Journal articles on the topic 'Single-Electron physics'

To see the other types of publications on this topic, follow the link: Single-Electron physics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Single-Electron physics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Osborne, I. S. "APPLIED PHYSICS: Single-Electron Shuttle." Science 293, no. 5535 (August 31, 2001): 1559b—1559. http://dx.doi.org/10.1126/science.293.5535.1559b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

KASTNER, M. A. "THE PHYSICS OF SINGLE ELECTRON TRANSISTORS." International Journal of High Speed Electronics and Systems 12, no. 04 (December 2002): 1101–33. http://dx.doi.org/10.1142/s0129156402001940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The single electron transistor (SET) is a nanometer-size device that turns on and off again every time one electron is added to it. In this article, the physics of the SET is reviewed. The consequences of confining electrons to a small region of space are that both the charge and energy are quantized. We review how the charge states and energy states of the confined electrons, sometimes called an artificial atom, are measured, and how the precision of these measurements depends on temperature. We also discuss the coupling of electrons inside the artificial atom to those in the leads of the SET, which results in the Kondo effect. We review measurements of the Kondo effect, which demonstrate that the Anderson Hamiltonian provides a quantitative description of the SET.
3

Kastner, M. A., and D. Goldhaber-Gordon. "Kondo physics with single electron transistors." Solid State Communications 119, no. 4-5 (July 2001): 245–52. http://dx.doi.org/10.1016/s0038-1098(01)00106-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kobayashi, Shun-ichi. "Fundamental Physics of Single Electron Transport." Japanese Journal of Applied Physics 36, Part 1, No. 6B (June 30, 1997): 3956–59. http://dx.doi.org/10.1143/jjap.36.3956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dempsey, Kari J., David Ciudad, and Christopher H. Marrows. "Single electron spintronics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1948 (August 13, 2011): 3150–74. http://dx.doi.org/10.1098/rsta.2011.0105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Single electron electronics is now well developed, and allows the manipulation of electrons one-by-one as they tunnel on and off a nanoscale conducting island. In the past decade or so, there have been concerted efforts in several laboratories to construct single electron devices incorporating ferromagnetic components in order to introduce spin functionality. The use of ferromagnetic electrodes with a non-magnetic island can lead to spin accumulation on the island. On the other hand, making the dot also ferromagnetic introduces new physics such as tunnelling magnetoresistance enhancement in the cotunnelling regime and manifestations of the Kondo effect. Such nanoscale islands are also found to have long spin lifetimes. Conventional spintronics makes use of the average spin-polarization of a large ensemble of electrons: this new approach offers the prospect of accessing the quantum properties of the electron, and is a candidate approach to the construction of solid-state spin-based qubits.
6

Seneor, Pierre, Anne Bernand-Mantel, and Frédéric Petroff. "Nanospintronics: when spintronics meets single electron physics." Journal of Physics: Condensed Matter 19, no. 16 (April 5, 2007): 165222. http://dx.doi.org/10.1088/0953-8984/19/16/165222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Devoret, Michel H., and Christian Glattli. "Single-electron transistors." Physics World 11, no. 9 (September 1998): 29–34. http://dx.doi.org/10.1088/2058-7058/11/9/26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jamshidnezhad, K., and M. J. Sharifi. "Physics-based analytical model for ferromagnetic single electron transistor." Journal of Applied Physics 121, no. 11 (March 21, 2017): 113905. http://dx.doi.org/10.1063/1.4978425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Seike, Kohei, Yasushi Kanai, Yasuhide Ohno, Kenzo Maehashi, Koichi Inoue, and Kazuhiko Matsumoto. "Carbon nanotube single-electron transistors with single-electron charge storages." Japanese Journal of Applied Physics 54, no. 6S1 (April 24, 2015): 06FF05. http://dx.doi.org/10.7567/jjap.54.06ff05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wu Fan and Wang Tai-Hong. "Single-electron control by single-electron pump and its stability diagrams." Acta Physica Sinica 52, no. 3 (2003): 696. http://dx.doi.org/10.7498/aps.52.696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ginzburg, L. P. "Single-electron Schrödinger equation for many-electron systems." Theoretical and Mathematical Physics 121, no. 3 (December 1999): 1641–53. http://dx.doi.org/10.1007/bf02557209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Apell, P., and A. Tagliacozzo. "Single Electron Tunneling." physica status solidi (b) 145, no. 2 (February 1, 1988): 483–91. http://dx.doi.org/10.1002/pssb.2221450213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gurvitz, Shmuel. "Single-electron approach for time-dependent electron transport." Physica Scripta T165 (October 1, 2015): 014013. http://dx.doi.org/10.1088/0031-8949/2015/t165/014013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Nagase, Masao, Seiji Horiguchi, Akira Fujiwara, and Yasuo Takahashi. "Microscopic Observations of Single-Electron Island in Si Single-Electron Transistors." Japanese Journal of Applied Physics 42, Part 1, No. 4B (April 30, 2003): 2438–43. http://dx.doi.org/10.1143/jjap.42.2438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Monreal, Benjamin. "Single-electron cyclotron radiation." Physics Today 69, no. 1 (January 2016): 70–71. http://dx.doi.org/10.1063/pt.3.3060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ji, Xiao-Fan, Zheng Xu, Shuo Cao, Kang-Sheng Qiu, Jing Tang, Xi-Tian Zhang, and Xiu-Lai Xu. "Single-ZnO-Nanobelt-Based Single-Electron Transistors." Chinese Physics Letters 31, no. 6 (June 2014): 067303. http://dx.doi.org/10.1088/0256-307x/31/6/067303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yano, Kazuo, and David K. Ferry. "Single-electron solitons." Superlattices and Microstructures 11, no. 1 (January 1992): 61–64. http://dx.doi.org/10.1016/0749-6036(92)90362-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

AKAMINE, Yuta, Kazuto FUJIWARA, Bokulae CHO, and Chuhei OSHIMA. "New Phenomena in Physics Related with Single-Atom Electron Sources." Journal of the Vacuum Society of Japan 55, no. 2 (2012): 59–63. http://dx.doi.org/10.3131/jvsj2.55.59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wingreen, N. S. "PHYSICS: Quantum Many-Body Effects in a Single-Electron Transistor." Science 304, no. 5675 (May 28, 2004): 1258–59. http://dx.doi.org/10.1126/science.1098302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nordlander, Peter, Ned S. Wingreen, Yigal Meir, and David C. Langreth. "Kondo physics in the single-electron transistor with ac driving." Physical Review B 61, no. 3 (January 15, 2000): 2146–50. http://dx.doi.org/10.1103/physrevb.61.2146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tanttu, Tuomo, Alessandro Rossi, Kuan Yen Tan, Kukka-Emilia Huhtinen, Kok Wai Chan, Mikko Möttönen, and Andrew S. Dzurak. "Electron counting in a silicon single-electron pump." New Journal of Physics 17, no. 10 (October 16, 2015): 103030. http://dx.doi.org/10.1088/1367-2630/17/10/103030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kauppinen, J. P., and J. P. Pekola. "Hot electron effects in metallic single electron components." Czechoslovak Journal of Physics 46, S4 (April 1996): 2295–96. http://dx.doi.org/10.1007/bf02571139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Takahashi, Yasuo, Yukinori Ono, Akira Fujiwara, and Hiroshi Inokawa. "Silicon single-electron devices." Journal of Physics: Condensed Matter 14, no. 39 (September 20, 2002): R995—R1033. http://dx.doi.org/10.1088/0953-8984/14/39/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kim, Sang Jin, Yukinori Ono, Yasuo Takahashi, and Jung Bum Choi. "Real-Time Observation of Single-Electron Movement through Silicon Single-Electron Transistor." Japanese Journal of Applied Physics 43, no. 10 (October 8, 2004): 6863–67. http://dx.doi.org/10.1143/jjap.43.6863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Boese, D., and H. Schoeller. "Influence of nanomechanical properties on single-electron tunneling: A vibrating single-electron transistor." Europhysics Letters (EPL) 54, no. 5 (June 2001): 668–74. http://dx.doi.org/10.1209/epl/i2001-00367-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sui Bing-Cai, Fang Liang, and Zhang Chao. "Conductance of single-electron transistor with single island." Acta Physica Sinica 60, no. 7 (2011): 077302. http://dx.doi.org/10.7498/aps.60.077302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Y., D. MacKernan, D. Cubero, D. F. Coker, and N. Quirke. "Single electron states in polyethylene." Journal of Chemical Physics 140, no. 15 (April 21, 2014): 154902. http://dx.doi.org/10.1063/1.4869831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Matsutani, Masahiro, Fujio Wakaya, Sadao Takaoka, Kazuo Murase, and Kenji Gamo. "Electron-Beam-Induced Oxidation for Single-Electron Devices." Japanese Journal of Applied Physics 36, Part 1, No. 12B (December 30, 1997): 7782–85. http://dx.doi.org/10.1143/jjap.36.7782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Nishiguchi, Norihiko. "Electron transport properties of C60 single electron transistor." Physica E: Low-dimensional Systems and Nanostructures 18, no. 1-3 (May 2003): 247–48. http://dx.doi.org/10.1016/s1386-9477(02)01000-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ciccarello, F., G. M. Palma, M. Zarcone, Y. Omar, and V. R. Vieira. "Entanglement controlled single-electron transmittivity." New Journal of Physics 8, no. 9 (September 27, 2006): 214. http://dx.doi.org/10.1088/1367-2630/8/9/214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dasenbrook, David, Joseph Bowles, Jonatan Bohr Brask, Patrick P. Hofer, Christian Flindt, and Nicolas Brunner. "Single-electron entanglement and nonlocality." New Journal of Physics 18, no. 4 (April 26, 2016): 043036. http://dx.doi.org/10.1088/1367-2630/18/4/043036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bushev, P. A., J. H. Cole, D. Sholokhov, N. Kukharchyk, and M. Zych. "Single electron relativistic clock interferometer." New Journal of Physics 18, no. 9 (September 27, 2016): 093050. http://dx.doi.org/10.1088/1367-2630/18/9/093050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dubas, L. G. "Single-component relativistic electron flux." Technical Physics Letters 32, no. 6 (June 2006): 527–28. http://dx.doi.org/10.1134/s106378500606023x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jeong, Moon-Young, Yoon-Ha Jeong, Sung-Woo Hwang, and Dae M. Kim. "Performance of Single-Electron Transistor Logic Composed of Multi-gate Single-Electron Transistors." Japanese Journal of Applied Physics 36, Part 1, No. 11 (November 15, 1997): 6706–10. http://dx.doi.org/10.1143/jjap.36.6706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chen, Wei. "Fabrication and physics of 2 nm islands for single electron devices." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, no. 6 (November 1995): 2883. http://dx.doi.org/10.1116/1.588310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jia, Zhaosai, Hailong Wang, Chuanhe Ma, Xin Cao, and Qian Gong. "Electron–electron scattering rate in CdTe/CdMnTe single quantum well." International Journal of Modern Physics B 35, no. 21 (July 31, 2021): 2150221. http://dx.doi.org/10.1142/s0217979221502210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
CdMnTe is demonstrated to be a good candidate in the X-ray and [Formula: see text]-ray detector application, however, there are few reports on theoretical analysis of electron scattering rate in CdMnTe quantum well. Within the framework of effective mass approximation and envelope function approximation, the influence of the Mn alloy composition ([Formula: see text], the well width ([Formula: see text], the electron temperature ([Formula: see text] and the electron density ([Formula: see text] on the electron–electron scattering rate (1/[Formula: see text] in the CdTe/Cd[Formula: see text]Mn[Formula: see text]Te single quantum well (SQW), are simulated by shooting method and Fermi’s Golden Rule. The results show that 1/[Formula: see text] is significant inverse proportional to [Formula: see text], but positively proportional to [Formula: see text] and [Formula: see text]. Except for a small peak at 20 K, 1/[Formula: see text] is not sensitive to [Formula: see text]. The above differential dependency of 1/[Formula: see text] on [Formula: see text] and [Formula: see text] can be interpreted by sub-band separation ([Formula: see text], which is proportional to [Formula: see text] but inversely proportional to [Formula: see text]. When [Formula: see text] decreases gradually, the electron transition becomes easier, which leads to 1/[Formula: see text] increases. The dependency of 1/[Formula: see text] on [Formula: see text] can be interpreted by kinetic energy of electrons. The larger the electron kinetic energy is, the more difficult the electron transition from first excited state to ground state is, which leads to 1/[Formula: see text] decreasing. The dependency of 1/[Formula: see text] on [Formula: see text] can be interpreted by the Coulomb interaction between electrons, i.e., the increase of electron collision probability caused by the increase of [Formula: see text].
37

Thelander, Claes, Henrik A. Nilsson, Linus E. Jensen, and Lars Samuelson. "Nanowire Single-Electron Memory." Nano Letters 5, no. 4 (April 2005): 635–38. http://dx.doi.org/10.1021/nl050006s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Rafiq, M. A., Z. A. K. Durrani, H. Mizuta, A. Colli, P. Servati, A. C. Ferrari, W. I. Milne, and S. Oda. "Room temperature single electron charging in single silicon nanochains." Journal of Applied Physics 103, no. 5 (March 2008): 053705. http://dx.doi.org/10.1063/1.2887988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hasko, D. G., T. Ferrus, Q. R. Morrissey, S. R. Burge, E. J. Freeman, M. J. French, A. Lam, et al. "Single shot measurement of a silicon single electron transistor." Applied Physics Letters 93, no. 19 (November 10, 2008): 192116. http://dx.doi.org/10.1063/1.3028344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kubatkin, Sergey, Andrey Danilov, Mattias Hjort, Jérôme Cornil, Jean-Luc Brédas, Nicolai Stuhr-Hansen, Per Hedegård, and Thomas Bjørnholm. "Single electron transistor with a single conjugated molecule." Current Applied Physics 4, no. 5 (August 2004): 554–58. http://dx.doi.org/10.1016/j.cap.2004.01.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Matheoud, Alessandro V., Nergiz Sahin, and Giovanni Boero. "A single chip electron spin resonance detector based on a single high electron mobility transistor." Journal of Magnetic Resonance 294 (September 2018): 59–70. http://dx.doi.org/10.1016/j.jmr.2018.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hwang, Sung Woo, Toshitsugu Sakamoto, and Kazuo Nakamura. "Single Electron Digital Phase Modulator." Japanese Journal of Applied Physics 34, Part 1, No. 1 (January 15, 1995): 83–84. http://dx.doi.org/10.1143/jjap.34.83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Akazawa, Masamichi, and Yoshihito Amemiya. "Directional Single-Electron-Tunneling Junction." Japanese Journal of Applied Physics 35, Part 1, No. 6A (June 15, 1996): 3569–75. http://dx.doi.org/10.1143/jjap.35.3569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kirihara, Masaharu, and Kenji Taniguchi. "A Single Electron Neuron Device." Japanese Journal of Applied Physics 36, Part 1, No. 6B (June 30, 1997): 4172–75. http://dx.doi.org/10.1143/jjap.36.4172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

von Borczyskowski, C., J. Köhler, W. E. Moerner, M. Orrit, and J. Wrachtrup. "Single-molecule electron spin resonance." Applied Magnetic Resonance 31, no. 3-4 (September 2007): 665–76. http://dx.doi.org/10.1007/bf03166609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

So, Hye-Mi, Jinhee Kim, Wan Soo Yun, Jong Wan Park, Ju-Jin Kim, Do-Jae Won, Yongku Kang, and Changjin Lee. "Molecule-based single electron transistor." Physica E: Low-dimensional Systems and Nanostructures 18, no. 1-3 (May 2003): 243–44. http://dx.doi.org/10.1016/s1386-9477(02)00996-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Abramov, I. I., and E. G. Novik. "Classification of single-electron devices." Semiconductors 33, no. 11 (November 1999): 1254–59. http://dx.doi.org/10.1134/1.1187860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yu, Yun Seop, Seung Hun Son, Hee Tae Kim, Yong Gyu Kim, Jung Hyun Oh, Hanjung Kim, Sung Woo Hwang, Bum Ho Choi, and Doyeol Ahn. "Transmission-Type Radio-Frequency Single-Electron Transistor with In-Plane-Gate Single-Electron Transistor." Japanese Journal of Applied Physics 46, no. 4B (April 24, 2007): 2592–95. http://dx.doi.org/10.1143/jjap.46.2592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fernández-Rossier, J., R. Aguado, and L. Brey. "Anisotropic magnetoresistance in single electron transport." physica status solidi (c) 3, no. 12 (December 2006): 4231–34. http://dx.doi.org/10.1002/pssc.200672837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Speirs, Rory W., Corey T. Putkunz, Andrew J. McCulloch, Keith A. Nugent, Benjamin M. Sparkes, and Robert E. Scholten. "Single-shot electron diffraction using a cold atom electron source." Journal of Physics B: Atomic, Molecular and Optical Physics 48, no. 21 (September 23, 2015): 214002. http://dx.doi.org/10.1088/0953-4075/48/21/214002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography