To see the other types of publications on this topic, follow the link: Single-dot spectroscopy.

Journal articles on the topic 'Single-dot spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Single-dot spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Surowiecka, K., A. Wysmołek, R. Stępniewski, R. Bożek, K. Pakuła, and J. M. Baranowski. "Single GaN/AlGaN Quantum Dot Spectroscopy." Acta Physica Polonica A 112, no. 2 (August 2007): 233–36. http://dx.doi.org/10.12693/aphyspola.112.233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bonadeo, N. H., Gang Chen, D. Gammon, and D. G. Steel. "Single Quantum Dot Nonlinear Optical Spectroscopy." physica status solidi (b) 221, no. 1 (September 2000): 5–18. http://dx.doi.org/10.1002/1521-3951(200009)221:1<5::aid-pssb5>3.0.co;2-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Babinski, Adam, S. Awirothananon, J. Lapointe, Z. Wasilewski, S. Raymond, and M. Potemski. "Single-dot spectroscopy in high magnetic fields." Physica E: Low-dimensional Systems and Nanostructures 26, no. 1-4 (February 2005): 190–93. http://dx.doi.org/10.1016/j.physe.2004.08.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weis, J., R. J. Haug, K. von Klitzing, and K. Ploog. "Transport spectroscopy on a single quantum dot." Semiconductor Science and Technology 9, no. 11S (November 1, 1994): 1890–96. http://dx.doi.org/10.1088/0268-1242/9/11s/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dias, Eva A., Amy F. Grimes, Douglas S. English, and Patanjali Kambhampati. "Single Dot Spectroscopy of Two-Color Quantum Dot/Quantum Shell Nanostructures." Journal of Physical Chemistry C 112, no. 37 (August 21, 2008): 14229–32. http://dx.doi.org/10.1021/jp806621q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

H kanson, Ulf, Jonas Persson, Filip Persson, Hans Svensson, Lars Montelius, and Mikael K.-J. Johansson. "Nano-aperture fabrication for single quantum dot spectroscopy." Nanotechnology 14, no. 6 (April 25, 2003): 675–79. http://dx.doi.org/10.1088/0957-4484/14/6/321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Park, D. "Small aperture fabrication for single quantum dot spectroscopy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, no. 6 (November 1998): 3891. http://dx.doi.org/10.1116/1.590429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bockelmann, U., Ph Roussignol, A. Filoramo, W. Heller, and G. Abstreiter. "Time resolved spectroscopy of single quantum dot structures." Solid-State Electronics 40, no. 1-8 (January 1996): 541–44. http://dx.doi.org/10.1016/0038-1101(95)00286-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gerardot, B. D., S. Seidl, P. A. Dalgarno, R. J. Warburton, M. Kroner, K. Karrai, A. Badolato, and P. M. Petroff. "Contrast in transmission spectroscopy of a single quantum dot." Applied Physics Letters 90, no. 22 (May 28, 2007): 221106. http://dx.doi.org/10.1063/1.2743750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dekel, E., D. Gershoni, E. Ehrenfreund, D. Spektor, J. M. Garcia, and P. M. Petroff. "Multiexciton Spectroscopy of a Single Self-Assembled Quantum Dot." Physical Review Letters 80, no. 22 (June 1, 1998): 4991–94. http://dx.doi.org/10.1103/physrevlett.80.4991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

de Vasconcellos, S. Michaelis, A. Pawlis, C. Arens, M. Panfilova, A. Zrenner, D. Schikora, and K. Lischka. "Exciton spectroscopy on single CdSe/ZnSe quantum dot photodiodes." Microelectronics Journal 40, no. 2 (February 2009): 215–17. http://dx.doi.org/10.1016/j.mejo.2008.07.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Haug, R. J., R. H. Blick, and T. Schmidt. "Transport spectroscopy of single and coupled quantum-dot systems." Physica B: Condensed Matter 212, no. 3 (August 1995): 207–12. http://dx.doi.org/10.1016/0921-4526(95)00033-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bonadeo, N. H., A. S. Lenihan, Gang Chen, J. R. Guest, D. G. Steel, D. Gammon, D. S. Katzer, and D. Park. "Single quantum dot states measured by optical modulation spectroscopy." Applied Physics Letters 75, no. 19 (November 8, 1999): 2933–35. http://dx.doi.org/10.1063/1.125177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Dekel, E., D. Gershoni, E. Ehrenfreund, D. Spektor, J. M. Garcia, and P. M. Petroff. "Optical spectroscopy of a single self-assembled quantum dot." Physica E: Low-dimensional Systems and Nanostructures 2, no. 1-4 (July 1998): 694–700. http://dx.doi.org/10.1016/s1386-9477(98)00142-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Seidl, S., A. Högele, M. Kroner, K. Karrai, R. J. Warburton, J. M. Garcia, and P. M. Petroff. "Modulation spectroscopy on a single self assembled quantum dot." physica status solidi (a) 204, no. 2 (February 2007): 381–89. http://dx.doi.org/10.1002/pssa.200673956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ester, Patrick, Stefan Stufler, Steffen Michaelis de Vasconcellos, Max Bichler, and Artur Zrenner. "High resolution photocurrent-spectroscopy of a single quantum dot." physica status solidi (c) 3, no. 11 (December 2006): 3722–25. http://dx.doi.org/10.1002/pssc.200671572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mintairov, Alexander, Yan Tang, James Merz, Vadim Tokranov, and Serge Oktyabrsky. "Single dot near-field spectroscopy for photonic crystal microcavities." physica status solidi (c) 2, no. 2 (February 2005): 845–49. http://dx.doi.org/10.1002/pssc.200460326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dialynas, G. E., N. Chatzidimitriou, S. Kalliakos, S. Tsintzos, P. G. Savvidis, Z. Hatzopoulos, and N. T. Pelekanos. "Single dot spectroscopy on InAs/GaAs piezoelectric quantum dots." physica status solidi (a) 205, no. 11 (November 2008): 2566–68. http://dx.doi.org/10.1002/pssa.200780190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Bin, Guo-Feng Zhang, Rui-Yun Chen, Cheng-Bing Qin, Jian-Yong Hu, Lian-Tuan Xiao, and Suo-Tang Jia. "Research progress of single quantum-dot spectroscopy and exciton dynamics." Acta Physica Sinica 71, no. 6 (2022): 067802. http://dx.doi.org/10.7498/aps.71.20212050.

Full text
Abstract:
Colloidal semiconductor quantum dots (QDs) have strong light absorption, continuously adjustable narrowband emission, and high photoluminescence quantum yields, thereby making them promising materials for light-emitting diodes, solar cells, detectors, and lasers. Single-QD photoluminescence spectroscopy can remove the ensemble average to reveal the structure information and exciton dynamics of QD materials at a single-particle level. The study of single-QD spectroscopy can provide guidelines for rationally designing the QDs and giving the mechanism basis for QD-based applications. We can also carry out the research of the interaction between light and single QDs on a nanoscale, and prepare QD-based single-photon sources and entangled photon sources. Here, we review the recent research progress of single-QD photoluminescence spectroscopy and exciton dynamics, mainly including photoluminescence blinking dynamics, and exciton and multi-exciton dynamics of single colloidal CdSe-based QDs and perovskite QDs. Finally, we briefly discuss the possible future development trends of single-QD spectroscopy and exciton dynamics.
APA, Harvard, Vancouver, ISO, and other styles
20

Yamanishi, Junsuke, Hidemasa Yamane, Yoshitaka Naitoh, Yan Jun Li, and Yasuhiro Sugawara. "Local spectroscopic imaging of a single quantum dot in photoinduced force microscopy." Applied Physics Letters 120, no. 16 (April 18, 2022): 161601. http://dx.doi.org/10.1063/5.0088634.

Full text
Abstract:
Analysis of environmentally sensitive materials is essential for developing and optimizing nanostructured photochemical materials and devices. Photoinduced force microscopy (PiFM) is a promising local spectroscopic technique to visualize nanoscale local optical responses by measuring the optical forces between the scanning tip and sample. In this study, we examined isolated single quantum dots (QDs) with ligands on a gold substrate via PiFM under ultra-high vacuum to characterize the QD adsorption state on the basis of the optical force. The strong self-consistent optical interaction through the tip-substrate plasmonic gap induced by laser light modulates the PiFM image depending on QD crystal existence in the gap. This observation clarified the QD absorption situation on the substrate, and the crystal position in the QDs was determined even though the ligand walls covered the crystal. This insight concerning force spectroscopy can aid further research on the photochemistry of nanostructured materials and molecular spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
21

Layek, Arunasish, Vikas Arora, Sameer Sapra, and Arindam Chowdhury. "Unraveling the dual emission of single quantum-dot by single particle spectroscopy." Journal of Physics: Conference Series 2349, no. 1 (September 1, 2022): 012026. http://dx.doi.org/10.1088/1742-6596/2349/1/012026.

Full text
Abstract:
Two-color emissive 0D–2D quantum-dot quantum-well (QD-QW) heteronanocrystals has created profound research activities. First multicolor emission in the visible region has been reported by Peng and co-workers in CdSe(core)–ZnS(barrier)-CdSe(shell) (core-barrier-shell) based heteronanostructures where the both CdSe phases (core and the shell) are emissive and tuneable as well. Owing to this enhanced and tuneable functionality, the QD-QW systems colloidal nanocrystals has fuelled their optical and imaging applications. Single particle spectroscopy has taken a giant step toward unravelling the features of individual particles and thus to provide direct information on their heterogeneity. To elucidate the dual emission characteristic of individual nanocrystals we performed energy mapped photoluminescence imaging. Surprisingly, the pseudo color PL intensity image shows that not all single particles are dual emissive in nature, few are either green emitting or red emitting. Photoluminescence spectrum of individual nanocrystals further confirms that individual nanocrystals can be dual emissive in nature. However, single color emissive dots are also present indicating the ensemble heterogeneity at single particle levels. The temporal evolution PL spectra of a single quantum shows spectral diffusion. The single dot experiments on the dual emissive QD-QW system unravels hidden photophysics which are otherwise not observed by ensemble spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
22

Ates, S., S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler. "Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy." Nature Photonics 3, no. 12 (November 22, 2009): 724–28. http://dx.doi.org/10.1038/nphoton.2009.215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Xu, C. Shan, Hahkjoon Kim, Haw Yang, and Carl C. Hayden. "Multiparameter Fluorescence Spectroscopy of Single Quantum Dot−Dye FRET Hybrids." Journal of the American Chemical Society 129, no. 36 (September 2007): 11008–9. http://dx.doi.org/10.1021/ja074279w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Batteh, E. T., Jun Cheng, Gang Chen, D. G. Steel, D. Gammon, D. S. Katzer, and D. Park. "Coherent nonlinear optical spectroscopy of single quantum dot excited states." Applied Physics Letters 84, no. 11 (March 15, 2004): 1928–30. http://dx.doi.org/10.1063/1.1667280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Koberling, Felix, Alf Mews, and Thomas Basché. "Single-dot spectroscopy of CdS nanocrystals and CdS/HgS heterostructures." Physical Review B 60, no. 3 (July 15, 1999): 1921–27. http://dx.doi.org/10.1103/physrevb.60.1921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sychugov, Ilya, Robert Juhasz, Augustinas Galeckas, Jan Valenta, and Jan Linnros. "Single dot optical spectroscopy of silicon nanocrystals: low temperature measurements." Optical Materials 27, no. 5 (February 2005): 973–76. http://dx.doi.org/10.1016/j.optmat.2004.08.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Podemski, Paweł, Aleksander Maryński, Paweł Wyborski, Artem Bercha, Witold Trzeciakowski, and Grzegorz Sęk. "Single dot photoluminescence excitation spectroscopy in the telecommunication spectral range." Journal of Luminescence 212 (August 2019): 300–305. http://dx.doi.org/10.1016/j.jlumin.2019.04.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wolpert, Christian, Christian Dicken, Lijuan Wang, Paola Atkinson, Armando Rastelli, Oliver G. Schmidt, Harald Giessen, and Markus Lippitz. "Ultrafast coherent spectroscopy of a single self-assembled quantum dot." physica status solidi (b) 249, no. 4 (February 16, 2012): 721–30. http://dx.doi.org/10.1002/pssb.201100776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Fu, Ming, Lihua Qian, Hua Long, Kai Wang, Peixiang Lu, Yury P. Rakovich, Frederik Hetsch, Andrei S. Susha, and Andrey L. Rogach. "Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy." Nanoscale 6, no. 15 (2014): 9192–97. http://dx.doi.org/10.1039/c4nr01497a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Vanmaekelbergh, Daniel, and Marianna Casavola. "Single-Dot Microscopy and Spectroscopy for Comprehensive Study of Colloidal Nanocrystals." Journal of Physical Chemistry Letters 2, no. 16 (July 27, 2011): 2024–31. http://dx.doi.org/10.1021/jz200713j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Schmidt, T., R. J. Haug, K. v. Klitzing, A. Förster, and H. Lüth. "Spectroscopy of the Single-Particle States of a Quantum-Dot Molecule." Physical Review Letters 78, no. 8 (February 24, 1997): 1544–47. http://dx.doi.org/10.1103/physrevlett.78.1544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kanno, Takashi, Hiroshi Sugimoto, Anna Fucikova, Jan Valenta, and Minoru Fujii. "Single-dot spectroscopy of boron and phosphorus codoped silicon quantum dots." Journal of Applied Physics 120, no. 16 (October 27, 2016): 164307. http://dx.doi.org/10.1063/1.4965986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Toda, Y., and Y. Arakawa. "Near-field spectroscopy of a single InGaAs self-assembled quantum dot." IEEE Journal of Selected Topics in Quantum Electronics 6, no. 3 (May 2000): 528–33. http://dx.doi.org/10.1109/2944.865108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Takemoto, Kazuya, Yoshiki Sakuma, Shinichi Hirose, Tatsuya Usuki, Naoki Yokoyama, Toshiyuki Miyazawa, Motomu Takatsu, and Yasuhiko Arakawa. "Single InAs/InP quantum dot spectroscopy in 1.3–1.55μm telecommunication band." Physica E: Low-dimensional Systems and Nanostructures 26, no. 1-4 (February 2005): 185–89. http://dx.doi.org/10.1016/j.physe.2004.08.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sugisaki, Mitsuru, Hong-Wen Ren, Selvakumar V. Nair, Jeong-Sik Lee, Shigeo Sugou, Tsuyoshi Okuno, and Yasuaki Masumoto. "Imaging and single dot spectroscopy of InP self-assembled quantum dots." Journal of Luminescence 87-89 (May 2000): 40–45. http://dx.doi.org/10.1016/s0022-2313(99)00213-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kroner, M., S. Rémi, A. Högele, S. Seidl, A. W. Holleitner, R. J. Warburton, B. D. Gerardot, P. M. Petroff, and K. Karrai. "Resonant saturation laser spectroscopy of a single self-assembled quantum dot." Physica E: Low-dimensional Systems and Nanostructures 40, no. 6 (April 2008): 1994–96. http://dx.doi.org/10.1016/j.physe.2007.09.150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pistol, M. E., P. Castrillo, D. Hessman, S. Anand, N. Carlsson, W. Seifert, and L. Samuelson. "Band-filling in InP dots: Single dot spectroscopy and carrier dynamics." Solid-State Electronics 40, no. 1-8 (January 1996): 357–61. http://dx.doi.org/10.1016/0038-1101(95)00328-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shtrichman, I., C. Metzner, B. D. Gerardot, W. V. Schoenfeld, and P. M. Petroff. "Optical spectroscopy of single quantum dot molecules under applied electric field." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (March 2002): 119–22. http://dx.doi.org/10.1016/s1386-9477(01)00500-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Beham, Evelin, Artur Zrenner, Frank Findeis, Max Bichler, and Gerhard Abstreiter. "Level bleaching in a single quantum dot observed by photocurrent spectroscopy." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (March 2002): 139–42. http://dx.doi.org/10.1016/s1386-9477(01)00505-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Berkovits, R., M. Abraham, and Y. Avishai. "AC conductance of an interacting quantum dot: single-electron-level spectroscopy." Journal of Physics: Condensed Matter 5, no. 13 (March 29, 1993): L175—L182. http://dx.doi.org/10.1088/0953-8984/5/13/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wolpert, Christian, Lijuan Wang, Armando Rastelli, Oliver G. Schmidt, Harald Giessen, and Markus Lippitz. "Transient absorption spectroscopy of a single lateral InGaAs quantum dot molecule." physica status solidi (b) 249, no. 4 (February 16, 2012): 731–36. http://dx.doi.org/10.1002/pssb.201100783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Heldmaier, Matthias, Claus Hermannstädter, Marcus Witzany, Lijuan Wang, Jie Peng, Armando Rastelli, Gabriel Bester, Oliver G. Schmidt, and Peter Michler. "Growth and spectroscopy of single lateral InGaAs/GaAs quantum dot molecules." physica status solidi (b) 249, no. 4 (February 20, 2012): 710–20. http://dx.doi.org/10.1002/pssb.201100800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Srinivasan, Kartik, Oskar Painter, Andreas Stintz, and Sanjay Krishna. "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic." Applied Physics Letters 91, no. 9 (August 27, 2007): 091102. http://dx.doi.org/10.1063/1.2775811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Filikhin, I., E. Deyneka, and B. Vlahovic. "Single-electron levels of InAs/GaAs quantum dot: Comparison with capacitance spectroscopy." Physica E: Low-dimensional Systems and Nanostructures 31, no. 1 (January 2006): 99–102. http://dx.doi.org/10.1016/j.physe.2005.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sato, Tomohiko, Toshihiko Nakaoka, Makoto Kudo, and Yasuhiko Arakawa. "Magneto-optical single dot spectroscopy of GaSb/GaAs type II quantum dots." Physica E: Low-dimensional Systems and Nanostructures 32, no. 1-2 (May 2006): 152–54. http://dx.doi.org/10.1016/j.physe.2005.12.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Li, J. J., and K. D. Zhu. "Coherent optical spectroscopy due to lattice vibrations in a single quantum dot." European Physical Journal D 59, no. 2 (June 11, 2010): 305–8. http://dx.doi.org/10.1140/epjd/e2010-00157-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Makino, T., R. André, J. M. Gérard, R. Romestain, Le Si Dang, M. Bartels, K. Lischka, and D. Schikora. "Single quantum dot spectroscopy of CdSe/ZnSe grown on vicinal GaAs substrates." Applied Physics Letters 82, no. 14 (April 7, 2003): 2227–29. http://dx.doi.org/10.1063/1.1565700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Valenta, Jan, Anna Fucikova, František Vácha, František Adamec, Jana Humpolíčková, Martin Hof, Ivan Pelant, Kateřina Kůsová, Kateřina Dohnalová, and Jan Linnros. "Light-Emission Performance of Silicon Nanocrystals Deduced from Single Quantum Dot Spectroscopy." Advanced Functional Materials 18, no. 18 (September 23, 2008): 2666–72. http://dx.doi.org/10.1002/adfm.200800397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Zhanghai, L. H. Bai, S. H. Huang, H. Xiong, S. C. Shen, I. Souma, K. Hyomi, A. Murayama, and Y. Oka. "SPIN-RESOLVED MAGNETO-OPTICAL STUDY OF CdSe SINGLE QUANTUM DOT." International Journal of Modern Physics B 21, no. 08n09 (April 10, 2007): 1549–54. http://dx.doi.org/10.1142/s0217979207043178.

Full text
Abstract:
We report on the magneto-optical study of spin polarized energetic fine structures for exciton complex in single CdSe quantum dot (QD) by using micro- photoluminescence (micro-PL) spectroscopy. The zero-field splitting of exciton luminescence peak arisen from the anisotropic exchange interaction of carriers in the QDs was observed. The g-factors for exciton and negatively-charged exciton, i.e. trion in a single QD were determined by fitting the magnetic field dependence of the corresponding PL peaks. By exciting the single QD with circularly polarized light of σ- and σ+ polarization, the spin-up and spin-down trions were selectively generated. The ratio, τ/τsf, of the exciton lifetime and the time constants for the spin-flipping process of trion in a single QD was estimated to be 0.13, which implies a long spin-lifetime in single CdSe QD.
APA, Harvard, Vancouver, ISO, and other styles
50

Kim, Erik D., Katherine Truex, Yanwen Wu, A. Amo, Xiaodong Xu, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham. "Picosecond optical spectroscopy of a single negatively charged self-assembled InAs quantum dot." Applied Physics Letters 97, no. 11 (September 13, 2010): 113110. http://dx.doi.org/10.1063/1.3487783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography