Journal articles on the topic 'Single and Multi-junction Solar Cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Single and Multi-junction Solar Cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yamaguchi, Masafumi, Frank Dimroth, Nicholas J. Ekins-Daukes, Nobuaki Kojima, and Yoshio Ohshita. "Overview and loss analysis of III–V single-junction and multi-junction solar cells." EPJ Photovoltaics 13 (2022): 22. http://dx.doi.org/10.1051/epjpv/2022020.
Full textKim, Chae-Won, Gwang-Yeol Park, Jae-Cheol Shin, and Hyo-Jin Kim. "Efficiency Enhancement of GaAs Single-Junction Solar Cell by Nanotextured Window Layer." Applied Sciences 12, no. 2 (January 8, 2022): 601. http://dx.doi.org/10.3390/app12020601.
Full textMintairov, M. A., V. V. Evstropov, S. A. Mintairov, M. Z. Shvarts, and N. A. Kalyuzhnyy. "Series spreading resistance in single- and multi-junction concentrator solar cells." Journal of Physics: Conference Series 1038 (June 2018): 012105. http://dx.doi.org/10.1088/1742-6596/1038/1/012105.
Full textThon, Susanna Mitrani, Arlene Chiu, Yida Lin, Hoon Jeong Lee, Sreyas Chintapalli, and Botong Qiu. "(Keynote) New Materials and Spectroscopies for Colloidal Quantum Dot Solar Cells." ECS Meeting Abstracts MA2022-02, no. 20 (October 9, 2022): 918. http://dx.doi.org/10.1149/ma2022-0220918mtgabs.
Full textMOUSLI, L., B. DENNAI, and B. AZEDDINE. "THEORETICAL SIMULATION OF THE EFFECT OF TEMPERATURE OF MULTI-JUNCTION SOLAR CELLS (PIN/ InGaN)." Journal of Ovonic Research 17, no. 1 (January 2021): 11–21. http://dx.doi.org/10.15251/jor.2021.171.11.
Full textKrotkus, A., I. Nevinskas, R. Norkus, A. Geižutis, V. Strazdienė, V. Pačebutas, and T. Paulauskas. "Terahertz photocurrent spectrum analysis of AlGaAs/GaAs/GaAsBi multi-junction solar cells." Journal of Physics D: Applied Physics 56, no. 35 (June 2, 2023): 355109. http://dx.doi.org/10.1088/1361-6463/acd85d.
Full textSöderström, Karin, Grégory Bugnon, Franz-Josef Haug, and Christophe Ballif. "Electrically flat/optically rough substrates for efficiencies above 10% in n-i-p thin-film silicon solar cells." MRS Proceedings 1426 (2012): 39–44. http://dx.doi.org/10.1557/opl.2012.835.
Full textRajpal, Bindiya, Shringar Gupta, Shivani Saxena, Shalini Jharia, and Gaurav Saxena. "Single Junction and Dual Junction Thin Film Solar Cells." International Journal of Engineering Trends and Technology 45, no. 6 (March 25, 2017): 246–50. http://dx.doi.org/10.14445/22315381/ijett-v45p251.
Full textSmirnov, V., F. Urbain, A. Lambertz, and F. Finger. "High Stabilized Efficiency Single and Multi-junction Thin Film Silicon Solar Cells." Energy Procedia 102 (December 2016): 64–69. http://dx.doi.org/10.1016/j.egypro.2016.11.319.
Full textIsabella, O., S. Solntsev, D. Caratelli, and M. Zeman. "3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings." MRS Proceedings 1426 (2012): 149–54. http://dx.doi.org/10.1557/opl.2012.897.
Full textIslam, Muhammad Johirul, Sanjina Mostafa, and Md Iqbal Bahar Chowdhury. "Thickness Optimization of Single Junction Quantum well Solar Cell Using TCAD." International Journal of Engineering and Technologies 18 (April 2020): 1–7. http://dx.doi.org/10.18052/www.scipress.com/ijet.18.1.
Full textIslam, Muhammad Johirul, Sanjina Mostafa, and Md Iqbal Bahar Chowdhury. "Thickness Optimization of Single Junction Quantum well Solar Cell Using TCAD." International Journal of Engineering and Technologies 18 (April 9, 2020): 1–7. http://dx.doi.org/10.56431/p-rq2260.
Full textSalim, Sartaz Tabinna, Sayeda Anika Amin, K. M. A. Salam, and Mir Abdulla Al Galib. "Performance Analysis of a Multijunction Photovoltaic Cell Based on Cadmium Selenide and Cadmium Telluride." Advanced Materials Research 875-877 (February 2014): 1058–62. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.1058.
Full textChatterjee, Somenath, Sumeet Singh, and Himangshu Pal. "Effect of Multijunction Approach on Electrical Measurements of Silicon and Germanium Alloy Based Thin-Film Solar Cell Using AMPS-1D." International Journal of Photoenergy 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/653206.
Full textKo, Seo-Jin, Quoc Viet Hoang, Chang Eun Song, Mohammad Afsar Uddin, Eunhee Lim, Song Yi Park, Byoung Hoon Lee, et al. "High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole." Energy & Environmental Science 10, no. 6 (2017): 1443–55. http://dx.doi.org/10.1039/c6ee03051c.
Full textRoldán-Carmona, Cristina, Olga Malinkiewicz, Rafael Betancur, Giulia Longo, Cristina Momblona, Franklin Jaramillo, Luis Camacho, and Henk J. Bolink. "High efficiency single-junction semitransparent perovskite solar cells." Energy Environ. Sci. 7, no. 9 (2014): 2968–73. http://dx.doi.org/10.1039/c4ee01389a.
Full textLi, Li, and Fu Jian Zong. "The Efficiency Limits of Solar Cells." Advanced Materials Research 347-353 (October 2011): 1233–36. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.1233.
Full textXu, Juan, Kailiang Zhang, Yujie Yuan, Xinhua Geng, Fang Wang, and Yinping Miao. "Hydrogenated Microcrystalling Silicon Single-Junction NIP Solar Cells." ECS Transactions 44, no. 1 (December 15, 2019): 1263–68. http://dx.doi.org/10.1149/1.3694457.
Full textPeters, Ian Marius, and Tonio Buonassisi. "Energy Yield Limits for Single-Junction Solar Cells." Joule 2, no. 6 (June 2018): 1160–70. http://dx.doi.org/10.1016/j.joule.2018.03.009.
Full textTakamoto, T., E. Ikeda, H. Kurita, and M. Ohmori. "Structural optimization for single junction InGaP solar cells." Solar Energy Materials and Solar Cells 35 (September 11, 1994): 25–31. http://dx.doi.org/10.1016/0927-0248(94)90118-x.
Full textHänni, Simon, Grégory Bugnon, Gaetano Parascandolo, Mathieu Boccard, Jordi Escarré, Matthieu Despeisse, Fanny Meillaud, and Christophe Ballif. "High-efficiency microcrystalline silicon single-junction solar cells." Progress in Photovoltaics: Research and Applications 21, no. 5 (May 24, 2013): 821–26. http://dx.doi.org/10.1002/pip.2398.
Full textvan Deelen, Joop. "Photovoltaics: Upconversion Configurations versus Tandem Cells." MRS Advances 2, no. 52 (2017): 2997–3004. http://dx.doi.org/10.1557/adv.2017.484.
Full textMailoa, Jonathan P., Mitchell Lee, Ian M. Peters, Tonio Buonassisi, Alex Panchula, and Dirk N. Weiss. "Energy-yield prediction for II–VI-based thin-film tandem solar cells." Energy & Environmental Science 9, no. 8 (2016): 2644–53. http://dx.doi.org/10.1039/c6ee01778a.
Full textJost, Marko, and Marko Topic. "Efficiency limits in photovoltaics: Case of single junction solar cells." Facta universitatis - series: Electronics and Energetics 27, no. 4 (2014): 631–38. http://dx.doi.org/10.2298/fuee1404631j.
Full textAmiri, Samaneh, and Sajjad Dehghani. "Design and Simulation of Single-Junction and Multi-junction Thin-Film Solar Cells Based on Copper Tin Sulfide." Journal of Electronic Materials 49, no. 10 (August 13, 2020): 5895–902. http://dx.doi.org/10.1007/s11664-020-08382-6.
Full textMohamed El Amine, Boudia, Yi Zhou, Hongying Li, Qiuwang Wang, Jun Xi, and Cunlu Zhao. "Latest Updates of Single-Junction Organic Solar Cells up to 20% Efficiency." Energies 16, no. 9 (May 4, 2023): 3895. http://dx.doi.org/10.3390/en16093895.
Full textPark, Yubin, and Shanhui Fan. "Does non-reciprocity break the Shockley–Queisser limit in single-junction solar cells?" Applied Physics Letters 121, no. 11 (September 12, 2022): 111102. http://dx.doi.org/10.1063/5.0118129.
Full textBarati-Boldaji, Reza, Sepide Mojalal, and Mohammad Reza Seifi. "Modeling and predictive control of InGap/GaAs/Ge triple-junction solar cells to increase the energy conversion efficiency." International Journal of Applied Power Engineering (IJAPE) 8, no. 2 (August 1, 2019): 120. http://dx.doi.org/10.11591/ijape.v8.i2.pp120-128.
Full textLi, Liang, Hao Lu, and Kaimo Deng. "Single CdSe nanobelts-on-electrodes Schottky junction solar cells." J. Mater. Chem. A 1, no. 6 (2013): 2089–93. http://dx.doi.org/10.1039/c2ta00410k.
Full textMeillaud, F., A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza. "Efficiency limits for single-junction and tandem solar cells." Solar Energy Materials and Solar Cells 90, no. 18-19 (November 2006): 2952–59. http://dx.doi.org/10.1016/j.solmat.2006.06.002.
Full textLétay, G., M. Hermle, and A. W. Bett. "Simulating single-junction GaAs solar cells including photon recycling." Progress in Photovoltaics: Research and Applications 14, no. 8 (2006): 683–96. http://dx.doi.org/10.1002/pip.699.
Full textJang, Yoon Hee, Jang Mi Lee, Jung Woo Seo, Inho Kim, and Doh-Kwon Lee. "Monolithic tandem solar cells comprising electrodeposited CuInSe2 and perovskite solar cells with a nanoparticulate ZnO buffer layer." Journal of Materials Chemistry A 5, no. 36 (2017): 19439–46. http://dx.doi.org/10.1039/c7ta06163c.
Full textZhang, Shuaiqing. "Two-Terminal Perovskite Tandem Solar Cells: from Design to Commercial Prospect." Highlights in Science, Engineering and Technology 27 (December 27, 2022): 368–76. http://dx.doi.org/10.54097/hset.v27i.3780.
Full textJain, R. K., and D. J. Flood. "Monolithic and Mechanical Multijunction Space Solar Cells." Journal of Solar Energy Engineering 115, no. 2 (May 1, 1993): 106–11. http://dx.doi.org/10.1115/1.2930027.
Full textCorso, Roberto, Marco Leonardi, Rachela G. Milazzo, Andrea Scuto, Stefania M. S. Privitera, Marina Foti, Cosimo Gerardi, and Salvatore A. Lombardo. "Evaluation of Voltage-Matched 2T Multi-Junction Modules Based on Monte Carlo Ray Tracing." Energies 16, no. 11 (May 24, 2023): 4292. http://dx.doi.org/10.3390/en16114292.
Full textCarmody, M., S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. W. Garland, and S. Sivananthan. "Single-crystal II-VI on Si single-junction and tandem solar cells." Applied Physics Letters 96, no. 15 (April 12, 2010): 153502. http://dx.doi.org/10.1063/1.3386529.
Full textRaj, Vidur, Tuomas Haggren, Wei Wen Wong, Hark Hoe Tan, and Chennupati Jagadish. "Topical review: pathways toward cost-effective single-junction III–V solar cells." Journal of Physics D: Applied Physics 55, no. 14 (December 3, 2021): 143002. http://dx.doi.org/10.1088/1361-6463/ac3aa9.
Full textDas, A. K. "Numerical simulation of single junction solar cells using AMPS-1D." IOSR Journal of Applied Physics 6, no. 2 (2014): 15–20. http://dx.doi.org/10.9790/4861-06231520.
Full textZheng, Bing, Jianling Ni, Shaman Li, Yuchen Yue, Jingxia Wang, Jianqi Zhang, Yongfang Li, and Lijun Huo. "Conjugated Mesopolymer Achieving 15% Efficiency Single‐Junction Organic Solar Cells." Advanced Science 9, no. 8 (January 22, 2022): 2105430. http://dx.doi.org/10.1002/advs.202105430.
Full textKrügener, J., M. Rienäcker, S. Schäfer, M. Sanchez, S. Wolter, R. Brendel, S. John, H. J. Osten, and R. Peibst. "Photonic crystals for highly efficient silicon single junction solar cells." Solar Energy Materials and Solar Cells 233 (December 2021): 111337. http://dx.doi.org/10.1016/j.solmat.2021.111337.
Full textHe, Zhicai, Biao Xiao, Feng Liu, Hongbin Wu, Yali Yang, Steven Xiao, Cheng Wang, Thomas P. Russell, and Yong Cao. "Single-junction polymer solar cells with high efficiency and photovoltage." Nature Photonics 9, no. 3 (February 9, 2015): 174–79. http://dx.doi.org/10.1038/nphoton.2015.6.
Full textFan, Baobing, Difei Zhang, Meijing Li, Wenkai Zhong, Zhaomiyi Zeng, Lei Ying, Fei Huang, and Yong Cao. "Achieving over 16% efficiency for single-junction organic solar cells." Science China Chemistry 62, no. 6 (March 11, 2019): 746–52. http://dx.doi.org/10.1007/s11426-019-9457-5.
Full textAshida, Y. "Single-junction a-Si solar cells with over 13% efficiency." Solar Energy Materials and Solar Cells 34, no. 1-4 (September 1994): 291–302. http://dx.doi.org/10.1016/0927-0248(94)90053-1.
Full textChen, Jing-De, Chaohua Cui, Yan-Qing Li, Lei Zhou, Qing-Dong Ou, Chi Li, Yongfang Li, and Jian-Xin Tang. "Single-Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency." Advanced Materials 27, no. 6 (November 18, 2014): 1035–41. http://dx.doi.org/10.1002/adma.201404535.
Full textHe, Rui, Xiaozhou Huang, Mason Chee, Feng Hao, and Pei Dong. "Carbon‐based perovskite solar cells: From single‐junction to modules." Carbon Energy 1, no. 1 (September 2019): 109–23. http://dx.doi.org/10.1002/cey2.11.
Full textAlsalloum, Abdullah Y., Bekir Turedi, Khulud Almasabi, Xiaopeng Zheng, Rounak Naphade, Samuel D. Stranks, Omar F. Mohammed, and Osman M. Bakr. "22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap." Energy & Environmental Science 14, no. 4 (2021): 2263–68. http://dx.doi.org/10.1039/d0ee03839c.
Full textSoresi, Stefano, Mattia da Lisca, Claire Besancon, Nicolas Vaissiere, Alexandre Larrue, Cosimo Calo, José Alvarez, et al. "Epitaxy and characterization of InP/InGaAs tandem solar cells grown by MOVPE on InP and Si substrates." EPJ Photovoltaics 14 (2023): 1. http://dx.doi.org/10.1051/epjpv/2022027.
Full textDutta, P., M. Rathi, D. Khatiwada, S. Sun, Y. Yao, B. Yu, S. Reed, et al. "Flexible GaAs solar cells on roll-to-roll processed epitaxial Ge films on metal foils: a route towards low-cost and high-performance III–V photovoltaics." Energy & Environmental Science 12, no. 2 (2019): 756–66. http://dx.doi.org/10.1039/c8ee02553c.
Full textChee, Kuan W. A., and Yuning Hu. "Design and optimization of ARC less InGaP/GaAs single-/multi-junction solar cells with tunnel junction and back surface field layers." Superlattices and Microstructures 119 (July 2018): 25–39. http://dx.doi.org/10.1016/j.spmi.2018.03.071.
Full textKonstantakou, Maria, and Thomas Stergiopoulos. "A critical review on tin halide perovskite solar cells." Journal of Materials Chemistry A 5, no. 23 (2017): 11518–49. http://dx.doi.org/10.1039/c7ta00929a.
Full text