Academic literature on the topic 'Single-ion polymer electrolyte'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Single-ion polymer electrolyte.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Single-ion polymer electrolyte"
Hoffman, Zach J., Alec S. Ho, Saheli Chakraborty, and Nitash P. Balsara. "Limiting Current Density in Single-Ion-Conducting and Conventional Block Copolymer Electrolytes." Journal of The Electrochemical Society 169, no. 4 (April 1, 2022): 043502. http://dx.doi.org/10.1149/1945-7111/ac613b.
Full textGhorbanzade, Pedram, Laura C. Loaiza, and Patrik Johansson. "Plasticized and salt-doped single-ion conducting polymer electrolytes for lithium batteries." RSC Advances 12, no. 28 (2022): 18164–67. http://dx.doi.org/10.1039/d2ra03249j.
Full textPark, Habin, Anthony Engler, Nian Liu, and Paul Kohl. "Dynamic Anion Delocalization of Single-Ion Conducting Polymer Electrolyte for High-Performance of Solid-State Lithium Metal Batteries." ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 227. http://dx.doi.org/10.1149/ma2022-023227mtgabs.
Full textBadi, Nacer, Azemtsop Manfo Theodore, Saleh A. Alghamdi, Hatem A. Al-Aoh, Abderrahim Lakhouit, Pramod K. Singh, Mohd Nor Faiz Norrrahim, and Gaurav Nath. "The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries." Polymers 14, no. 15 (July 30, 2022): 3101. http://dx.doi.org/10.3390/polym14153101.
Full textZhang, Heng, Chunmei Li, Michal Piszcz, Estibaliz Coya, Teofilo Rojo, Lide M. Rodriguez-Martinez, Michel Armand, and Zhibin Zhou. "Single lithium-ion conducting solid polymer electrolytes: advances and perspectives." Chemical Society Reviews 46, no. 3 (2017): 797–815. http://dx.doi.org/10.1039/c6cs00491a.
Full textLiang, Hai-Peng, Maider Zarrabeitia, Zhen Chen, Sven Jovanovic, Steffen Merz, Josef Granwehr, Stefano Passerini, and Dominic Bresser. "Polysiloxane-Based Single-Ion Conducting Polymer Electrolyte for High-Performance Li‖NMC811 Batteries." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 326. http://dx.doi.org/10.1149/ma2022-012326mtgabs.
Full textEngler, Anthony, Habin Park, Nian Liu, and Paul Kohl. "Cyclic Carbonate-Based, Single-Ion Conducting Polymer Electrolytes for Li-Ion Batteries: Electrolyte Design." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 2437. http://dx.doi.org/10.1149/ma2022-0122437mtgabs.
Full textVillaluenga, Irune, Kevin H. Wujcik, Wei Tong, Didier Devaux, Dominica H. C. Wong, Joseph M. DeSimone, and Nitash P. Balsara. "Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries." Proceedings of the National Academy of Sciences 113, no. 1 (December 22, 2015): 52–57. http://dx.doi.org/10.1073/pnas.1520394112.
Full textPark, Habin, Anthony Engler, Nian Liu, and Paul Kohl. "Cyclic Carbonate-Based, Single-Ion Conducting Polymer Electrolytes for Li-Ion Batteries: Battery Performance." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 329. http://dx.doi.org/10.1149/ma2022-012329mtgabs.
Full textCui, Wei Wei, Dong Yan Tang, and Li Li Guan. "A Single Ion Conducting Gel Polymer Electrolyte Based on Poly(lithium 2-Acrylamido-2-Methylpropanesulfonic Acid-Co-Vinyl Triethoxysilane) and its Electrochemical Properties." Advanced Materials Research 535-537 (June 2012): 2053–56. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.2053.
Full textDissertations / Theses on the topic "Single-ion polymer electrolyte"
Frenck, Louise. "Study of a buffer layer based on block copolymer electrolytes, between the lithium metal and a ceramic electrolyte for aqueous Lithium-air battery." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI041/document.
Full textThe lithium-air (Li-air) technology developed by EDF uses an air electrode which works with an aqueous electrolyte, which prevents the use of unprotected lithium metal electrode as a negative electrode. A Li+ ionic conductor glass ceramic (LATP:Li1+xAlxTi2-x(PO4)3) has been used to separate the aqueous electrolyte compartment from the negative electrode. However, this glass-ceramic is not stable in contact with lithium, it is thus necessary to add between the lithium and the ceramic a buffer layer. In another hand, this protection should ideally resist to lithium dendritic growth. Thus, this project has been focused on the study of block copolymer electrolytes (BCE).In a first part, the study of the physical and chemical properties of these BCEs in lithium symmetric cells has been realized especially transport properties (ionic conductivities, transference number), and resistance to dendritic growth. Then, in a second part, the composites BCE-ceramic have been studied.Several characterization techniques have been employed and especially the electrochemical impedance spectroscopy (for the transport and the interface properties), the small angle X-ray scattering (for the BCE morphologies) and the hard X-ray micro-tomography (for the interfaces and the dendrites morphologies). For single-ion BCE, we have obtained interesting results concerning the mitigation of the dendritic growth. The hard X-ray micro-tomography has permitted to show that the mechanism involved in the heterogeneous lithium growth in the case of the single-ion is very different from the one involved for the neutral BCEs (t+ < 0.2)
Leclere, Mélody. "Synthèse de (poly)électrolytes pour accumulateur Li-ion à haute densité d'énergie." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI001/document.
Full textThe thesis work presented in this manuscript focuses on the development of new electrolytes without the use of flammable conventional solvents to improve the security problem batteries. The first part of this work is the preparation of gelled electrolytes from phosphonium ionic liquid. A study is performed on the compatibility between the electrolyte and the polymer host epoxy / amine as well as the influence of the polymerization LI on the network. The thermal properties, and ionic transport viscoelastic gels are discussed. Among the obtained gelled electrolyte, the gel containing the electrolyte (1 M LiTFSI + LI [P66614] [TFSI]) showed interesting electrochemical properties. A gelled system Li | LFP has been implemented and good cycling stability at 100 ° C was obtained. The second part of this work is the development of new liquid crystal electrolytes promotes transport of lithium ions with hopping mechanism. An anionic compound was synthesized from reaction of an epoxy / amine from lithium 4-amino-1-naphthalenesulfonate and an aliphatic diglycidyl ether. Various characterization technical were used to establish a link structure / properties. The results allowed to show a lamellar supramolecular organization to obtain lithium ion conduction channels. The ion transport measurement helped to highlight a transport of lithium ions following an Arrhenius law (independent of the molecular backbone) which is evidence of a transport mechanism of lithium ions with hopping mechanism. The first electrochemical tests showed good stability of these electrolytes with lithium electrode and a reversible lithium ion transport in a symmetrical cell Li | Li. Following this work, the prospects are discussed to improve the performance of these electrolytes
Book chapters on the topic "Single-ion polymer electrolyte"
Golodnitsky, D. "SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS | Electrolytes: Single Lithium Ion Conducting Polymers." In Encyclopedia of Electrochemical Power Sources, 112–28. Elsevier, 2009. http://dx.doi.org/10.1016/b978-044452745-5.00890-x.
Full textConference papers on the topic "Single-ion polymer electrolyte"
Baschuk, J., and Xianguo Li. "Applying the Generalized Stefan-Maxwell Equations to Ion and Water Transport in the Polymer Electrolyte of a PEM Fuel Cell." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41660.
Full textSakamoto, Y., Y. Ishii, and S. Kawasaki. "Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte." In INTERNATIONAL CONFERENCE ON NANO-ELECTRONIC TECHNOLOGY DEVICES AND MATERIALS 2015 (IC-NET 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4948826.
Full textPatel, Prehit, and George J. Nelson. "The Influence of Structure on the Electrochemical and Thermal Response of Li-Ion Battery Electrodes." In ASME 2019 13th International Conference on Energy Sustainability collocated with the ASME 2019 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/es2019-3926.
Full textReports on the topic "Single-ion polymer electrolyte"
Feld, William A., and Denise M. Weimers. Single Lithium Ion Conducting Polymer Electrolyte. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada353668.
Full textFeld, William A. Aerospace Power Scholarly Research Program. Delivery Order 0007: Single Lithium Ion Conducting Polymer Electrolyte. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada444661.
Full text