Academic literature on the topic 'Single-Ion electrolyte'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Single-Ion electrolyte.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Single-Ion electrolyte":

1

Hoffman, Zach J., Alec S. Ho, Saheli Chakraborty, and Nitash P. Balsara. "Limiting Current Density in Single-Ion-Conducting and Conventional Block Copolymer Electrolytes." Journal of The Electrochemical Society 169, no. 4 (April 1, 2022): 043502. http://dx.doi.org/10.1149/1945-7111/ac613b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The limiting current density of a conventional polymer electrolyte (PS-PEO/LiTFSI) and a single-ion-conducting polymer electrolyte (PSLiTFSI-PEO) was measured using a new approach based on the fitted slopes of the potential obtained from lithium-polymer-lithium symmetric cells at a constant current density. The results of this method were consistent with those of an alternative framework for identifying the limiting current density taken from the literature. We found the limiting current density of the conventional electrolyte is inversely proportional to electrolyte thickness as expected from theory. The limiting current density of the single-ion-conducting electrolyte was found to be independent of thickness. There are no theories that address the dependence of the limiting current density on thickness for single-ion-conducting electrolytes.
2

Issa, Sébastien, Roselyne Jeanne-Brou, Sumit Mehan, Didier Devaux, Fabrice Cousin, Didier Gigmes, Renaud Bouchet, and Trang N. T. Phan. "New Crosslinked Single-Ion Silica-PEO Hybrid Electrolytes." Polymers 14, no. 23 (December 6, 2022): 5328. http://dx.doi.org/10.3390/polym14235328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
New single-ion hybrid electrolytes have been synthetized via an original and simple synthetic approach combining Michael addition, epoxidation, and sol–gel polycondensation. We designed an organic PEO network as a matrix for the lithium transport, mechanically reinforced thanks to crosslinking inorganic (SiO1.5) sites, while highly delocalized anions based on lithium vinyl sulfonyl(trifluoromethane sulfonyl)imide (VSTFSILi) were grafted onto the inorganic sites to produce single-ion hybrid electrolytes (HySI). The influence of the electrolyte composition in terms of the inorganic/organic ratio and the grafted VSTFSILi content on the local structural organization, the thermal, mechanical, and ionic transport properties (ionic conductivity, transference number) are studied by a variety of techniques including SAXS, DSC, rheometry, and electrochemical impedance spectroscopy. SAXS measurements at 25 °C and 60 °C reveal that HySI electrolyte films display locally a spatial phase separation with domains composed of PEO rich phase and silica/VSTFSILi clusters. The size of these clusters increases with the silica and VSTFSILi content. A maximum ionic conductivity of 2.1 × 10−5 S·cm−1 at 80 °C has been obtained with HySI having an EO/Li ratio of 20. The Li+ ion transfer number of HySI electrolytes is high, as expected for a single-ion electrolyte, and comprises between 0.80 and 0.92.
3

Dong, Xu, Dominik Steinle, and Dominic Bresser. "Single-Ion Conducting Polymer Electrolytes for Sodium Batteries." ECS Meeting Abstracts MA2023-01, no. 5 (August 28, 2023): 954. http://dx.doi.org/10.1149/ma2023-015954mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Sodium-ion batteries have attracted extensive attention recently owing to the announcements of several companies to commercialize this technology in the (very) near future. Just like commercial lithium-ion batteries, though, these batteries are comprising and/or will comprise a liquid electrolyte – with all its advantages and challenges. Thinking one step ahead (as also done by a few companies already), the next step might be the transition to (“zero-excess”) sodium-metal batteries, which will require fundamentally new electrolyte solutions, and just like for lithium-metal batteries, these might be based, e.g., on polymers. Herein, we present our latest results on single-ion conducting polymer electrolytes for sodium-metal batteries. These polymer electrolytes do not only show higher ionic conductivity than its lithium analogues (>2.5 mS cm-1 at 40 °C), but moreover the same beneficial properties in terms of high electrochemical stability towards oxidation, highly reversible sodium plating and stripping, and excellent cycling stability of Na‖Na3V2(PO4)3 cells for more than 500 cycles. The results thus show that single-ion conducting polymer electrolytes are very promising candidates for high-performance sodium batteries.
4

Ghorbanzade, Pedram, Laura C. Loaiza, and Patrik Johansson. "Plasticized and salt-doped single-ion conducting polymer electrolytes for lithium batteries." RSC Advances 12, no. 28 (2022): 18164–67. http://dx.doi.org/10.1039/d2ra03249j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Park, Habin, Anthony Engler, Nian Liu, and Paul Kohl. "Dynamic Anion Delocalization of Single-Ion Conducting Polymer Electrolyte for High-Performance of Solid-State Lithium Metal Batteries." ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 227. http://dx.doi.org/10.1149/ma2022-023227mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Lithium metal batteries (LMBs) have been considered as next-generation energy storages due to their extremely high theoretical specific capacity (3860 mAh g-1). However, current LMBs, using conventional liquid electrolytes, still could not fulfill the demand of soaring expansion of energy era, such as electrical vehicles, because of their safety issues, originated by uncontrollable electrolytic side reaction on the lithium, resulting unstable solid-electrolyte interphase (SEI) and vicious lithium dendritic growth [1]. Also, carbonate-based liquid electrolytes have an intrinsic flammability, and the lithium dendrite, which short-circuits a cell, can lead to severe safety hazard with the unfavorable flammability of current liquid system when they are ignited. Therefore, solid-state electrolytes have been spotlighted recently for a pathway for safe, and high energy and power LMBs, due to their superior thermal stability and low vapor pressure, while maintaining suitable electrolytic performances. In this study, solid-state single-ion conducting polymer electrolytes (SICPEs), utilizing dynamic anion delocalization (DAD), realizing high ionic conductivity and dimensional stability for high-performance LMB, are studied. The SICPEs enable superior lithium transference number, resulting in highly reduced concentration gradient of lithium cation along the electrolyte to suppress the undesirable lithium dendritic growth. However, SICPEs have prominently lower ionic conductivity than dual-ion conducting polymer electrolyte (DICPEs), which is a critical issue to make a slower charge/discharge for SICPEs [2]. Although an approach utilizing gel polymer electrolyte (GPE), using a liquid solvent as a plasticizer, has been exploited to increase the ionic conductivity of SICPEs, GPEs have struggled with lower mechanical stability, compared to solid state, and still existing flammability issue with the plasticizer. The novel plasticizer, which is described here, can interact with bulky anionic polymer matrix, so that the negative charge can be dispersed onto the whole complex by DAD. Once the bulky complex is formed by DAD, the dissociation of lithium cation from anionic matrix can be easier with the decreased activation energy and higher ionic conduction. While increasing the ionic conductivity with DAD, the nature of polymeric plasticizer will highly suppress flammability. DAD allows the membrane endure more tensile strength due to the dynamic structural change in crosslinking state, so that the polymer electrolyte can tolerate dendritic growth of lithium by morphological change on an electrode surface. The obvious advantages of DAD-induced solid polymer electrolytes in this study for a high energy and power, and ultra-safe LMB can present a novel approach of polymer electrolyte design to the astronomical demand of energy storages. [1] F. Ahmed, I. Choi, M.M. Rahman, H. Jang, T. Ryu, S. Yoon, L. Jin, Y. Jin, W. Kim, ACS Appl. Mater. Interfaces 2019, 11, 34930-34938. [2] D.-M. Shin, J.E. Bachman, M.K. Taylor, J. Kamcev, J.G. Park, M.E. Ziebel, E. Velasquez, N.N. Jarenwattananon, G.K. Sethi, Y. Cui, J.R. Long, Adv. Mater. 2020, 32, 1905771.
6

Ock, Jiyoung, Anisur Rahman, Catalin Gainaru, Alexei Sokolov, and Xi Chen. "Ion Transport in Polymer/Inorganic Composite Electrolytes – a Comparison between Broadband Dielectric Spectroscopy and Impedance Spectroscopy." ECS Meeting Abstracts MA2023-01, no. 7 (August 28, 2023): 2886. http://dx.doi.org/10.1149/ma2023-0172886mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Significant efforts have been made to develop composite electrolytes combining polymer matrix with Li-ion conducting inorganic solids for feasible construction of solid-state batteries. However, the Li-ion transfer kinetics at the interface between polymer/inorganic electrolyte is unfavorable for Li-ion conduction in the composite electrolyte because of the interfacial resistance and the activation energy barrier for interfacial Li-ion transfer. The activation energy barrier for the Li-ion transfer reaction at the interface is correlated with the interaction between Li-ion and polymer matrix in the polymer electrolyte, interaction between Li-ion and anions in inorganic electrolytes and the interaction between polymer and inorganic electrolytes, therefore, the electrolyte composition significantly affects the interfacial charge transfer kinetics in composites. In this work, Li-ion transport properties in the composite electrolytes are investigated by using broadband dielectric spectroscopy (BDS) and impedance spectroscopy (IS). We particularly focus on Li-ion charge transfer at the polymer/inorganic interface from the dual ion conducting polymer to the single ion conducting polymer electrolytes with different Li-ion conducting salts such as LiN(SO2CF3)2 (LiTFSI) and (LiMTFSI) in vinyl ethylene carbonate (VEC) or polymerized vinyl ethylene carbonate (PVEC). The interfacial resistances of inorganic electrolytes Li0.34La0.56TiO3 (LLTO) in polymer electrolytes are elucidated. To further evaluate the polymer/inorganic electrolyte interfaces, various types of cell are assembled in a glove box filled with argon gas and characterized by a series of techniques such as BDS and IS. The Li-ion transfer kinetics at the interface significantly affects the Li-ion flux through the composite electrolytes and will be presented. In addition, we will present a systematic comparison between BDS and IS results in order to build connections between the two communities. Acknowledgements This work was supported as part of the Fast and Cooperative Ion Transport in Polymer-Based Materials (FaCT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences at Oak Ridge National Laboratory under contract DE-AC05-00OR22725.
7

Badi, Nacer, Azemtsop Manfo Theodore, Saleh A. Alghamdi, Hatem A. Al-Aoh, Abderrahim Lakhouit, Pramod K. Singh, Mohd Nor Faiz Norrrahim, and Gaurav Nath. "The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries." Polymers 14, no. 15 (July 30, 2022): 3101. http://dx.doi.org/10.3390/polym14153101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In recent decades, the enhancement of the properties of electrolytes and electrodes resulted in the development of efficient electrochemical energy storage devices. We herein reported the impact of the different polymer electrolytes in terms of physicochemical, thermal, electrical, and mechanical properties of lithium-ion batteries (LIBs). Since LIBs use many groups of electrolytes, such as liquid electrolytes, quasi-solid electrolytes, and solid electrolytes, the efficiency of the full device relies on the type of electrolyte used. A good electrolyte is the one that, when used in Li-ion batteries, exhibits high Li+ diffusion between electrodes, the lowest resistance during cycling at the interfaces, a high capacity of retention, a very good cycle-life, high thermal stability, high specific capacitance, and high energy density. The impact of various polymer electrolytes and their components has been reported in this work, which helps to understand their effect on battery performance. Although, single-electrolyte material cannot be sufficient to fulfill the requirements of a good LIB. This review is aimed to lead toward an appropriate choice of polymer electrolyte for LIBs.
8

Ma, Peiyuan, Priyadarshini Mirmira, and Chibueze Amanchukwu. "Co-Intercalation-Free Fluorinated Ether Electrolytes for Lithium-Ion Batteries." ECS Meeting Abstracts MA2023-01, no. 2 (August 28, 2023): 550. http://dx.doi.org/10.1149/ma2023-012550mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Lithium-ion batteries are widely used to power portable electronics because of their high energy densities and have shown great promise in enabling the electrification of transport. However, the commercially used carbonate-based electrolytes are limited by a narrow operating temperature window and suffer against next generation lithium-ion battery chemistries such as silicon-containing anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Recently, fluorinated ether solvents have become promising electrolyte solvent candidates for lithium metal batteries but their applications in other battery chemistries have not been studied. In this work, we synthesize a group of novel fluorinated ether solvents and study them as electrolyte solvents for lithium-ion batteries. Using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (ssNMR), we show that fluorinated ether electrolytes support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. To the best of our knowledge, they are the first class of ether solvents that intrinsically suppress solvent co-intercalation without the need for high or locally high salt concentration. In full cells using graphite anode, fluorinated ether electrolytes enable much higher energy densities compared to conventional glyme ethers, and better thermal stability over carbonate electrolytes (operation up to 60°C). As single-solvent-single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite-silicon composite anodes. Using X-ray photoelectron spectroscopy (XPS), NMR and density functional theory (DFT) calculations, we show that fluorinated ethers produce a solvent-derived solid electrolyte interphase, which is likely the key to suppressing solvent co-intercalation. Rational molecular design of fluorinated ether solvents will produce novel electrolytes that enable next generation lithium-ion batteries with higher energy density and wider working temperature window.
9

Zhang, Heng, Chunmei Li, Michal Piszcz, Estibaliz Coya, Teofilo Rojo, Lide M. Rodriguez-Martinez, Michel Armand, and Zhibin Zhou. "Single lithium-ion conducting solid polymer electrolytes: advances and perspectives." Chemical Society Reviews 46, no. 3 (2017): 797–815. http://dx.doi.org/10.1039/c6cs00491a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Single lithium-ion conducting solid polymer electrolytes (SLIC-SPEs), with a high lithium-ion transference number, the absence of the detrimental effect of anion polarization, and low dendrite growth rate, could be an excellent choice of safe electrolyte materials for lithium batteries in the future.
10

Villaluenga, Irune, Kevin H. Wujcik, Wei Tong, Didier Devaux, Dominica H. C. Wong, Joseph M. DeSimone, and Nitash P. Balsara. "Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries." Proceedings of the National Academy of Sciences 113, no. 1 (December 22, 2015): 52–57. http://dx.doi.org/10.1073/pnas.1520394112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10−4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li+/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.

Dissertations / Theses on the topic "Single-Ion electrolyte":

1

Meyer, Mathieu. "Membranes électrolytes à porteurs de charge Li+." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20119/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La demande actuelle en batteries lithium-ion « tout solide » adaptées aux applications mobiles asuscité d'importantes recherches sur des membranes électrolytes polymères de plus en plussophistiquées. Cette thèse porte sur la synthèse et la caractérisation mécanique, thermique etstructurale de nouveaux matériaux électrolytes polymères nanocomposites résultant de la réticulationpar procédé sol-gel de chaînes de poly(oxyde d'éthylène) (PEO) fonctionnalisées aux deux extrémitéspar des groupements alkoxysilane. Les nano-domaines polysilsesquioxanes ainsi formés par hydrolysecondensation,génèrent un haut degré de réticulation et jouent le rôle de nanocharges, apportant unerésistance mécanique permettant d'incorporer des quantités élevées de plastifiant. En outre, leprocédé sol-gel permet de fonctionnaliser ces nano-domaines avec des groupements de type sulfonateou perfluorosulfonate de lithium, qui fournissent des porteurs de charge Li+ de façon uniforme au seinde la membrane. De plus, l'immobilisation des anions par liaisons covalentes supprime leurcontribution à la conductivité, ce qui assure au sein de l'électrolyte (alors dit single-ion) une conductionunipolaire cationique, indispensable pour éviter ultérieurement la formation de dendrites de lithium aucours des cycles de charge et décharge. L'étude de la conductivité ionique de ces membranes, à l'étatsec ou après gonflement dans le carbonate de propylène, a conduit à une réflexion sur la dynamique ducation lithium au sein des membranes nanocomposites et sur les différentes voies envisageables pouraméliorer les performances de ces électrolytes
The topical demand in all-solid lithium-ion batteries suitable for portable consumer electronicdevices has triggered extensive research on more and more sophisticated polymer electrolytemembranes (PEM).This PhD work deals with the synthesis and the mechanical, thermal andstructural characterization of new nanocomposite PEM arising from the sol-gel cross-linking ofPEO chains end-capped with alkoxysilane groups. Thus, the polysilsesquioxane nano-domainsformed by hydrolysis-condensation reactions form a high density of cross-links and play the roleof nanocharges, giving rise to mechanical resistance, which allows incorporating high amounts ofplasticizer. Moreover, sol-gel process allows the functionalization of these nanodomains withlithium sulfonate or perfluorosulfonate groups, which supply Li+ charge carriers homogeneouslydispersed throughout the membrane. In addition the immobilization of the anions via covalentbonds prevents them from contributing to the overall conductivity, thus ensuring a single-ionconduction, which is a compulsory condition to prevent the further formation of lithium dendriteson charge-discharge cycles. The ionic conductivity study of the membranes, in the dry state orafter swelling in propylene carbonate, was done. It led to discuss the dynamics of lithium cation inthe nanocomposite membranes and the possible ways to improve their conductionperformances
2

Single, Fabian [Verfasser]. "Theory-based Investigation of the Solid Electrolyte Interphase in Lithium-ion Systems / Fabian Single." Ulm : Universität Ulm, 2021. http://nbn-resolving.de/urn:nbn:de:bsz:289-oparu-38988-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

LINGUA, GABRIELE. "Newly designed single-ion conducting polymer electrolytes enabling advanced Li-metal solid-state batteries." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2969103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schneider, Armin Conrad. "Potentiometrische Bestimmung von Einzelionenaktivitätskoeffizienten wässriger Elektrolyte mit Hilfe ionenselektiver Elektroden / Potentiometric Determination of Single Ion Activity Coefficients of Aqueous Electrolyte Solutions Using Ion Selective Electrodes." Gerhard-Mercator-Universitaet Duisburg, 2005. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-02112005-091206/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Single ion activity coeffients of NaCl, KCl, HCl and CaCl2 in aqueous solution have been estimated by means of ion selective electrode (ISE) potentiometric measurements. Two methods are described for the calibration of the electrodes within the extended Debye-Hückel concentration range, using the Henderson-Bates approximation for the diffusion potential arising at the reference electrode. The consistency of the results indicates that the junction potentials in the examined systems calculated by the Henderson-Bates approximation are of reasonable precision. The published methods and data might be useful to develop single ion parameters for individual ion activity coefficient models.
5

Bernard, Laurent. "Caractérisation multi-échelle de la structure et du transport de cristaux liquides ioniques : vers des électrolytes solides innovants pour batteries lithium." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le remplacement des électrolytes liquides conventionnels des batteries lithium-ion est un enjeu majeur pour améliorer leurs performances et leur sécurité. Dans ce contexte, ce travail de thèse est focalisé sur la synthèse d’une nouvelle classe d’électrolytes solides organiques : les cristaux liquides ioniques thermotropiques, ainsi que la caractérisation multi-échelle des nanostructures obtenues et du transport ionique. Tout d’abord, nous présentons les structures chimiques choisies pour créer des assemblages de molécules cristal liquide à conduction « single-ion ». Ensuite, nous détaillons l’étude structurale et fonctionnelle, qui a permis d’établir l’organisation supramoléculaire sous forme de phase colonnaire avec des canaux de conduction ionique nanométriques. Des conductivités pouvant atteindre 10-4 S.cm-1 à 70°C ont été obtenues. La dynamique des ions au sein de ces électrolytes a été étudiée à l’échelle moléculaire et nous avons mis en évidence un mécanisme de conduction par saut. La polymérisation des cristaux liquides ioniques pourrait permettre le développement d’électrolytes polymères de type single-ion pour les batteries
One major issue towards large-scale application of lithium-based batteries concerns their safety which is directly related to the nature of the electrolyte. Solid electrolytes are at present considered as a promising approach to avoid the risks related to the commonly employed liquids. Herein we report the synthesis and the characterization of a promising class of electrolytes: Thermotropic Ionic Liquid Crystals (TILCs). We describe the design and the synthesis of new self-assembled single-ion materials in function of their chemical architecture. We performed a systematic structural and functional properties study, demonstrating the crystal-liquid properties as well as the supramolecular organization into columnar phases. One of the most promising TILC shows a conductivity of 10-4 S.cm-1 at 70°C. The ion dynamics was probed at molecular scale to establish the main features of hopping conduction mechanism. Further polymerization of the TILCs could be applied to develop high performance single-ion polymer electrolytes for Li-ion batteries
6

Frenck, Louise. "Study of a buffer layer based on block copolymer electrolytes, between the lithium metal and a ceramic electrolyte for aqueous Lithium-air battery." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI041/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La technologie Lithium-air développée par EDF utilise une électrode à air qui fonctionne avec un électrolyte aqueux ce qui empêche l’utilisation de lithium métal non protégé comme électrode négative. Une membrane céramique (LATP:Li1+xAlxTi2-x(PO4)3) conductrice d’ion Li+ est utilisée pour séparer le milieu aqueux de l’électrode négative. Cependant, cette céramique n'est pas stable au contact du lithium, il est donc nécessaire d'intercaler entre le lithium et la céramique un matériau conducteur des ions Li+. Celui-ci devant être stable au contact du lithium et empêcher ou fortement limiter la croissance dendritique. Ainsi, ce projet s'est intéressé à l'étude d'électrolytes copolymères à blocs (BCE).Tout d'abord, l'étude des propriétés physico-chimiques spécifiques de ces BCEs en cellule lithium-lithium symétrique a été réalisée notamment les propriétés de transport (conductivités, nombre de transport), et la résistance à la croissance dendritique du lithium. Puis dans un second temps, l'étude des composites BCE-céramique a été mise en place. Nous nous sommes en particulier focalisés sur l'analyse du transfert ionique polymère-céramique.Plusieurs techniques de caractérisation ont été utilisées telles que la spectroscopie d'impédance électrochimique (transport et interface), le SAXS (morphologies des BCEs), la micro-tomographie par rayons X (morphologies des interfaces et des dendrites).Pour des électrolytes possédant un nombre de transport unitaire (single-ion), nous avons obtenus des résultats remarquables concernant la limitation à la croissance dendritique. La micro-tomographie des rayons X a permis de montrer que le mécanisme de croissance hétérogène dans le cas des single-ion est très différent de celui des BCEs neutres (t+ < 0.2)
The lithium-air (Li-air) technology developed by EDF uses an air electrode which works with an aqueous electrolyte, which prevents the use of unprotected lithium metal electrode as a negative electrode. A Li+ ionic conductor glass ceramic (LATP:Li1+xAlxTi2-x(PO4)3) has been used to separate the aqueous electrolyte compartment from the negative electrode. However, this glass-ceramic is not stable in contact with lithium, it is thus necessary to add between the lithium and the ceramic a buffer layer. In another hand, this protection should ideally resist to lithium dendritic growth. Thus, this project has been focused on the study of block copolymer electrolytes (BCE).In a first part, the study of the physical and chemical properties of these BCEs in lithium symmetric cells has been realized especially transport properties (ionic conductivities, transference number), and resistance to dendritic growth. Then, in a second part, the composites BCE-ceramic have been studied.Several characterization techniques have been employed and especially the electrochemical impedance spectroscopy (for the transport and the interface properties), the small angle X-ray scattering (for the BCE morphologies) and the hard X-ray micro-tomography (for the interfaces and the dendrites morphologies). For single-ion BCE, we have obtained interesting results concerning the mitigation of the dendritic growth. The hard X-ray micro-tomography has permitted to show that the mechanism involved in the heterogeneous lithium growth in the case of the single-ion is very different from the one involved for the neutral BCEs (t+ < 0.2)
7

Leclere, Mélody. "Synthèse de (poly)électrolytes pour accumulateur Li-ion à haute densité d'énergie." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI001/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les travaux de thèse présentés dans ce manuscrit portent sur le développement nouveaux électrolytes sans recours aux solvants conventionnels inflammables afin de répondre à la problématique de sécurité des batteries. La première partie de ce travail vise à développer des électrolytes gélifiés à partir de liquide ionique phosphonium. Une étude est réalisée sur la compatibilité entre l'électrolyte et le polymère hôte époxy/amine ainsi que de l'influence du LI sur la polymérisation du réseau. Les propriétés thermiques, viscoélastiques et de transport ionique des gels sont discutées. Parmi les électrolytes gélifiés obtenus, le gel contenant l'électrolyte (1 M LiTFSI + LI [P66614][TFSI]) a montré des propriétés électrochimiques intéressantes. Un système gélifié Li|LFP a été mis en œuvre et une bonne stabilité en cyclage à 100 °C a été obtenue. La deuxième partie de ce travail consiste au développement de nouveaux électrolytes mésomorphes favorisant un transport d’ions lithium par saut. Un composé anionique a été synthétisé à partir d’une réaction époxy/amine entre le 4-amino-1-naphtalènesulfonate de lithium et un diglycidylether aliphatique. Différentes techniques de caractérisation ont été utilisées afin d’établir un lien structure/propriétés. Les résultats ont permis de mettre en évidence une organisation supramoléculaire lamellaire permettant d’obtenir des canaux de conduction d’ions lithium. Les mesures de transport ionique ont permis de mettre en évidence un transport d'ions lithium suivant une loi d'Arrhenius (indépendant du squelette moléculaire) ce qui est la preuve d'un mécanisme de transport d'ions lithium par saut. Les premiers tests électrochimiques ont révélé une bonne stabilité de ces électrolytes vis à vis du lithium et un transport d’ions lithium réversible dans une cellule symétrique Li|Li. A l'issue de ces travaux, les perspectives sont discutées afin d'améliorer les performances de ces électrolytes
The thesis work presented in this manuscript focuses on the development of new electrolytes without the use of flammable conventional solvents to improve the security problem batteries. The first part of this work is the preparation of gelled electrolytes from phosphonium ionic liquid. A study is performed on the compatibility between the electrolyte and the polymer host epoxy / amine as well as the influence of the polymerization LI on the network. The thermal properties, and ionic transport viscoelastic gels are discussed. Among the obtained gelled electrolyte, the gel containing the electrolyte (1 M LiTFSI + LI [P66614] [TFSI]) showed interesting electrochemical properties. A gelled system Li | LFP has been implemented and good cycling stability at 100 ° C was obtained. The second part of this work is the development of new liquid crystal electrolytes promotes transport of lithium ions with hopping mechanism. An anionic compound was synthesized from reaction of an epoxy / amine from lithium 4-amino-1-naphthalenesulfonate and an aliphatic diglycidyl ether. Various characterization technical were used to establish a link structure / properties. The results allowed to show a lamellar supramolecular organization to obtain lithium ion conduction channels. The ion transport measurement helped to highlight a transport of lithium ions following an Arrhenius law (independent of the molecular backbone) which is evidence of a transport mechanism of lithium ions with hopping mechanism. The first electrochemical tests showed good stability of these electrolytes with lithium electrode and a reversible lithium ion transport in a symmetrical cell Li | Li. Following this work, the prospects are discussed to improve the performance of these electrolytes
8

Issa, Sébastien. "Synthèse et caractérisation d'électrolytes solides hybrides pour les batteries au lithium métal." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les problématiques engendrées par l’extraction et l’utilisation intensives des ressources fossiles ont forcé l’humanité à se tourner vers le développement d’énergies renouvelables et de véhicules électriques. Cependant, ces technologies doivent être couplées à des moyens de stockage de l’énergie efficaces pour exploiter leur potentiel. Les systèmes embarquant une anode de lithium métallique sont particulièrement intéressants car ils présentent une densité d’énergie élevée. Cependant, cette technologie souffre de la formation de dendrites pouvant déclencher des courts-circuits provoquant l’explosion du dispositif. Ainsi, de nombreux efforts ont été consacrés à l’élaboration d’électrolytes solides polymères (SPE) à base de POE permettant de constituer une barrière qui bloque la croissance dendritique tout en préservant les propriétés de conduction ionique. Cependant, la conductivité ionique des SPE à base de POE décroît fortement avec la température. A l’heure actuelle, les meilleurs SPE de la littérature nécessiteraient de fonctionner à 60 °C, ce qui signifie qu’une partie de l’énergie de la batterie sera détournée de son utilisation pour maintenir cette température. Ainsi, l’objectif principal de ce travail de thèse est de concevoir un SPE permettant le fonctionnement de la technologie de batterie au lithium métal à température ambiante. Ces SPE doivent présenter une conductivité ionique élevée à température ambiante (≈ 10-4 S.cm-1) et des propriétés mécaniques permettant l’inhibition du phénomène de croissance dendritique. Pour cela, les objectifs du projet sont focalisés sur le développement de nouveaux SPE nanocomposites et hybrides
The problems caused by the intensive extraction and use of fossil fuels have forced humanity to turn to the development of renewable energies and electric vehicles. However, these technologies need to be coupled with efficient energy storage means to exploit their potential. Lithium metal anode systems are particularly interesting because they have a high energy density. However, this technology suffers from the formation of dendrites that can trigger short circuits causing the device to explode. Thus, many efforts have been devoted to the development of POE-based solid polymer electrolytes (SPEs) that provide a barrier that blocks dendritic growth while preserving ionic conduction properties. However, the ionic conductivity of POE-based SPEs decreases strongly with temperature. Currently, the best SPEs in the literature would require operation at 60 °C, which means that some of the energy in the battery will be diverted from its use to maintain this temperature. Thus, the main objective of this thesis work is to design an SPE that allows the operation of lithium metal battery technology at room temperature. These SPEs must exhibit high ionic conductivity at room temperature (≈ 10-4 S.cm-1) and mechanical properties that allow the inhibition of the dendritic growth phenomenon. For this, the objectives of the project are focused on the development of new nanocomposite and hybrid SPEs
9

Kuo, Tsung-Chieh, and 郭宗杰. "Nanofiber electrolytes of Single-Ion Conductors for lithium battery." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/b3tatt.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
國立中山大學
化學系研究所
105
In this study, a nonwoven nanofabric single-ion conducting electrolyte (SICE) membrane exhibiting excellent electrochemical performance in ambient environment has been fabricated. Compared to commercial polypropylene separators, the SICE membrane, fabricated via electrospinning of the hybrid solution containing lithium poly[4-styrenesulfonyl(phenylsulfonyl)imide] and polyacrylonitrile, possesses excellent solvation characteristics due to porous morphology that facilitates transportation of lithium ions. It shows superior ionic conductivity of 3.9 × 10−3 S cm−1 and a broader electrochemical window of up to 5.2 V (vs. Li/Li+) with a lithium transference number (t_(〖Li〗^+ )) of 0.93 at 30 °C under ethylene carbonate/propylene carbonate/diethyl carbonate (=3/2/5, v/v/v) solvent system. Furthermore, fabricated with this SICE membrane, the lithium ion batteries made from LiFePO4 cathode demonstrate not only a discharge capacity of 163 mAh/g at 0.2 and 0.5 C, which is the highest value reported so far for SICEs (95.9% of the theoretical capacity of LiFePO4) but also higher discharge capacities up to 2 C in comparison with the commercial separator/dual-ion salt electrolyte system. Those encouraging results with this innovative approach indicate this might be a potential candidate for the design and fabrication techniques of commercial electrolyte membranes in future.
10

"A New Class of Solid State, Single-ion Conductors (H+ and Li+): Silicon-based Plastic Crystals." Doctoral diss., 2016. http://hdl.handle.net/2286/R.I.40721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
abstract: Plastic crystals as a class are of much interest in applications as solid state electrolytes for electrochemical energy conversion devices. A subclass exhibit very high protonic conductivity and its members have been investigated as possible fuel cell electrolytes, as first demonstrated by Haile’s group in 2001 with CsHSO4. To date these have been inorganic compounds with tetrahedral oxyanions carrying one or more protons, charge-balanced by large alkali cations. Above the rotator phase transition, the HXO4- anions re-orient at a rate dependent on temperature while the centers of mass remain ordered. The transition is accompanied by a conductivity "jump" (as much as four orders of magnitude, to ~ 10 mScm-1 in the now-classic case of CsHSO4) due to mobile protons. These superprotonic plastic crystals bring a “true solid state” alternative to polymer electrolytes, operating at mild temperatures (150-200ºC) without the requirement of humidification. This work describes a new class of solid acids based on silicon, which are of general interest. Its members have extraordinary conductivities, as high as 21.5 mS/cm at room temperature, orders of magnitude above any previous reported case. Three fuel cells are demonstrated, delivering current densities as high as 225 mA/cm2 at short-circuit at 130ºC in one example and 640 mA/cm2 at 87ºC in another. The new compounds are insoluble in water, and their remarkably high conductivities over a wide temperature range allow for lower temperature operations, thus reducing the risk of hydrogen sulfide formation and dehydration reactions. Additionally, plastic crystals have highly advantageous properties that permit their application as solid state electrolytes in lithium batteries. So far only doped materials have been presented. This work presents for the first time non-doped plastic crystals in which the lithium ions are integral part of the structure, as a solid state electrolyte. The new electrolytes have conductivities of 3 to 10 mS/cm at room temperature, and in one example maintain a highly conductive state at temperatures as low as -30oC. The malleability of the materials and single ion conducting properties make these materials highly interesting candidates as a novel class of solid state lithium conductors.
Dissertation/Thesis
Doctoral Dissertation Chemistry 2016

Book chapters on the topic "Single-Ion electrolyte":

1

Holze, Rudolf. "Single ion conductivities of acetonitrile in nonaqueous electrolyte solutions." In Electrochemistry, 2200–2203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Holze, Rudolf. "Single ion conductivities of Ag+ ion in aqueous electrolyte solutions at infinite dilution." In Electrochemistry, 1870. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holze, Rudolf. "Single ion conductivities of Al3+ ion in aqueous electrolyte solutions at infinite dilution." In Electrochemistry, 1871. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holze, Rudolf. "Single ion conductivities of Ba2+ ion in aqueous electrolyte solutions at infinite dilution." In Electrochemistry, 1875. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Holze, Rudolf. "Single ion conductivities of Be2+ ion in aqueous electrolyte solutions at infinite dilution." In Electrochemistry, 1876. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Holze, Rudolf. "Single ion conductivities of Br− ion in aqueous electrolyte solutions at infinite dilution." In Electrochemistry, 1877. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Holze, Rudolf. "Single ion conductivities of bmim+ ion in aqueous electrolyte solutions at infinite dilution." In Electrochemistry, 1879. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Holze, Rudolf. "Single ion conductivities of formate ion in aqueous electrolyte solutions at infinite dilution." In Electrochemistry, 1880. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Holze, Rudolf. "Single ion conductivities of methylammonium ion in aqueous electrolyte solutions at infinite dilution." In Electrochemistry, 1882. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Holze, Rudolf. "Single ion conductivities of monochloroacetate ion in aqueous electrolyte solutions at infinite dilution." In Electrochemistry, 1884. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1669.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Single-Ion electrolyte":

1

Jawle, Bharat, Ashwin Selvakumar, Jagadeeswaran Subramanian, Kumar P. Nagaraj, and Ajith Kumaran. "Single-Particle model with thermal and electrolyte dynamics for lithium-Ion cell." In 2023 IEEE International Transportation Electrification Conference (ITEC-India). IEEE, 2023. http://dx.doi.org/10.1109/itec-india59098.2023.10471458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grandjean, Thomas R. B., Liuying Li, Maria Ximena Odio, and Widanalage D. Widanage. "Global Sensitivity Analysis of the Single Particle Lithium-Ion Battery Model with Electrolyte." In 2019 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2019. http://dx.doi.org/10.1109/vppc46532.2019.8952455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baschuk, J., and Xianguo Li. "Applying the Generalized Stefan-Maxwell Equations to Ion and Water Transport in the Polymer Electrolyte of a PEM Fuel Cell." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ion and water transport phenomena in the polymer electrolyte plays a significant role in the energy conversion process of a polymer electrolyte membrane (PEM) fuel cell. A mathematical model for ion and water transport in the polymer electrolyte is presented, based on non-equilibrium thermodynamics and the Generalized Stefan-Maxwell equations. The physical constants of the model, such as the binary diffusion coefficients of the Generalized Stefan-Maxwell equations, are obtained from published, experimental data for membrane water diffusion and conductivity. The electrolyte transport model is incorporated into a model of an entire PEM fuel cell; water transport in the electrolyte and gas phase are coupled and solved in a single domain.
4

Lin, Xianke, Xiaoguang Hao, Zhenyu Liu, and Weiqiang Jia. "Optimal Charging Of Li-Ion Batteries Based On An Electrolyte Enhanced Single Particle Model." In 2018 Canadian Society for Mechanical Engineering (CSME) International Congress. York University Libraries, 2018. http://dx.doi.org/10.25071/10315/35325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tanim, Tanvir R., Christopher D. Rahn, and Chao-Yang Wang. "A reduced order electrolyte enhanced single particle lithium ion cell model for hybrid vehicle applications." In 2014 American Control Conference - ACC 2014. IEEE, 2014. http://dx.doi.org/10.1109/acc.2014.6858617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Islam, Rabiul, Cameron Nolen, and Kwangkook Jeong. "Effects of Sulfuric Acid Concentration on Volume Transfer Across Ion-Exchange Membrane in a Single-Cell Vanadium Redox Flow Battery." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The vanadium redox flow battery (VRFB) is one of the technologies to be used for storing large-scale renewable energy. The objective of this research is to electrochemically synthesize the V(III) electrolytes with combinations of 2 M VOSO4 and 2–6 M H2SO4, and to investigate the effects of concentration of H2SO4 on vanadium and water transfer across membrane. Transfer of water and vanadium across the membrane was reduced from 19.6 to 6.2 % as the concentration of H2SO4 in the electrolyte increased from 2 to 6 M. Change in volume transferred across the membrane decreased with each successive charge and discharge cycle, and resulted in a reduction in volume transfer from 16.7 % after the first cycle to 2.9 % after the fourth cycle. Energy storage capacity was increased by 50 % by changing the H2SO4 concentration from 2 to 6 M.
7

Sakamoto, Y., Y. Ishii, and S. Kawasaki. "Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte." In INTERNATIONAL CONFERENCE ON NANO-ELECTRONIC TECHNOLOGY DEVICES AND MATERIALS 2015 (IC-NET 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4948826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fan, Guodong, and Marcello Canova. "Model Order Reduction of Electrochemical Batteries Using Galerkin Method." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This paper presents a model order reduction (MOR) method for modeling and estimation of a first-principles electrochemical Lithium-ion battery. The MOR approach combines the Galerkin method with coordinate transformation and is applied to solve the spherical diffusion problem with non-zero flux boundary conditions. The order of the reduced-order model (ROM) is carefully selected based on analysis in the frequency domain. With the reduced-order diffusion model, an enhanced single particle model which incorporates the electrolyte dynamics is developed and validated against the experimental data.
9

Andersson, Martin, Maria Navasa, Jinliang Yuan, and Bengt Sundén. "SOFC Modeling at the Cell Scale Including Hydrogen and Carbon Monoxide as Electrochemically Active Fuels." In ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2012 6th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fuelcell2012-91112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Fuel cells are promising for future energy systems, because they are energy efficient and able to use renewable fuels. A fully coupled computational fluid dynamics (CFD) approach based on the finite element method (with the software COMSOL Multiphysics) in two-dimensions is developed to describe an intermediate temperature solid oxide fuel cell (SOFC) single cell. Governing equations covering heat, gas-phase species, momentum, ion and electron transport are implemented and coupled to kinetics describing internal reforming and electrochemical reactions. Both hydrogen and carbon monoxide are considered as electrochemically active fuels within the anode. The activation polarization in the electrodes and the ohmic polarization due to ion transport in the YSZ material are found to be the major part of the potential losses. The activation polarization is the most significant and it is smaller within the cathode compared to the anode for this study. The ion current density and the activation polarization are the highest at the electrolyte-electrode interface and decrease rapidly within the electrodes as the distance from the interface increases. However, the ohmic polarization by ion transfer increases for the positions away from the interface. The addition of the electrochemical reaction with CO as fuel increases the current density. It is concluded that the temperature and current density are strongly integrated and when any of them is changed, the other follows, and the change is accelerated.
10

Xu, Dongyan, Deyu Li, and Yongsheng Leng. "Molecular Dynamics Simulations of Water and Ion Structures Near Charged Surfaces." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Extensive research has been devoted to nanofluidics in the past decade because of its potential applications in single molecule sensing and manipulations. Fundamental studies have attracted significant attention in this research field since the success of nanofluidic devices depends on a thorough understanding of the fluidic, ionic, and molecular behavior in highly confined nano-environments. In this paper, we report on molecular dynamics simulations of the effect of surface charge densities on the ion distribution and the water density profile close to a charged surface. We demonstrate that surface charges not only interact with mobile ions in the electrolyte, but also interact with water molecules due to their polarizability, and hence influence the orientation of water molecules in the near wall region. For the first time, we show that as the surface charge density increases, the water molecules within ∼ 5 Å of the {100} silicon surface will evolve from one layer into two layers. Meanwhile, the orientation of the water molecules is more aligned instead of randomly distributed. This layering effect may have important implications on electroosmotic flow through nanochannels and heat transfer across the solid-liquid interface.

Reports on the topic "Single-Ion electrolyte":

1

Feld, William A., and Denise M. Weimers. Single Lithium Ion Conducting Polymer Electrolyte. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada353668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Feld, William A. Aerospace Power Scholarly Research Program. Delivery Order 0007: Single Lithium Ion Conducting Polymer Electrolyte. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada444661.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography