Academic literature on the topic 'Single nucleotide polymorphisms'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Single nucleotide polymorphisms.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Single nucleotide polymorphisms"

1

Shaw, Greg. "Polymorphism and single nucleotide polymorphisms (SNPs)." BJU International 112, no. 5 (August 7, 2013): 664–65. http://dx.doi.org/10.1111/bju.12298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dong, Chunming, Joseph R. Nevins, and Pascal J. Goldschmidt-Clermont. "ABCA1 Single Nucleotide Polymorphisms." Circulation Research 88, no. 9 (May 11, 2001): 855–57. http://dx.doi.org/10.1161/hh0901.091208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meyer, Nuala J. "Beyond Single-Nucleotide Polymorphisms." Clinics in Chest Medicine 35, no. 4 (December 2014): 673–84. http://dx.doi.org/10.1016/j.ccm.2014.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pandav, Surinder Singh, Partha Chakma, Alka Khera, Neera Chugh, Parul Chawla Gupta, Faisal Thattaruthody, Natasha Gautam Seth, et al. "Lack of association between lysyl oxidase-like 1 polymorphism in pseudoexfoliation syndrome and pseudoexfoliation glaucoma in North Indian population." European Journal of Ophthalmology 29, no. 4 (September 6, 2018): 431–36. http://dx.doi.org/10.1177/1120672118795405.

Full text
Abstract:
Introduction:Pseudoexfoliation syndrome is commonly associated with pseudoexfoliation glaucoma. The two nonsynonymous single-nucleotide polymorphisms rs1048661 (R141L) and rs3825942 (G153D) within exon 1 of LOXL1 gene have been found to confer risk of pseudoexfoliation syndrome and pseudoexfoliation glaucoma in different geographical populations. This study aims to find association between two nonsynonymous single-nucleotide polymorphisms with pseudoexfoliation syndrome and pseudoexfoliation glaucoma in North Indian population.Methods:North Indian subjects clinically diagnosed with pseudoexfoliation syndrome/pseudoexfoliation glaucoma and normal age-matched control were enrolled in the study. Genomic DNA was extracted and the two single-nucleotide polymorphisms of LOXL1 gene were genotyped by polymerase chain reaction and sequencing. The association between single-nucleotide polymorphisms with pseudoexfoliation syndrome/pseudoexfoliation glaucoma was evaluated by chi-square test.Results:A total of 30 pseudoexfoliation glaucoma, 27 pseudoexfoliation syndrome and 61 control subjects were enrolled in the study. Patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma did not show any genetic association with either single-nucleotide polymorphism rs1048661 or rs3825942.Conclusion:The study shows lack of association between LOXL1 single-nucleotide polymorphisms and pseudoexfoliation in North Indian population.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhu, Y. L., Q. J. Song, D. L. Hyten, C. P. Van Tassell, L. K. Matukumalli, D. R. Grimm, S. M. Hyatt, E. W. Fickus, N. D. Young, and P. B. Cregan. "Single-Nucleotide Polymorphisms in Soybean." Genetics 163, no. 3 (March 1, 2003): 1123–34. http://dx.doi.org/10.1093/genetics/163.3.1123.

Full text
Abstract:
Abstract Single-nucleotide polymorphisms (SNPs) provide an abundant source of DNA polymorphisms in a number of eukaryotic species. Information on the frequency, nature, and distribution of SNPs in plant genomes is limited. Thus, our objectives were (1) to determine SNP frequency in coding and noncoding soybean (Glycine max L. Merr.) DNA sequence amplified from genomic DNA using PCR primers designed to complete genes, cDNAs, and random genomic sequence; (2) to characterize haplotype variation in these sequences; and (3) to provide initial estimates of linkage disequilibrium (LD) in soybean. Approximately 28.7 kbp of coding sequence, 37.9 kbp of noncoding perigenic DNA, and 9.7 kbp of random noncoding genomic DNA were sequenced in each of 25 diverse soybean genotypes. Over the >76 kbp, mean nucleotide diversity expressed as Watterson’s θ was 0.00097. Nucleotide diversity was 0.00053 and 0.00111 in coding and in noncoding perigenic DNA, respectively, lower than estimates in the autogamous model species Arabidopsis thaliana. Haplotype analysis of SNP-containing fragments revealed a deficiency of haplotypes vs. the number that would be anticipated at linkage equilibrium. In 49 fragments with three or more SNPs, five haplotypes were present in one fragment while four or less were present in the remaining 48, thereby supporting the suggestion of relatively limited genetic variation in cultivated soybean. Squared allele-frequency correlations (r2) among haplotypes at 54 loci with two or more SNPs indicated low genome-wide LD. The low level of LD and the limited haplotype diversity suggested that the genome of any given soybean accession is a mosaic of three or four haplotypes. To facilitate SNP discovery and the development of a transcript map, subsets of four to six diverse genotypes, whose sequence analysis would permit the discovery of at least 75% of all SNPs present in the 25 genotypes as well as 90% of the common (frequency >0.10) SNPs, were identified.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Ting, Yuting Liang, Hong Li, Haibo Li, Quanze He, Ying Xue, Cong Shen, et al. "Single Nucleotide Polymorphisms and Osteoarthritis." Medicine 95, no. 7 (February 2016): e2811. http://dx.doi.org/10.1097/md.0000000000002811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Karthikeyan, Ramalingam, Manohar Murugan, SyedWali Peeran, MareiHamad Al Mugrabi, Khaled Awidat, and Omar Basheer. "Single nucleotide polymorphisms and periodontitis." Dentistry and Medical Research 2, no. 1 (2014): 3. http://dx.doi.org/10.4103/2348-1471.131556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thomas, Sandy. "Shares in single nucleotide polymorphisms." Expert Opinion on Therapeutic Patents 9, no. 7 (July 1999): 811–12. http://dx.doi.org/10.1517/13543776.9.7.811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Phillips, C., M. Lareu, A. Salas, M. Fondevila, G. Berniell Lee, A. Carracedo, N. Morling, P. Schneider, and D. Syndercombe Court. "Population specific single nucleotide polymorphisms." International Congress Series 1261 (April 2004): 233–35. http://dx.doi.org/10.1016/j.ics.2003.12.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rieder, Mark J., and Deborah A. Nickerson. "Hypertension and single nucleotide polymorphisms." Current Hypertension Reports 2, no. 1 (February 2000): 44–49. http://dx.doi.org/10.1007/s11906-000-0057-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Single nucleotide polymorphisms"

1

Sauer, Sascha. "Technology development for genotyping single nucleotide polymorphisms." [S.l.] : [s.n.], 2001. http://www.diss.fu-berlin.de/2002/102/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lau, Chi Chiu. "Hepatitis B virus and single nucleotide polymorphisms." HKBU Institutional Repository, 2007. http://repository.hkbu.edu.hk/etd_ra/810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schwonbeck, Susanne. "Analyse von Single-Nucleotide-Polymorphisms an Glas-Oberflächen." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974115568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schwonbeck, Susanne. "Analyse von Single Nucleotide Polymorphisms an Glas-Oberflächen." Phd thesis, Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2005/221/.

Full text
Abstract:
Ziel der vorliegenden Arbeit war die Entwicklung einer SNP-Genotypisierungsmethode mit auf Mikroarrays immobilisierten PCR-Produkten. Für die Analyse wurde ein faseroptischer Affinitätssensor bzw. ein Durchfluss-Biochip-Scanner mit integrierter Fluoreszenzdetektion verwendet. An den immobilisierten Analyten (PCR-Produkten) wurde eine Fluoreszenzoligonukleotidsonde hybridisiert und anschließend die Dissoziation der Sonde im Fluss verfolgt. Die Diskriminierung von Wildtyp- und Mutanten-DNA erfolgte durch die kinetische Auswertung der Dissoziationskurven sowie durch die Analyse der Fluoreszenzintensität.

Die Versuche am faseroptischen Affinitätssensor zeigten, dass DNA-DNA-Hybride sowohl von Oligonukleotiden als auch von PCR-Produkten ein typisches Dissoziationsverhalten aufweisen, wobei fehlgepaarte Hybride eine signifikant schnellere Dissoziation zeigen als perfekt passende Hybride. Dieser Geschwindigkeitsunterschied lässt sich durch den Vergleich der jeweiligen kinetischen Geschwindigkeitskonstanten kD quantitativ erfassen.

Da die Kopplung des Analyten an der Chipoberfläche sowie die Hybridisierungs- und Dissoziationsparameter essentiell für die Methodenentwicklung war, wurden die Parameter für ein optimales Spotting und die Immobilisierung von PCR-Produkten ermittelt. Getestet wurden die affine Kopplung von biotinylierten PCR-Produkten an Streptavidin-, Avidin- und NeutrAvidin-Oberflächen sowie die kovalente Bindung von phosphorylierten Amplifikaten mit der EDC/Methylimidazol-Methode. Die besten Ergebnisse sowohl in Spotform und -homogenität als auch im Signal/Rausch-Verhältnis wurden an NeutrAvidin-Oberflächen erreicht.

Für die Etablierung der Mikroarray-Genotypisierungsmethode durch kinetische Analyse nach einem Hybridisierungsexperiment wurden Sondenlänge, Puffersystem, Spotting-Konzentration des Analyten sowie Temperatur optimiert. Das Analysensystem erlaubte es, PCR-Produkte mit einer Konzentration von 250 ng/µl in einem HEPES-EDTA-NaCl-Puffer auf mit NeutrAvidin beschichtete Glasträger zu spotten. In den anschließenden Hybridisierungs- und Dissoziationsexperimenten bei 30 °C konnte die Diskriminierung von homocygoter Wildtyp- und homocygoter Mutanten- sowie heterocygoter DNA am Beispiel von Oligonukleotid-Hybriden erreicht werden.

In einer Gruppe von 24 homocygoten Patienten wurde ein Polymorphismus im SULT1A1-Gen analysiert. Sowohl durch kinetische Auswertung als auch mit der Analyse der Fluoreszenzintensität wurde der Genotyp der Proben identifiziert. Die Ergebnisse wurden mit dem Referenzverfahren, der Restriktionschnittstellenanalyse (PCR-RFLP) validiert. Lediglich ein Genotyp wurde falsch bestimmt, die Genauigkeit lag bei 96%.

In einer Gruppe von 44 Patienten wurde der Genotyp eines SNP in der Adiponectin-Promotor-Region untersucht. Nach Vergleich der Analysenergebnisse mit denen eines Referenzverfahrens konnten lediglich 14 der untersuchten Genotypen bestätigt werden. Ursache für die unzureichende Genauigkeit der Methode war vor allem das schlechte Signal/Rausch-Verhältnis.

Zusammenfassend kann gesagt werden, dass das in dieser Arbeit entwickelte Analysesystem für die Genotypisierung von Einzelpunktmutationen geeignet ist, homocygote Patientenproben zuverlässig zu analysieren. Prinzipiell ist das auch bei heterocygoter DNA möglich. Da nach aktuellem Kenntnisstand eine SNP-Analysemethode an immobilisierten PCR-Produkten noch nicht veröffentlicht wurde, stellt das hier entwickelte Verfahren eine Alternative zu bisher bekannten Mikroarray-Verfahren dar. Als besonders vorteilhaft erweist sich der reverse Ansatz der Methode.

Der hier vorgestellte Ansatz ist eine kostengünstigere und weniger hoch dimensionierte Lösung für Fragestellungen beispielsweise in der Ernährungswissenschaft, bei denen meist eine mittlere Anzahl Patienten auf nur einige wenige SNPs zu untersuchen ist. Wenn es gelingt, durch die Weiterentwicklung der Hardware bzw. weiterer Optimierung, eine Verbesserung des Signal/Rausch-Verhältnisses und damit die Diskriminierung von heterocygoter DNA zu erreichen, kann diese Methode zukünftig bei der Analyse von mittelgroßen Patientengruppen alternativ zu anderen Genotypisierungsmethoden verwendet werden.
The aim of this thesis was the development of a SNP genotyping method involving PCR products immobilised on microarrays. For the analysis a fibre optic affinity biosensor and a flow-through biochip scanner were used. Fluorescent probes were hybridized with the immobilised PCR products. In order to start the dissociation process the surface was rinsed with buffer and the fluorescence intensity was measured.

Two different cases were studied: First, the full-matched DNA hybrid (wildtyp single strand with complementary wildtype single strand), second the mis-matched hybrid (wildtype single strand and mutant single strand). After determinating the reaction rates (kD) as kinetic parameter the kD values of both cases were compared. The experiments showed a significant difference in the kD value of the full- and the mis-match hybrids. Therefore, mutant and wildtype DNA were discriminated by kinetic analysis of the dissociation process and analysis of the fluorescence intensity.

To set up the complete analysis process the reaction parameters like coupling of the PCR products had to be optimised. Both affininty coupled (streptavidin, neutravidin, avidin - biotin) and covalent methods (EDC/methylimidazol) were carried out. Best results in spot homogeinity and spot appearance were obtained with coupling of biotinylated PCR products on neutravidin coated chip surfaces. Additionally, the length of the probe, the spotting concentration, the spotting buffer and the reaction temperature were optimised. In the optimised analysis PCR products (250 µg/µl) were spotted onto neutravidin coated surfaces. The hybridisation

and dissociation processes were carried out at 30°C. A HEPES-EDTA-NaCl buffer was used for spotting, diluting of the fluorescent probe and rinsing the microarray surface. A fluorescent probe was used with 13 nucleotides in length. The mis- or full-matching base indicating the polymorphism was located in the center position of the probe.

The analysis system was tested with the genomic DNA of a group of 24 homocygote individuals with a SNP in the SULT1A1 gene region. The hybridisation and dissociation processes were carried out and the reaction rates were determinated. Subsequently after the analysis in the flow-through biochip scanner the fluorescence intensity of the

spots were measured. The results showed very good comparability with results of a PCR-RFLP analysis (one false genotype). Additionally, a group of 44 heterocygote DNA samples with one SNP in the adiponectin promotor region were also genotyped. Compared to a reference method only 14 genotypes were correctly determined. This was mostly due to a low signal-noise-ratio and needs to be further investigated.

Besides the problem in analysing heterocygote DNA samples the developed analysis system is very useful for genotyping SNP in homocygote DNA samples. The successful analysis of heterocygote sample is principally possible and with further investigations/optimisation, a better analysis should be possible.

The most important advantage of the developed method is the reverse approach of binding PCR products at the surface instead of oligonucleotides. This allows the parallel genotyping of several individuals. Other advantages include low costs and medium sized dimensions in terms of throughput.

APA, Harvard, Vancouver, ISO, and other styles
5

Reeves, Emma. "Functional consequences of single nucleotide polymorphisms in ERAAP." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/375582/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dallin, Joshua Jeffrey. "Analytical Comparison of Bovine Parentage Single Nucleotide Polymorphisms." DigitalCommons@USU, 2015. https://digitalcommons.usu.edu/etd/4450.

Full text
Abstract:
Often on cattle operations and dairy farms, where multiple bulls are exposed to cows either by live cover or artificial insemination, error can be present in parentage record keeping for breed registries or production use. Research has evolved to the integration of using single nucleotide polymorphisms (SNPs) to answer questions where cases of unknown parentage may exist. With the evolution of the research, differentiated panels have been created specifically for parentage analysis. Our objective was to complete an analytical comparison between two specific panels, a proven 88 parentage SNP panel and a recently developed 25 SNP panel. A smaller panel would be beneficial in a parentage test as the smaller panel would reduce time and costs associated with the parentage analysis. In this study, nearly 4,000 cattle samples were collected and prepared from offspring, sires, and dams. Parentage calling software was used to identify the parentage assignments of the samples. Through these procedures and comparisons, it was determined that the smaller 25 SNP panel did not have the magnitude or strength necessary to be able to correctly identify cattle in the same manner as the 88 SNP panel.
APA, Harvard, Vancouver, ISO, and other styles
7

Barbati, E. "SINGLE NUCLEOTIDE POLYMORPHISMS AND MICRORNAS AFFECTING PTX3 PRODUCTION." Doctoral thesis, Università degli Studi di Milano, 2012. http://hdl.handle.net/2434/168370.

Full text
Abstract:
Pentraxins are fluid phase pattern recognition receptors phylogenetically conserved from arachnids to mammals. Based on the primary structure, pentraxins are divided in short pentraxins, like the C-reactive protein and the serum amyloid P, and long pentraxins, like PTX3. PTX3 is expressed by several cell types, including mononuclear phagocytes, myeloid dendritic cells, fibroblasts, smooth muscle cells and endothelial cells in response to pro-inflammatory cytokines and microbial components. This molecule is involved in innate immunity, tissue remodelling, female fertility and in tuning the inflammatory response. In particular, PTX3 plays a protective role in cardiovascular diseases (CVD), such as acute myocardial infarction (AMI) and atherosclerosis, in preclinical studies. Moreover, PTX3 has emerged as novel diagnostic and prognostic biomarker in CVD, reflecting the inflammatory involvement of the vascular bed. In AMI patients, PTX3 levels peak 6-8 hours after the onset of symptoms and in this context it balances pro-inflammatory and antiinflammatory stimuli. Since single nucleotide polymorphisms (SNPs) and microRNAs represent two ways in which gene expression can be modified/regulated, we addressed their role in the modulation of PTX3 expression. Given that PTX3 gene SNPs have been reported to be associated to different clinical conditions, in particular in innate resistance to infections, we assessed the role of PTX3 SNPs in affecting PTX3 plasma levels and CVD susceptibility. Despite the characterized role of PTX3 in inflammation, a regulation of PTX3 by microRNAs, which are fundamental fine-tuners of this process, has not yet been described. Therefore, we investigated the role of microRNAs in regulating PTX3 expression. To our first aim, we performed a candidate-gene association study on Caucasian subjects, in about 1500 healthy individuals and 1700 AMI patients. PTX3 plasma levels were measured by ELISA in healthy subjects as well as in AMI patients from GISSI-Prevenzione trial. Blood was collected from AMI patients at least 5 days after the last event. A significant difference in PTX3 levels was detected between AMI patients and controls, suggesting the persistence of high PTX3 plasma levels in AMI patients up to three months after the last event. Moreover, in AMI patients, PTX3 plasma levels significantly correlated with mortality, but not with cardiovascular death or reinfarction, confirming the prognostic value of this parameter previously described as an independent predictor of 3-months mortality in this pathological condition. Moreover, we report that the 3 PTX3 SNPs analysed (the intronic rs2305619 and rs1840680 and the exonic rs3816527), alone or combined in haplotypes, are associated with different PTX3 plasma levels. However, we did not find a correlation between the 3 SNPs analysed and the clinical condition of the subject. About our second aim, data reported in this thesis reveal the existence of a complex network of microRNAs able to down-regulate the basal as well as the TNFα- and IL-1β-induced PTX3 production. The effect of microRNA over-expression was evaluated through the transfection of synthetic pre-miR in the human 8387 fibrosarcoma cell line, able to produce constitutively PTX3. The direct interaction miRNA:mRNA was evaluated through a luciferase reporter assay. Our results reveal that specific microRNAs, like miR-9 and miR-29, directly target and regulate PTX3 mRNA. Other microRNAs, including miR-29, impair PTX3 expression acting on molecules of the signalling pathway that leads to PTX3 transcription. Among these miRNAs there are also miR-146a and miR-155, two of the major microRNAs involved in controlling the inflammatory response. Another microRNA, miR-181c, impairs PTX3 production by targeting key molecules involved in PTX3 induction and by directly acting on the messenger of ERp18, a molecule involved in PTX3 folding. In conclusion, our results underline the complexity of PTX3 regulation, revealing that both PTX3 SNPs and microRNAs are fundamental players of this process.
APA, Harvard, Vancouver, ISO, and other styles
8

Freeman, Julia Carol. "Single Nucleotide Polymorphisms Linked to Essential Hypertension in Kasigau, Kenya." TopSCHOLAR®, 2013. http://digitalcommons.wku.edu/theses/1316.

Full text
Abstract:
Hypertension, or high blood pressure (BP), is an ever-growing epidemic in the developing world. Understanding the genetics behind essential hypertension (EH), or hypertension with no known cause, is especially important. In this study, three single nucleotide polymorphisms (SNPs) known to be linked to an increase in susceptibility to EH were quantified from a cohort of Kenyans living in the Kasigau region. The SNPs are located in three genes that are part of the renin angiotensin system, the primary regulatory pathway in humans controlling BP. They include: AGT (rs699), AGTR1 (rs5186), and HSD11β2 (rs5479). Overall, by using a fluorescent-based RT-PCR technique, the genotype distribution of AGT (rs699) was 0.63 C/C, 0.34 C/T, and 0.03 T/T. When evaluated as normotensive, prehypertensive, Stage I, or Stage II categories the allele frequencies for f(C)= 0.77,0.85,0.81, 0.77, respectively, and demonstrated Hardy Weinberg Equilibrium (HWE) as assessed by Χ2, p < 0.05. The genotype distribution of AGTR1 (rs5186) was 0.96 A/A, 0.03 A/C, and 0.00 C/C and the genotype distribution of HSD11β2 (rs5479) was 0.46 A/A, 0.46 A/C, and 0.08 C/C. The majority of genotype frequencies for each SNP were in HWE, with the exception of the AGT (rs699) SNP found in the sublocation of Bughuta suggesting other evolutionary selective pressures may be at work in this subpopulation. The high prevalence of the susceptible C allele for AGT (rs699) likely implies it is a critical factor in the high prevalence of EH observed in this population.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen-Cheng, Charles. "JAMALAH--a system for the detection of single nucleotide polymorphisms." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/40606.

Full text
Abstract:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.
Includes bibliographical references (leaves 70-75).
by Charles Chen-Cheng.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
10

Perla, Sravan K. "Epigenetic Regulation of the Human Angiotensinogen by Single Nucleotide Polymorphisms." University of Toledo Health Science Campus / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=mco1544800350207546.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Single nucleotide polymorphisms"

1

Kwok, Pui-Yan. Single Nucleotide Polymorphisms. New Jersey: Humana Press, 2002. http://dx.doi.org/10.1385/1592593275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sauna, Zuben E., and Chava Kimchi-Sarfaty, eds. Single Nucleotide Polymorphisms. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05616-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Komar, Anton A., ed. Single Nucleotide Polymorphisms. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-411-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Single nucleotide polymorphisms: Methods and protocols. 2nd ed. New York: Humana, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Zhanjiang. Next generation sequencing and whole genome selection in aquaculture. Ames, Iowa: Wiley-Blackwell, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1955-, Carracedo Ángel, ed. Forensic DNA typing protocols. Totowa, N.J: Humana Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1956-, Kwok Pui-Yan, ed. Single nucleotide polymorphisms: Methods and protocols. Totowa, N.J: Humana Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Komar, Anton A. Single Nucleotide Polymorphisms: Methods and Protocols. Humana Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kwok, Pui-Yan. Single Nucleotide Polymorphisms: Methods and Protocols (Methods in Molecular Biology). Humana Press, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sauna, Zuben E., and Chava Kimchi-Sarfaty. Single Nucleotide Polymorphisms: Human Variation and a Coming Revolution in Biology and Medicine. Springer International Publishing AG, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Single nucleotide polymorphisms"

1

Hettiarachchi, Gaya, and Anton A. Komar. "GWAS to Identify SNPs Associated with Common Diseases and Individual Risk: Genome Wide Association Studies (GWAS) to Identify SNPs Associated with Common Diseases and Individual Risk." In Single Nucleotide Polymorphisms, 51–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05616-1_4.

Full text
Abstract:
AbstractAssociation studies have enabled the exploration of alternative, more efficient methods for early detection, prevention and treatment of diseases by providing valuable insight into their genetic foundation. Genome wide association studies (GWASs) have been particularly informative with respect to complex diseases whose manifestation depends on a multitude of genetic and environmental factors. In these studies, common Single Nucleotide Polymorphisms (SNPs) are used to locate and identify regions of the genome that may be causative of common complex diseases. These studies have uncovered a number of loci of interest for several diseases and have also allowed for the development of genetic counseling with improved individual disease risk assessment. With the more accurate prediction of the probability of disease development, progression and treatment success, GWASs have also brought about the age of personalized medicine. Despite these promising outcomes, skepticism concerning the power of these studies and their impact on patient care exists. This uncertainty stems from the many inherent limitations of this relatively young technique. This chapter explores the underlying concepts of GWASs, their contributions to research, clinical and commercial development, and their limitations with the hopes of providing a better understanding of the impact of these SNP-based association studies can have on public health.
APA, Harvard, Vancouver, ISO, and other styles
2

Peña-Llopis, Samuel. "SNPs and Personalized Medicine: Scrutinizing Pathogenic Synonymous Mutations for Precision Oncology." In Single Nucleotide Polymorphisms, 185–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05616-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ooi, Brandon N. S., Ashley J. W. Lim, Samuel S. Chong, and Caroline G. L. Lee. "Using Genome Wide Studies to Generate and Test Hypotheses that Provide Mechanistic Details of How Synonymous Codons Affect Protein Structure and Function: Functional SNPs in the Age of Precision Medicine." In Single Nucleotide Polymorphisms, 171–83. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05616-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Phan, Lon. "SNPs Classification and Terminology: dbSNP Reference SNP (rs) Gene and Consequence Annotation." In Single Nucleotide Polymorphisms, 3–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05616-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lin, Brian C., Katarzyna I. Jankowska, Douglas Meyer, and Upendra K. Katneni. "Methods to Evaluate the Effects of Synonymous Variants." In Single Nucleotide Polymorphisms, 133–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05616-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Herreros, Eduardo, Xander Janssens, Daniele Pepe, and Kim De Keersmaecker. "SNPs Ability to Influence Disease Risk: Breaking the Silence on Synonymous Mutations in Cancer." In Single Nucleotide Polymorphisms, 77–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05616-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Agashe, Deepa. "Evolutionary Forces That Generate SNPs: The Evolutionary Impacts of Synonymous Mutations." In Single Nucleotide Polymorphisms, 15–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05616-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rosenberg, Aviv A., Alex M. Bronstein, and Ailie Marx. "Recording Silence – Accurate Annotation of the Genetic Sequence Is Required to Better Understand How Synonymous Coding Affects Protein Structure and Disease." In Single Nucleotide Polymorphisms, 37–47. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05616-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mauro, Vincent P. "Condon Optimization: Codon Optimization of Therapeutic Proteins: Suggested Criteria for Increased Efficacy and Safety." In Single Nucleotide Polymorphisms, 197–224. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05616-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Yiming, and Zsuzsa Bebok. "An Examination of Mechanisms by which Synonymous Mutations may Alter Protein Levels, Structure and Functions." In Single Nucleotide Polymorphisms, 99–132. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05616-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Single nucleotide polymorphisms"

1

Weiler, Zachary, Tadashi Sato, Amy Nelson, Xiangde Liu, Yoko Gunji, Kai-Christian Muller, Helgo Magnussen, Klaus Rabe, Stephen I. Rennard, and Tricia D. LeVan. "Identification Of Single Nucleotide Polymorphisms In MicroRNA 146A." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a3526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

COLLINS, A. "LINKAGE DISEQUILIBRIUM MAPPING USING SINGLE NUCLEOTIDE POLYMORPHISMS -WHICH POPULATION?" In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814447331_0063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Naumov, Denis, Olesya Kotova, Anna Prikhodko, Sergey Zinovyev, Juliy Perelman, and Victor Kolosov. "TRPV4 single nucleotide polymorphisms and airway inflammation in asthma." In ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.pa1821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alvarez, Alfonso E., Fernando A. L. Marson, Carmem S. Bertuzzo, Juliana C. S. Santiago, Emilio C. E. Baracat, Antonia T. Tresoldi, Mariana T. N. Romaneli, et al. "Influence of single nucleotide polymorphisms in post-bronchiolitis wheezing." In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa1599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ronaghi, Mostafa. "High-throughput pyrosequencing for analysis of single-nucleotide polymorphisms." In International Symposium on Biomedical Optics, edited by Darryl J. Bornhop, David A. Dunn, Raymond P. Mariella, Jr., Catherine J. Murphy, Dan V. Nicolau, Shuming Nie, Michelle Palmer, and Ramesh Raghavachari. SPIE, 2002. http://dx.doi.org/10.1117/12.472098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Robayo, Verónica. "Single nucleotide polymorphisms influencing obesity in Hispanics and Mexicans." In 1er Congreso Universal de las Ciencias y la Investigación Medwave 2022;. Medwave Estudios Limitada, 2022. http://dx.doi.org/10.5867/medwave.2022.s2.uta024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, M., KG Tantisira, A. Murphy, and ST Weiss. "Predicting Severe Asthma Exacerbations Using Thousands of Single Nucleotide Polymorphisms." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a2208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stigler, William S., Lin Li, Xihong Lin, Yang Zhao, Mark M. Wurfel, and David C. Christiani. "MicroRNA Single Nucleotide Polymorphisms And Risk Of ARDS And ALI." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a2120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Levine, Arnold J. "Abstract IA-6: Single nucleotide polymorphisms in the p53 pathway." In Abstracts: First AACR International Conference on Frontiers in Basic Cancer Research--Oct 8–11, 2009; Boston MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.fbcr09-ia-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Damkliang, Kasikrit, Pichaya Tandayya, Theerawut Phusantisampan, and Unitsa Sangket. "Taverna Workflow and Supporting Service for Single Nucleotide Polymorphisms Analysis." In 2009 International Conference on Information Management and Engineering. IEEE, 2009. http://dx.doi.org/10.1109/icime.2009.38.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Single nucleotide polymorphisms"

1

Larcom, Barbara, Rosemarie Ramos, Lisa Lott, J. M. McDonald, Mark True, Michele Tavish, Heidi Beason, Lee Ann Zarzabel, James Watt, and Debra Niemeyer. Genetic Risk Conferred from Single Nucleotide Polymorphisms Towards Type II Diabetes Mellitus. Fort Belvoir, VA: Defense Technical Information Center, February 2013. http://dx.doi.org/10.21236/ada573655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Ying yuan, Ze chang Chen, Lu xin Zhang, and Shuang yi Chen. A systematic review and network meta-analysis of single nucleotide polymorphisms associated with breast cancer risk. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2022. http://dx.doi.org/10.37766/inplasy2022.2.0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zheng, Jinghui. A comprehensive evaluation of single nucleotide polymorphisms associated with osteosarcoma risk: a protocol for systematic review and network meta analysis. INPLASY - International Platform of Registered Systematic Review Protocols, April 2020. http://dx.doi.org/10.37766/inplasy2020.4.0141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zheng, Jinghui. A comprehensive assessment of single nucleotide polymorphisms associated with pancreatic cancer risk: a systematic review and network meta-analysis of protocols. INPLASY - International Platform of Registered Systematic Review Protocols, April 2020. http://dx.doi.org/10.37766/inplasy2020.4.0023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Jinghui. A comprehensive evaluation of single nucleotide polymorphisms associated with gastric cancer risk: a protocol for systematic review and network meta analysis. INPLASY - International Platform of Registered Systematic Review Protocols, April 2020. http://dx.doi.org/10.37766/inplasy2020.4.0132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Zhen-yu, Zhuo-miao Ye, Jing-hui Zheng, Feng Jiang, and You-ming Tang. A comprehensive evaluation of single nucleotide polymorphisms associated with atrophic gastritis risk: a protocol for systematic review and network meta-analysis. International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2020. http://dx.doi.org/10.37766/inplasy2020.5.0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Li-juan, M. Meda, Yuan-yuan Zhao, M. Medb, and Jing-hui Zheng. A comprehensive assessment of single nucleotide polymorphisms associated with lung cancer risk: a protocol for systematic review and network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2020. http://dx.doi.org/10.37766/inplasy2020.5.0105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Lijuan. A comprehensive assessment of single nucleotide polymorphisms associated with lung cancer risk: a systematic review and network meta-analysis of protocols. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2022. http://dx.doi.org/10.37766/inplasy2022.4.0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Ying yuan, Zechang Chen, Luxin Zhang, Shuangyi Chen, Zhuomiao Ye, Tingting Xu, and Yingying Zhang c. A systematic review and network meta-analysis: Role of SNPs in predicting breast carcinoma risk. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2022. http://dx.doi.org/10.37766/inplasy2022.2.0092.

Full text
Abstract:
Review question / Objective: P: Breast cancer patient; I: Single nucleotide polymorphisms associated with breast cancer risk; C: Healthy person; O: By comparing the proportion of SNP mutations in the tumor group and the control group, the effect of BREAST cancer risk-related SNP was investigated; S: Case-control study. Condition being studied: Breast cancer (BC) is one of the most common cancers among women, and its morbidity and mortality have continued to increase worldwide in recent years, reflecting the strong invasiveness and metastasis characteristics of this cancer. BC is a complex disease that involves a sequence of genetic, epigenetic, and phenotypic changes. Polymorphisms of genes involved in multiple biological pathways have been identified as potential risks of BC. These genetic polymorphisms further lead to differences in disease susceptibility and severity among individuals. The development of accurate molecular diagnoses and biological indicators of prognosis are crucial for individualized and precise treatment of BC patients.
APA, Harvard, Vancouver, ISO, and other styles
10

Kong, Yixuan, Jinghui Zheng, Zhuomiao Ye, Jie Wang, Xiangmei Xu, and Xuan Chen. A comprehensive evaluation of association between homocysteine levels and single nucleotide polymorphisms with hypertension risk : A protocol of systematic review and network meta-analysis. International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2020. http://dx.doi.org/10.37766/inplasy2020.5.0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography