Journal articles on the topic 'Single-shot imaging'

To see the other types of publications on this topic, follow the link: Single-shot imaging.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Single-shot imaging.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jochimsen, T. "Single-shot curved slice imaging." Magnetic Resonance Materials in Biology, Physics, and Medicine 14, no. 1 (March 1, 2002): 50–55. http://dx.doi.org/10.1016/s1352-8661(01)00157-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liang, Jinyang, and Lihong V. Wang. "Single-shot ultrafast optical imaging." Optica 5, no. 9 (September 12, 2018): 1113. http://dx.doi.org/10.1364/optica.5.001113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hennel, F., Z. Sulek, and A. Jasinski. "Single-Shot Fourier Velocity Imaging." Journal of Magnetic Resonance, Series A 102, no. 1 (March 1993): 95–97. http://dx.doi.org/10.1006/jmra.1993.1072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jochimsen, Thies H., and David G. Norris. "Single-shot curved slice imaging." Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine 14, no. 1 (February 2002): 50–55. http://dx.doi.org/10.1007/bf02668187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, Zhiping, and X. C. Zhang. "Single-shot spatiotemporal terahertz field imaging." Optics Letters 23, no. 14 (July 15, 1998): 1114. http://dx.doi.org/10.1364/ol.23.001114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Song, Allen W., Hua Guo, and Trong-Kha Truong. "Single-shot ADC imaging for fMRI." Magnetic Resonance in Medicine 57, no. 2 (2007): 417–22. http://dx.doi.org/10.1002/mrm.21135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sivankutty, Siddharth, Esben Ravn Andresen, Géraud Bouwmans, Thomas G. Brown, Miguel A. Alonso, and Hervé Rigneault. "Single-shot polarimetry imaging of multicore fiber." Optics Letters 41, no. 9 (April 28, 2016): 2105. http://dx.doi.org/10.1364/ol.41.002105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nelson, Matthew P., Wendy C. Bell, Michael L. McLester, and M. L. Myrick. "Single-Shot Multiwavelength Imaging of Laser Plumes." Applied Spectroscopy 52, no. 2 (February 1998): 179–86. http://dx.doi.org/10.1366/0003702981943383.

Full text
Abstract:
A novel optical approach to single-shot chemical imaging with high spectroscopic resolution is described with the use of a prototype dimension-reduction fiber-optic array. Images are focused onto a 30 × 20 array of hexagonally packed 250 μm o.d. f/2 optical fibers that are drawn into a 600 × 1 distal array with specific ordering. The 600 × 1 side of the array is imaged with an f/2 spectrograph equipped with a holographic grating and a charge-coupled device (CCD) camera for spectral analysis. Software is used to extract the spatial/spectral information contained in the CCD images and de-convolute them into wavelength-specific reconstructed images or position-specific spectra that span a 190 nm wavelength space. “White light” zero-order images and first-order spectroscopic images of laser plumes have been reconstructed to illustrate proof-of-principle. Index Headings: Fiber optics; Chemical imaging; Spectroscopic imaging; Charged-coupled device (CCD); Laser-induced breakdown spectroscopy (LIBS).
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Zhili, Dalin Liu, Kun Ren, Xiaomin Shi, and Jianlin Xia. "Single-shot X-ray Dark-field Imaging." Microscopy and Microanalysis 24, S2 (August 2018): 130–31. http://dx.doi.org/10.1017/s143192761801303x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turner, Robert, and Denis Le Bihan. "Single-shot diffusion imaging at 2.0 tesla." Journal of Magnetic Resonance (1969) 86, no. 3 (February 1990): 445–52. http://dx.doi.org/10.1016/0022-2364(90)90023-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gajda, Mariusz, Jan Mostowski, Tomasz Sowiński, and Magdalena Załuska-Kotur. "Single-shot imaging of trapped Fermi gas." EPL (Europhysics Letters) 115, no. 2 (July 1, 2016): 20012. http://dx.doi.org/10.1209/0295-5075/115/20012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Arditi, Marcel. "Single-shot phase cancellation ultrasound contrast imaging." Journal of the Acoustical Society of America 112, no. 4 (2002): 1248. http://dx.doi.org/10.1121/1.1520988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Larsson, Kajsa, Malin Jonsson, Jesper Borggren, Elias Kristensson, Andreas Ehn, Marcus Aldén, and Joakim Bood. "Single-shot photofragment imaging by structured illumination." Optics Letters 40, no. 21 (October 26, 2015): 5019. http://dx.doi.org/10.1364/ol.40.005019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Engel, Maria, Lars Kasper, Christoph Barmet, Thomas Schmid, Laetitia Vionnet, Bertram Wilm, and Klaas P. Pruessmann. "Single‐shot spiral imaging at 7 T." Magnetic Resonance in Medicine 80, no. 5 (March 25, 2018): 1836–46. http://dx.doi.org/10.1002/mrm.27176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kwong, K. K., R. C. McKinstry, D. Chien, A. P. Crawley, J. D. Pearlman, and B. R. Rosen. "CSF-suppressed quantitative single-shot diffusion imaging." Magnetic Resonance in Medicine 21, no. 1 (September 1991): 157–63. http://dx.doi.org/10.1002/mrm.1910210120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Oshio, Koichi, and David A. Feinberg. "Single-Shot GRASE Imaging without Fast Gradients." Magnetic Resonance in Medicine 26, no. 2 (August 1992): 355–60. http://dx.doi.org/10.1002/mrm.1910260214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zhang, Cheng, Ru Zhang, Yuanyuan Zhu, Hairong Yang, Chuan Shen, and Sui Wei. "Single-Shot Compressed Imaging via Random Phase Modulation." Applied Sciences 12, no. 9 (April 29, 2022): 4536. http://dx.doi.org/10.3390/app12094536.

Full text
Abstract:
Compressed sensing (CS) provides an innovative framework for signal sampling, which enables accurate recovery of the sparse or compressible signal from a small set of linear measurements far fewer than the Nyquist rate in traditional signal processing. In compressed sensing, random modulation plays a key role, which can spread out the signal information more or less evenly across all locations. There are many modulation techniques, such as amplitude modulation, frequency modulation, phase modulation, spectrum modulation, and so on. Among these modulation techniques, phase modulation is vital due to the efficiency and convenience of modulation. In this paper, we review both the theoretical and application of compressed sensing and several compressed imaging systems using random phase modulation. First, we review the fundamentals of compressed sensing, dividing it into three parts: sparse representation, incoherent measurement, and nonlinear reconstruction algorithm. We then show how phase modulation can be applied to compressed sensing and compressed imaging, where the presentation can be divided into six main parts, corresponding to different aspects of phase modulation applied in compressed sensing or compressed imaging: (1) Fundamentals of compressed sensing. (2) Principles of phase modulation. (3) Single-shot compressed imaging with spatial-domain single random phase mask (CI-SSRPM). (4) Single-shot compressed imaging with a random convolution using a double random phase mask (CI-DRPM). (5) Single-shot compressed imaging with Fourier-domain single random phase mask (CI-FSRPM). (6) Single-shot compressed imaging with double random phase encoding (CI-DRPE).
APA, Harvard, Vancouver, ISO, and other styles
18

Posse, Stefan, Ricardo Otazo, Shang-Yueh Tsai, Akio Ernesto Yoshimoto, and Fa-Hsuan Lin. "Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging." Magnetic Resonance in Medicine 61, no. 3 (December 18, 2008): 541–47. http://dx.doi.org/10.1002/mrm.21855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Medina, C., D. Schomas, N. Rendler, M. Debatin, D. Uhl, A. Ngai, L. Ben Ltaief, et al. "Single-shot electron imaging of dopant-induced nanoplasmas." New Journal of Physics 23, no. 5 (May 1, 2021): 053011. http://dx.doi.org/10.1088/1367-2630/abf7f9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Baek, Seung-Hwan, Diego Gutierrez, and Min H. Kim. "Birefractive stereo imaging for single-shot depth acquisition." ACM Transactions on Graphics 35, no. 6 (November 11, 2016): 1–11. http://dx.doi.org/10.1145/2980179.2980221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Horisaki, Ryoichi, Riki Egami, and Jun Tanida. "Single-shot phase imaging with randomized light (SPIRaL)." Optics Express 24, no. 4 (February 16, 2016): 3765. http://dx.doi.org/10.1364/oe.24.003765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Baek, Seung-Hwan, Incheol Kim, Diego Gutierrez, and Min H. Kim. "Compact single-shot hyperspectral imaging using a prism." ACM Transactions on Graphics 36, no. 6 (November 20, 2017): 1–12. http://dx.doi.org/10.1145/3130800.3130896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Huber, Armin M., Vivian Leber, Bettina M. Gramer, Daniela Muenzel, Alexander Leber, Johannes Rieber, Martin Schmidt, Mani Vembar, Ellen Hoffmann, and Ernst Rummeny. "Myocardium: Dynamic versus Single-Shot CT Perfusion Imaging." Radiology 269, no. 2 (November 2013): 378–86. http://dx.doi.org/10.1148/radiol.13121441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Horisaki, Ryoichi, Ryosuke Takagi, and Jun Tanida. "Learning-based single-shot superresolution in diffractive imaging." Applied Optics 56, no. 32 (November 3, 2017): 8896. http://dx.doi.org/10.1364/ao.56.008896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Samsheerali, P. T., Kedar Khare, and Joby Joseph. "Quantitative phase imaging with single shot digital holography." Optics Communications 319 (May 2014): 85–89. http://dx.doi.org/10.1016/j.optcom.2013.12.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Barty, Anton, Sébastien Boutet, Michael J. Bogan, Stefan Hau-Riege, Stefano Marchesini, Klaus Sokolowski-Tinten, Nikola Stojanovic, et al. "Ultrafast single-shot diffraction imaging of nanoscale dynamics." Nature Photonics 2, no. 7 (June 22, 2008): 415–19. http://dx.doi.org/10.1038/nphoton.2008.128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Szameit, A., Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, et al. "Sparsity-based single-shot subwavelength coherent diffractive imaging." Nature Materials 11, no. 5 (April 1, 2012): 455–59. http://dx.doi.org/10.1038/nmat3289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sahoo, Sujit Kumar, Dongliang Tang, and Cuong Dang. "Single-shot multispectral imaging with a monochromatic camera." Optica 4, no. 10 (October 4, 2017): 1209. http://dx.doi.org/10.1364/optica.4.001209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Li, Xiaohan, Joel A. Greenberg, and Michael E. Gehm. "Single-shot multispectral imaging through a thin scatterer." Optica 6, no. 7 (July 9, 2019): 864. http://dx.doi.org/10.1364/optica.6.000864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Horisaki, Ryoichi, Yusuke Ogura, Masahiko Aino, and Jun Tanida. "Single-shot phase imaging with a coded aperture." Optics Letters 39, no. 22 (November 11, 2014): 6466. http://dx.doi.org/10.1364/ol.39.006466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Cai, Zewei, Giancarlo Pedrini, Wolfgang Osten, Xiaoli Liu, and Xiang Peng. "Single-shot structured-light-field three-dimensional imaging." Optics Letters 45, no. 12 (June 10, 2020): 3256. http://dx.doi.org/10.1364/ol.393911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hammond, TJ, Aleksey Korobenko, A. Yu Naumov, D. M. Villeneuve, Paul B. Corkum, and Dong Hyuk Ko. "Near-field imaging for single-shot waveform measurements." Journal of Physics B: Atomic, Molecular and Optical Physics 51, no. 6 (February 28, 2018): 065603. http://dx.doi.org/10.1088/1361-6455/aaae2f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Terraciano, Matthew L., Mark Bashkansky, and Fredrik K. Fatemi. "A single-shot imaging magnetometer using cold atoms." Optics Express 16, no. 17 (August 11, 2008): 13062. http://dx.doi.org/10.1364/oe.16.013062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

He, Zichen, Nathan Williamson, Cary D. Smith, Mark Gragston, and Zhili Zhang. "Compressed single-shot hyperspectral imaging for combustion diagnostics." Applied Optics 59, no. 17 (June 10, 2020): 5226. http://dx.doi.org/10.1364/ao.390335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Finsterbusch, Jürgen, and Jens Frahm. "Single-Shot Line Scan Imaging Using Stimulated Echoes." Journal of Magnetic Resonance 137, no. 1 (March 1999): 144–53. http://dx.doi.org/10.1006/jmre.1998.1642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Crawley, Adrian P., Mark S. Cohen, E. Kent Yucel, Brigitte Poncelet, and Thomas J. Brady. "Single-Shot Magnetic Resonance Imaging: Applications to Angiography." Cardiovascular and Interventional Radiology 15, no. 1 (February 1992): 32–42. http://dx.doi.org/10.1007/bf02733897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Feinberg, David A., Berthold Kiefer, and Glyn Johnson. "GRASE Improves Spatial Resolution in Single Shot Imaging." Magnetic Resonance in Medicine 33, no. 4 (April 1995): 529–33. http://dx.doi.org/10.1002/mrm.1910330411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Elizabeth Meyerand, M., and Eric C. Wong. "A time encoding method for single-shot imaging." Magnetic Resonance in Medicine 34, no. 4 (October 1995): 618–22. http://dx.doi.org/10.1002/mrm.1910340419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Johnson, Glyn, David A. Feinberg, and Viswanathan Venkataraman. "Single-shot GRASE imaging with short effective TEs." Journal of Magnetic Resonance Imaging 6, no. 6 (November 1996): 944–47. http://dx.doi.org/10.1002/jmri.1880060617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bammer, Roland, Martin Auer, Stephen L. Keeling, Michael Augustin, Lara A. Stables, Rupert W. Prokesch, Rudolf Stollberger, Michael E. Moseley, and Franz Fazekas. "Diffusion tensor imaging using single-shot SENSE-EPI." Magnetic Resonance in Medicine 48, no. 1 (June 27, 2002): 128–36. http://dx.doi.org/10.1002/mrm.10184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Block, Kai Tobias, and Jens Frahm. "Radial single-shot STEAM MRI." Magnetic Resonance in Medicine 59, no. 4 (2008): 686–91. http://dx.doi.org/10.1002/mrm.21401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sung, Daeho, Daewoong Nam, Myong-jin Kim, Seonghan Kim, Kyung Sook Kim, Sang-Youn Park, Sun Min Hwang, et al. "Single-Shot Coherent X-ray Imaging Instrument at PAL-XFEL." Applied Sciences 11, no. 11 (May 30, 2021): 5082. http://dx.doi.org/10.3390/app11115082.

Full text
Abstract:
We developed a single-shot coherent X-ray imaging instrument at the hard X-ray beamline of the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). This experimental platform was established to conduct a variety of XFEL experiments, including coherent diffraction imaging (CDI), X-ray photon correlation spectroscopy (XPCS), and coherent X-ray scattering (CXS). Based on the forward-scattering geometry, this instrument utilizes a fixed-target method for sample delivery. It is well optimized for single-shot-based experiments in which one expects to observe the ultrafast phenomena of nanoparticles at picosecond temporal and nanometer spatial resolutions. In this paper, we introduce a single-shot coherent X-ray imaging instrument and report pump–probe coherent diffraction imaging (PPCDI) of Ag nanoparticles as an example of its applications.
APA, Harvard, Vancouver, ISO, and other styles
43

Kim, Jaewon, and Abhijeet Ghosh. "Polarized Light Field Imaging for Single-Shot Reflectance Separation." Sensors 18, no. 11 (November 6, 2018): 3803. http://dx.doi.org/10.3390/s18113803.

Full text
Abstract:
We present a novel computational photography technique for single-shot separation of diffuse/specular reflectance, as well as novel angular domain separation of layered reflectance. We present two imaging solutions for this purpose: two-way polarized light-field (TPLF) imaging and four-way polarized light-field (FPLF) imaging. TPLF imaging consists of a polarized light-field camera, which simultaneously captures two orthogonal states of polarization. A single photograph of a subject acquired with the TPLF camera under polarized illumination then enables standard separation of diffuse (depolarizing) and polarization preserving specular reflectance using light-field sampling. We further demonstrate that the acquired data also enable novel angular separation of layered reflectance including separation of specular reflectance and single scattering in the polarization preserving component, as well as separation of shallow scattering from deep scattering in the depolarizing component. FPLF imaging further generalized the functionality of TPLF imaging under uncontrolled unpolarized or partially polarized illumination such as outdoors. We apply our approach for efficient acquisition of facial reflectance including diffuse and specular normal maps and novel separation of photometric normals into layered reflectance normals for layered facial renderings. We validate our proposed single-shot layered reflectance separation under various imaging conditions and demonstrate it to be comparable to an existing multi-shot technique that relies on structured lighting while achieving separation results under a variety of illumination conditions.
APA, Harvard, Vancouver, ISO, and other styles
44

Chen, Yi, Emre Cenker, Daniel R. Richardson, Sean P. Kearney, Benjamin R. Halls, Scott A. Skeen, Christopher R. Shaddix, and Daniel R. Guildenbecher. "Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging." Optics Letters 43, no. 21 (October 29, 2018): 5363. http://dx.doi.org/10.1364/ol.43.005363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shimizu, Isao, Yoshinori Saikawa, Katsuhiro Uno, Hideaki Kano, and Seishi Shimizu. "Contrast-tuneable microscopy for single-shot real-time imaging." European Physical Journal Applied Physics 91, no. 3 (September 2020): 30701. http://dx.doi.org/10.1051/epjap/2020200101.

Full text
Abstract:
A novel real image in-line laser holography has enabled a tuneable image contrast, edge sharpness, and visualization of sub-wavelength structures, using a simple pair of filters and large-diameter lenses that can incorporate higher-order scattered beams. Demonstrated also are the accuracy in object sizing and the ease of imaging along the focal depth, based on a single-shot imaging via holographic principle. In addition, the use of broad, collimated laser beam for irradiation has led to a wider field of view, making it particularly useful for an extensive monitoring of, and sweeping search for, cells and microbial colonies and for the real-time imaging of cancer-cell dynamics.
APA, Harvard, Vancouver, ISO, and other styles
46

Börnert, Peter, and Dye Jensen. "Single-shot-double-echo EPI." Magnetic Resonance Imaging 12, no. 7 (January 1994): 1033–38. http://dx.doi.org/10.1016/0730-725x(94)91234-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lim, Hyunwoo, Hyosung Cho, Hunwoo Lee, and Duhee Jeon. "Quantification of dark-field effects in single-shot grid-based x-ray imaging." Journal of Optics 24, no. 3 (February 14, 2022): 035608. http://dx.doi.org/10.1088/2040-8986/ac3f93.

Full text
Abstract:
Abstract Dark-field (DF) x-ray imaging (DFXI) is a technology that can obtain information relating to the small-angle x-ray scattering of a sample. In this paper, we report on the quantification of DF effects by measuring the real space correlation function of scattering samples in a single-shot grid-based x-ray imaging setup that enables a simple approach to DFXI. The experimental measurements of the DF effects in our imaging setup were in good agreement with the theoretical quantification over the entire range of test conditions, thus verifying its effectiveness for single-shot grid-based DFXI. Consequently, we were able to clearly understand the associated particle-scale selectivity, which can help us determine suitable applications for single-shot grid-based x-ray DFXI.
APA, Harvard, Vancouver, ISO, and other styles
48

Brockstedt, S., M. Borg, B. Geijer, R. Wirestam, C. Thomsen, S. Holtås, and F. Ståhlberg. "Triggering in Quantitative Diffusion Imaging with Single-Shot EPI." Acta Radiologica 40, no. 3 (May 1999): 263–69. http://dx.doi.org/10.3109/02841859909175552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sun, Fenghao, Hui Li, Shanshan Song, Fei Chen, Jiawei Wang, Qiwen Qu, Chenxu Lu, et al. "Single-shot imaging of surface molecular ionization in nanosystems." Nanophotonics 10, no. 10 (July 12, 2021): 2651–60. http://dx.doi.org/10.1515/nanoph-2021-0172.

Full text
Abstract:
Abstract Using single-shot velocity map imaging technique, explosion imaging of different ion species ejected from 50 nm SiO2 nanoparticles are obtained excitedly by strong near-infrared and ultraviolet femtosecond laser fields. Characteristic momentum distributions showing forward emission of the ions at low excitation intensities and shock wave behaviors at high intensities are observed. When the excitation intensity is close to the dissociative ionization threshold of the surface molecules, the resulting ion products can be used to image the instant near-field distributions. The underlying dynamics of shock formation are simulated by using a Coulomb explosion model. Our results allow one to distinguish the ultrafast strong-field response of various molecular species in nanosystems and will open a new way for further exploration of the underlying dynamics of laser-and-nanoparticle interactions.
APA, Harvard, Vancouver, ISO, and other styles
50

Xiao, Xiao, Shu-Man Du, Fu Zhao, Jing Wang, Jun Liu, and Ru-Xin Li. "Single-shot optical speckle imaging based on pseudothermal illumination." Acta Physica Sinica 68, no. 3 (2019): 034201. http://dx.doi.org/10.7498/aps.68.20181723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography