Academic literature on the topic 'Single neuron imaging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Single neuron imaging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Single neuron imaging"
Chen, Pei-Ju, Yan Li, and Chi-Hon Lee. "Calcium Imaging of Neural Activity in Fly Photoreceptors." Cold Spring Harbor Protocols 2022, no. 7 (May 31, 2022): pdb.top107800. http://dx.doi.org/10.1101/pdb.top107800.
Full textWang, Yangzhen, Feng Su, Shanshan Wang, Chaojuan Yang, Yonglu Tian, Peijiang Yuan, Xiaorong Liu, Wei Xiong, and Chen Zhang. "Efficient implementation of convolutional neural networks in the data processing of two-photon in vivo imaging." Bioinformatics 35, no. 17 (January 23, 2019): 3208–10. http://dx.doi.org/10.1093/bioinformatics/btz055.
Full textYang, Jian, Yong Zhang, Yuanlin Yu, and Ning Zhong. "Nested U-Net Architecture Based Image Segmentation for 3D Neuron Reconstruction." Journal of Medical Imaging and Health Informatics 11, no. 5 (May 1, 2021): 1348–56. http://dx.doi.org/10.1166/jmihi.2021.3379.
Full textKeliris, Georgios A., Qinglin Li, Amalia Papanikolaou, Nikos K. Logothetis, and Stelios M. Smirnakis. "Estimating average single-neuron visual receptive field sizes by fMRI." Proceedings of the National Academy of Sciences 116, no. 13 (March 13, 2019): 6425–34. http://dx.doi.org/10.1073/pnas.1809612116.
Full textNing, Kefu, Xiaoyu Zhang, Xuefei Gao, Tao Jiang, He Wang, Siqi Chen, Anan Li, and Jing Yuan. "Deep-learning-based whole-brain imaging at single-neuron resolution." Biomedical Optics Express 11, no. 7 (June 8, 2020): 3567. http://dx.doi.org/10.1364/boe.393081.
Full textKalaska, John F. "Emerging ideas and tools to study the emergent properties of the cortical neural circuits for voluntary motor control in non-human primates." F1000Research 8 (May 29, 2019): 749. http://dx.doi.org/10.12688/f1000research.17161.1.
Full textHogg, Peter W., and Kurt Haas. "Bulk Dye Loading for In Vivo Calcium Imaging of Visual Responses in Populations of Xenopus Tectal Neurons." Cold Spring Harbor Protocols 2022, no. 1 (March 29, 2021): pdb.prot106831. http://dx.doi.org/10.1101/pdb.prot106831.
Full textKoyano, Kenji W., Akinori Machino, Masaki Takeda, Teppei Matsui, Ryoko Fujimichi, Yohei Ohashi, and Yasushi Miyashita. "In vivo visualization of single-unit recording sites using MRI-detectable elgiloy deposit marking." Journal of Neurophysiology 105, no. 3 (March 2011): 1380–92. http://dx.doi.org/10.1152/jn.00358.2010.
Full textTetzlaff, Svenja, Joaquín Campos, Linh Nguyen, Christopher Strahle, Wolfgang Wick, Thomas Kuner, Frank Winkler, Claudio Acuna, and Varun Venkataramani. "CNSC-21. CHARACTERIZATION OF NEURON-TUMOR INTERACTIONS USING HUMAN CO-CULTURES." Neuro-Oncology 24, Supplement_7 (November 1, 2022): vii26. http://dx.doi.org/10.1093/neuonc/noac209.102.
Full textMatsuda, Takahiko, and Izumi Oinuma. "Imaging endogenous synaptic proteins in primary neurons at single-cell resolution using CRISPR/Cas9." Molecular Biology of the Cell 30, no. 22 (October 15, 2019): 2838–55. http://dx.doi.org/10.1091/mbc.e19-04-0223.
Full textDissertations / Theses on the topic "Single neuron imaging"
Murphy-Royal, Ciaran. "Surface diffusion of the astrocytic glutamate transporter glt-1 shapes synaptic transmission." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0113/document.
Full textA classic understanding of neurotransmitter clearance at glutamatergic synapses is that, in order to ensure sufficient glutamate uptake on a fast timescale, it is necessary to have high numbers of glutamate transporters in the vicinity of release sites to compensate for their slow transport kinetics. Using a combination of single molecule imaging and electrophysiological approaches, we now challenge this view by first demonstrating that GLT-1 transporters are not static but highly mobile at the surface of astrocytes, and that their surface diffusion is dependent upon both neuronal and glial cell activities. In the vicinity of glutamate synapses, GLT-1 dynamics are strongly reduced favoring their retention within this strategic location. Remarkably, glutamate uncaging at synaptic sites instantaneously increases GLT-1 diffusion, displacing the glutamate-bound transporter away from this compartment. Functionally, impairment of the transporter lateral diffusion through an antibody-based surface cross linking, both in vitro and in vivo, significantly slows the kinetics of excitatory postsynaptic currents. Taken together, these data reveal the unexpected and major role of the astrocytic surface GLT-1 fast dynamics in shaping glutamatergic synaptic transmission.Keywords:
Kubler, Samuel. "Statistical methods for the robust extraction of objects’ spatio-temporal relations in bioimaging – Application to the functional analysis of neuronal networks in vivo." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS455.
Full textThe neural code, i.e. how interconnected neurons can perform complex operations, allowing the quick adaptation of animals to their environment, remains an open question and an intensive field of research both in experimental and computational neurosciences. Advances in molecular biology and microscopy have recently made it possible to monitor the activity of individual neurons in living animals and, in the case of small animals containing only a few thousands of neurons, to measure the activity of the entire nervous system. However, the mathematical framework that would bridge the gap between single neuron activity and the emergent computational properties of neuronal ensembles is missing.In the thesis manuscript, we introduce a sequential statistical processing pipeline that efficiently and robustly extracts neuronal ensembles from calcium imagery of neuronal activity. In particular, we develop a Bayesian inference framework based on a biologically interpretable model to extract neuronal ensembles characterized by noise, asynchrony and overlapping. The provided tool demonstrates that a Gibbs sampling routine can efficiently estimate statistical parameters and hidden variables to uncover neuronal ensembles based on synchronization patterns both on synthetic data and on various experimental datasets from mice and zebrafish visual cortex to Hydra Vulgaris. The thesis equally develops a point process statistical framework to quantify how neuronal ensembles encode evoked stimuli or spontaneous behaviors in living animals. This versatile tool is also used for the inference of the functional connectivity of neuronal activity or the automatically calibration procedure of the spike inference algorithms applied to calcium recordings. For the providing algorithms to be largely spread in the neurobiologist community, results are supported by interpretable biological estimates, statistical evidence, rigorous mathematical proofs, and free-available software. Our contributive implementation, that goes from pixel intensity to estimated neuronal ensembles, equally identify from the synchronous firing patterns of neuronal ensembles, neurons with specific roles that can be used to predict, improve, or alter the behaviors of living animals. The provided framework unravels the emergence of collective properties from the recording of extremely varying individual signals that make the neural code still elusive
Crépeau, Joël. "Development of a single-mode interstitial rotary probe for In Vivo deep brain fluorescence imaging." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29428/29428.pdf.
Full textThis thesis documents the expertise developed by the author at the Centre de recherchede l’Institut universitaire en santé mentale de Québec (CRIUSMQ) in fibered endoscopy,particularly the design and construction of a new kind of optical microscope: ThePanoramic Interstitial Microscope (PIM). Through the juxtaposition of a short piece ofGraded-Index fibre and a prism at the end of a single-mode fibre, laser light is focussedon the side of the probe. To form an image, the latter is quickly spun around its axiswhile it is being pulled vertically by a piezoelectric actuator. This minimally invasivefluorescence rotary interstitial imaging system is an endeavor to limit the damage causedby the probe while imaging enough tissue to provide good context to the user in deep brain optical imaging.
Meissner, Nancy A. Meissner. "A Single-Subject Evaluation of Facilitated Communicationin the Completion of School-Assigned Homework." Antioch University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=antioch1521038309724555.
Full text"Automatic Segmentation of Single Neurons Recorded by Wide-Field Imaging Using Frequency Domain Features and Clustering Tree." Master's thesis, 2016. http://hdl.handle.net/2286/R.I.40696.
Full textDissertation/Thesis
Masters Thesis Electrical Engineering 2016
Jeans, Rhiannon. "Form perception and neural feedback: insights from V1 and V2." Thesis, 2014. http://hdl.handle.net/1885/12731.
Full textTran, Le Thuy Van. "Dynamics of evoked and spontaneous calcium transients in synaptic boutons of neocortical pyramidal neurons." Phd thesis, 2017. http://hdl.handle.net/1885/133756.
Full textBooks on the topic "Single neuron imaging"
Yoshiaki, Iwamura, Rowe Mark, and International Union of Physiological Sciences. Congress, eds. Somatosensory processing: From single neuron to brain imaging. Amsterdam: Harwood Academic Publishers, 2001.
Find full textRowe, Mark, and Yoshiaki Iwamura. Somatosensory Processing: From Single Neuron to Brain Imaging. Taylor & Francis Group, 2001.
Find full textRowe, Mark, and Yoshiaki Iwamura. Somatosensory Processing: From Single Neuron to Brain Imaging. Taylor & Francis Group, 2001.
Find full text(Editor), Mark Rowe, and Yoshiaki Iwamura (Editor), eds. Somatosensory Processing: From Single Neuron to Brain Imaging. CRC, 2001.
Find full textRowe, Mark, and Yoshiaki Iwamura. Somatosensory Processing: From Single Neuron to Brain Imaging. Taylor & Francis Group, 2001.
Find full textRowe, Mark, and Yoshiaki Iwamura. Somatosensory Processing: From Single Neuron to Brain Imaging. Taylor & Francis Group, 2001.
Find full textRowe, Mark, Yoshiaki Iwamura, and Yoshiaki Iwamua. Somatosensory Processing: From Single Neuron to Brain Imaging. Taylor & Francis Group, 2001.
Find full textBoothroyd, Andrew T. Principles of Neutron Scattering from Condensed Matter. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198862314.001.0001.
Full textSeeck, Margitta, L. Spinelli, Jean Gotman, and Fernando H. Lopes da Silva. Combination of Brain Functional Imaging Techniques. Edited by Donald L. Schomer and Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0046.
Full textRoberts, Timothy P. L., and Luke Bloy. Neuroimaging in Pediatric Psychiatric Disorders. Edited by Dennis S. Charney, Eric J. Nestler, Pamela Sklar, and Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0060.
Full textBook chapters on the topic "Single neuron imaging"
Backhaus, Hendrik, Nicolas Ruffini, Anna Wierczeiko, and Albrecht Stroh. "An All-Optical Physiology Pipeline Toward Highly Specific and Artifact-Free Circuit Mapping." In Neuromethods, 137–63. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2764-8_5.
Full textShim, Jae Youn, Byung Hun Lee, and Hye Yoon Park. "Visualization of Single mRNAs in Live Neurons." In Imaging Gene Expression, 47–61. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9674-2_4.
Full textOzbay, Baris N., Gregory L. Futia, Ming Ma, Connor McCullough, Michael D. Young, Diego Restrepo, and Emily A. Gibson. "Miniature Multiphoton Microscopes for Recording Neural Activity in Freely Moving Animals." In Neuromethods, 187–230. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2764-8_7.
Full textNakanishi, Tomoko M. "Water-Specific Imaging." In Novel Plant Imaging and Analysis, 3–37. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4992-6_1.
Full textJoensuu, Merja, Ramon Martínez-Mármol, Mahdie Mollazade, Pranesh Padmanabhan, and Frédéric A. Meunier. "Single-Molecule Imaging of Recycling Synaptic Vesicles in Live Neurons." In Neuromethods, 81–114. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0532-5_5.
Full textTonsfeldt, Karen J., and David K. Welsh. "Long-Term Imaging and Electrophysiology of Single Suprachiasmatic Nucleus Neurons." In Circadian Clocks, 99–120. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2577-4_5.
Full textHossain, Sharmin, Kaspar Podgorski, and Kurt Haas. "Single-Cell Electroporation for In Vivo Imaging of Neuronal Morphology and Growth Dynamics." In Neural Tracing Methods, 101–16. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1963-5_5.
Full textYap, Timothy E., Maja Szymanska, and M. Francesca Cordeiro. "Advances in Retinal Imaging: Real-Time Imaging of Single Neuronal Cell Apoptosis (DARC)." In OCT and Imaging in Central Nervous System Diseases, 123–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-26269-3_7.
Full textThal, Lucas B., Oleg Kovtun, and Sandra J. Rosenthal. "Labeling Neuronal Proteins with Quantum Dots for Single-Molecule Imaging." In Quantum Dots, 169–77. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0463-2_9.
Full textAlexiou, George A., Spyridon Tsiouris, and Andreas D. Fotopoulos. "Single-Photon Emission Computed Tomography [Neuro-SPECT] Imaging of Brain Tumors." In PET and SPECT in Neurology, 881–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54307-4_42.
Full textConference papers on the topic "Single neuron imaging"
Segawa, Yumi, Wataru Minoshima, Kyoko Masui, and Chie Hosokawa. "Single-Neuron Stimulation with a Focused Femtosecond Laser." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleopr.2022.ctua15c_03.
Full textNing, Kefu, Xiaoyu Zhang, Xuefei Gao, Tao Jiang, He Wang, Siqi Chen, Anan Li, and Jing Yuan. "Deep-learning-based whole-brain imaging at single-neuron resolution." In Neural Imaging and Sensing 2021, edited by Qingming Luo, Jun Ding, and Ling Fu. SPIE, 2021. http://dx.doi.org/10.1117/12.2582870.
Full textZhang, Delong, Hyeon Jeong Lee, Pei-Yu Shih, Ryan E. Drenan, and Ji-Xin Cheng. "Label-Free Imaging of Single Neuron Activities by Stimulated Raman Scattering." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_at.2015.am3j.4.
Full textYoshida, S., K. Takada, and A. Ektessabi. "SRXRF elemental imaging of a single neuron from patients with neurodegenerative disorders." In The fifteenth international conference on the application of accelerators in research and industry. AIP, 1999. http://dx.doi.org/10.1063/1.59200.
Full textSingh, Ranjana, Abha Saxena, and Lopamudra Giri. "Single Neuron Imaging Reveals Metabotropic Glutamate Receptor-Mediated Bursting and Delay in Calcium Oscillation in Hippocampal Neurons." In 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8856638.
Full textDhyani, Vaibhav, Soumya Jana, and Lopamudra Giri. "Gaussian Mixture Modeling of Single-Neuron Responses Obtained from Confocal-Calcium-Imaging of Dissociated Rat Hippocampal Neurons." In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2021. http://dx.doi.org/10.1109/ner49283.2021.9441102.
Full textJang, M. J., and Y. Nam. "Automation of network burst analysis in the single neuron resolution based on calcium imaging." In 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2013. http://dx.doi.org/10.1109/ner.2013.6695997.
Full textWang, Heng, Yang Song, Chaoyi Zhang, Jianhui Yu, Siqi Liu, Hanchuan Pengy, and Weidong Cai. "Single Neuron Segmentation Using Graph-Based Global Reasoning with Auxiliary Skeleton Loss from 3D Optical Microscope Images." In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. http://dx.doi.org/10.1109/isbi48211.2021.9434071.
Full textNarayanasamy, Kaarjel K., Johanna V. Rahm, Soohyen Jang, and Mike Heilemann. "Multi-color super-resolution microscopy accelerated by a neural network." In Single Molecule Spectroscopy and Superresolution Imaging XVI, edited by Ingo Gregor, Rainer Erdmann, and Felix Koberling. SPIE, 2023. http://dx.doi.org/10.1117/12.2657442.
Full textBeck, Lior M., Ariel Halfon, Uri Rossman, Assaf Shocher, Michal Irani, and Dan Oron. "Image fusion in correlation based superresolution imaging using convolutional neural networks (Conference Presentation)." In Single Molecule Spectroscopy and Superresolution Imaging XVI, edited by Ingo Gregor, Rainer Erdmann, and Felix Koberling. SPIE, 2023. http://dx.doi.org/10.1117/12.2648282.
Full textReports on the topic "Single neuron imaging"
Brubaker, Erik. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1225830.
Full text