRAD21 do not physically interact in a complex in whole embryo extracts. Immunostaining of spread metaphase chromosomes for MEI-S332 and DRAD21 reveals that the two proteins are not localized to the same domains.
by Janice Ying Lee.
Ph.D.
BOATENG, KINGSLEY A. "STUDIES ON ARABIDOPSIS PROTEINS REQUIRED FOR THE ESTABLISHMENT AND RELEASE OF SISTER CHROMATID COHESION." Miami University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=miami1185209243.
Full textTang, Tracy Tzu-Ling 1971. "The Drosophila centrometic protein MEI-S332 : its role and regulation in sister-chromatid cohesion." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85285.
Full textBhatti, Saeeda. "Analysis of the S. pombe sister chromatid cohesin subunit in response to DNA damage agents during mitosis." Thesis, Connect to e-thesis record to view abstract. Move to record for print version, 2008. http://theses.gla.ac.uk/292/.
Full textPh.D. thesis submitted to the Division of Biochemistry and Molecular Biology, Biomedical and Life Sciences (IBLS), University of Glasgow, 2008. Includes bibliographical references. Print version also available.
Fumasoni, M. "REPLICATION-ASSOCIATED REPRIMING AND PRIMER PROCESSING FACILITATE ERROR-FREE DNA DAMAGE TOLERANCE AND SISTER CHROMATID SYNAPSIS." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/234145.
Full textYang, Chao [Verfasser], and Arp [Akademischer Betreuer] Schnittger. "Dissecting the molecular regulation of chromosome axis formation and sister chromatid cohesion during meiosis in Arabidopsis thaliana / Chao Yang ; Betreuer: Arp Schnittger." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2019. http://d-nb.info/1199539074/34.
Full textMitra, Sayantan. "Arabidopsis Cohesin proteins: WAPL, CTF7 and PHD finger proteins: MMDL1, MMDL2 are essential for proper meiosis, gamete development and plant growth." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1517605898967702.
Full textGigant, Emmanuelle. "La cohésion des chromatides sœurs chez Escherichia coli." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00776480.
Full textWang, Zhenghe. "Pol [kappa] : a novel DNA polymerase required for sister chromatid cohesion and DNA repair /." 2001. http://wwwlib.umi.com/dissertations/fullcit/9987208.
Full textLam, Wendy W. S. "Keeping sisters together : cohesin and Ycs4 define distinct mechanisms for sister chromatid cohesion." 2005. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=362417&T=F.
Full textSantos, Mariana Batista. "Cohesion decay: quantitative analysis of partial sister chromatid cohesion." Master's thesis, 2014. http://hdl.handle.net/10362/13875.
Full textXu, Hong. "Global view and genetic dissection of genes in sister chromatid cohesion." 2007. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=742451&T=F.
Full textAntoniacci, Lisa Morgan. "Characterization of a novel protein found to interact with the Saccharomyces cerevisiae Cohesion Establishment Factor Ctf7p /." Diss., 2005. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3167045.
Full textMa, Jian. "Studies on the mechanisms of homolog pairing and sister chromatid cohesion during Drosophila male meiosis." 2007. http://etd.utk.edu/2007/MaJian.pdf.
Full textKeall, Rebecca M. "Molecular and genetic analysis of Drosophila Rad21: a gene and protein involved in sister chromatid cohesion." Thesis, 2005. https://researchonline.jcu.edu.au/2088/1/01front.pdf.
Full text