Academic literature on the topic 'Single and Multi-junction Solar Cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Single and Multi-junction Solar Cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Single and Multi-junction Solar Cells"
Yamaguchi, Masafumi, Frank Dimroth, Nicholas J. Ekins-Daukes, Nobuaki Kojima, and Yoshio Ohshita. "Overview and loss analysis of III–V single-junction and multi-junction solar cells." EPJ Photovoltaics 13 (2022): 22. http://dx.doi.org/10.1051/epjpv/2022020.
Full textKim, Chae-Won, Gwang-Yeol Park, Jae-Cheol Shin, and Hyo-Jin Kim. "Efficiency Enhancement of GaAs Single-Junction Solar Cell by Nanotextured Window Layer." Applied Sciences 12, no. 2 (January 8, 2022): 601. http://dx.doi.org/10.3390/app12020601.
Full textMintairov, M. A., V. V. Evstropov, S. A. Mintairov, M. Z. Shvarts, and N. A. Kalyuzhnyy. "Series spreading resistance in single- and multi-junction concentrator solar cells." Journal of Physics: Conference Series 1038 (June 2018): 012105. http://dx.doi.org/10.1088/1742-6596/1038/1/012105.
Full textThon, Susanna Mitrani, Arlene Chiu, Yida Lin, Hoon Jeong Lee, Sreyas Chintapalli, and Botong Qiu. "(Keynote) New Materials and Spectroscopies for Colloidal Quantum Dot Solar Cells." ECS Meeting Abstracts MA2022-02, no. 20 (October 9, 2022): 918. http://dx.doi.org/10.1149/ma2022-0220918mtgabs.
Full textMOUSLI, L., B. DENNAI, and B. AZEDDINE. "THEORETICAL SIMULATION OF THE EFFECT OF TEMPERATURE OF MULTI-JUNCTION SOLAR CELLS (PIN/ InGaN)." Journal of Ovonic Research 17, no. 1 (January 2021): 11–21. http://dx.doi.org/10.15251/jor.2021.171.11.
Full textKrotkus, A., I. Nevinskas, R. Norkus, A. Geižutis, V. Strazdienė, V. Pačebutas, and T. Paulauskas. "Terahertz photocurrent spectrum analysis of AlGaAs/GaAs/GaAsBi multi-junction solar cells." Journal of Physics D: Applied Physics 56, no. 35 (June 2, 2023): 355109. http://dx.doi.org/10.1088/1361-6463/acd85d.
Full textSöderström, Karin, Grégory Bugnon, Franz-Josef Haug, and Christophe Ballif. "Electrically flat/optically rough substrates for efficiencies above 10% in n-i-p thin-film silicon solar cells." MRS Proceedings 1426 (2012): 39–44. http://dx.doi.org/10.1557/opl.2012.835.
Full textRajpal, Bindiya, Shringar Gupta, Shivani Saxena, Shalini Jharia, and Gaurav Saxena. "Single Junction and Dual Junction Thin Film Solar Cells." International Journal of Engineering Trends and Technology 45, no. 6 (March 25, 2017): 246–50. http://dx.doi.org/10.14445/22315381/ijett-v45p251.
Full textSmirnov, V., F. Urbain, A. Lambertz, and F. Finger. "High Stabilized Efficiency Single and Multi-junction Thin Film Silicon Solar Cells." Energy Procedia 102 (December 2016): 64–69. http://dx.doi.org/10.1016/j.egypro.2016.11.319.
Full textIsabella, O., S. Solntsev, D. Caratelli, and M. Zeman. "3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings." MRS Proceedings 1426 (2012): 149–54. http://dx.doi.org/10.1557/opl.2012.897.
Full textDissertations / Theses on the topic "Single and Multi-junction Solar Cells"
Shim, Jae Won. "Study of charge-collecting interlayers for single-junction and tandem organic solar cells." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51820.
Full textLynch, Marianne Catherine. "Modelling and optimisation of single junction strain balanced quantum well solar cells." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/8479.
Full textMahajumi, Abu Syed. "Type-II gallium antimonide quantum dots in gallium arsenide single junction solar cells." Thesis, Lancaster University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658211.
Full textZhang, Haoquan S. M. Massachusetts Institute of Technology. "An integrated multi-input single-output buck converter for laterally-arrayed multi-bandgap solar cells." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121745.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 151-156).
Concentrated Photovoltaic (CPV) systems provides a potentially low-cost and high-efficiency alternative to conventional mono-crystalline Si panel PV systems, and a new CPV system with Laterally-Arrayed Multi-Bandgap (LAMB) cells is introduced. In this thesis, an IC-based Multi-Input Single-Output (MISO) power converter, which serves as the small-footprint and self-powered power management module of the CPV system, is designed and tested. The proposed converter shall efficiently harvest energy from 4 types of solar cells and track the Maximum Power Point (MPP) at the cell-block level. First, the circuit topology, MPP Tracking (MPPT) algorithm, and control mechanism are verified with discrete converters, then a qualitative demonstration is conducted outdoors to show the concept of the entire CPV system with power management. Finally, a first-generation integrated converter, with the passive components, Analog/Digital converters and a MPPT-enabling micro-controller off-chip, is implemented.
by Haoquan Zhang.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Fifer, Tommy L. "Radiation effects on multi-junction solar cells." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2001. http://handle.dtic.mil/100.2/ADA401081.
Full textThesis advisor(s): Michael, Sherif . "December 2001." Includes bibliographical references (p. 65-67). Also available online.
Mantilla, Pérez Paola. "Multi-junction thin film solar cells for an optimal light harvesting." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/406044.
Full textLa fotovoltaica de capa delgada engloba un grupo de tecnologías capaces de capturar la luz en tan sólo unos pocos nanómetros de espesor. Su bajo costo de manufactura, flexibilidad y bajo peso, hace a las capas delgadas candidatas ideales para la integración en edificios. En particular, las celdas orgánicas pueden proveer una transparencia de alta calidad similar a las ventanas convencionales irrealizable con tecnologías basadas en Silicio. Sin embargo, para la producción de electricidad a gran escala en donde la eficiencia es, tal vez, el factor determinante, existen nuevas tecnologías como las celdas solares de perovskita que pueden resultar más adecuadas. Al momento de escribir esta tesis, las eficiencias de celdas de perovskita de simple unión casi duplican la de las mejores celdas orgánicas de simple unión. Una limitante de ambas tecnologías, en especial de las celdas orgánicas y en menor medida de las perovskitas, es la baja movilidad de las cargas. Esta, junto a otras desventajas de los absorbentes orgánicos y perovskitas limita su espesor al rango de los 100 a los 130 nm, y entre los 500 a 600 nm, respectivamente. En resumen, el manejo de la luz debe constituir un ingrediente esencial para el diseño de los dispositivos, tal que se consiga un desempeño óptimo en la aplicación para la cual sean considerados. En esta tesis, con el fin de alcanzar un aprovechamiento óptimo de la luz y por ende aumentar el desempeño de las celdas solares de capa delgada, utilizamos dos enfoques. Por un lado, aumentamos el espesor total de material absorbente dentro del dispositivo sin incrementar el espesor de las capas actives individuales y por otro lado, combinamos absorbentes complementarios para cubrir una porción más amplia del espectro solar. Estos enfoques conllevan al doble reto de encontrar la distribución de campo electromagnético óptima dentro de una estructura compleja de multicapas con dos o más capas activas, junto a la implementación de una recolección o recombinación de cargas efectiva por parte de las capas intermedias encargadas de conectar dos subceldas adyacentes. En el caso de las celdas orgánicas, consideramos celdas de multiunión usando el mismo material activo para todas las subceldas. Para implementarlas, se realizan estructuras cuyas capas activas no excedan los 100 nm. También estudiamos configuraciones donde los materiales tienen absorciones complementarias usando perovskitas. En ambos casos, sobretodo en el primero, se requiere un método sistemático para optimizar el aprovechamiento de la luz. Para obtener las configuraciones óptimas empleamos una estrategia de integración inversa junto con un cálculo del campo eléctrico basado en el modelo de matriz de transferencia. Además, desarrollamos nuevas estrategias para optimizar la colección de cargas en las capas de interconexión de las subceldas aplicables a dispositivos tipo tandem, triple, 4-terminales y serie-paralelo.
Kolhatkar, Gitanjali. "Characterisation of high-efficiency multi-junction solar cells and tunnel junctions." Thesis, University of Ottawa (Canada), 2011. http://hdl.handle.net/10393/28939.
Full textWalker, Alexandre W. "Bandgap Engineering of Multi-Junction Solar Cells for Enhanced Performance Under Concentration." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26240.
Full textJudkins, Zachara Steele. "A market analysis for high efficiency multi-junction solar cells grown on SiGe." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42143.
Full textIncludes bibliographical references (leaves 50-53).
Applications, markets and a cost model are presented for III-V multi-junction solar cells built on compositionally graded SiGe buffer layers currently being developed by professors Steven Ringell of Ohio State University and Eugene Fitzgerald of MIT. Potential markets are similar to those currently occupied by high efficiency multi-junction space solar cells grown on a Germanium substrate. Initial cost analysis shows that at production volumes similar to those of the state of the art, cost could be reduced by a factor of' four. Significant market share may be gained in both the space and terrestrial PV markets due to improved performance associated with superior materials properties advantages as well as production cost reductions.
by Zachary Steele Judkins.
M.Eng.
Korostyshevsky, Aaron. "Characterization of Radiation Damage in Multi-Junction Solar Cells Using Light-Biased Current Measurements." Connect to full text in OhioLINK ETD Center, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=toledo1224614484.
Full textTypescript. "Submitted as partial fulfillments of the requirements for the Master of Science Degree in Physics." "A thesis entitled"--at head of title. Bibliography: leaves 41-42.
Books on the topic "Single and Multi-junction Solar Cells"
F, Hepp Aloysius, and NASA Glenn Research Center, eds. Multi-junction thin-film solar cells on flexible substrates for space power. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textF, Hepp Aloysius, and NASA Glenn Research Center, eds. Multi-junction thin-film solar cells on flexible substrates for space power. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textF, Hepp Aloysius, and NASA Glenn Research Center, eds. Multi-junction thin-film solar cells on flexible substrates for space power. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textYeh, Chune-Sin. An expert system approach to the optimal design of single-junction and multijunction tandem solar cells. 1988.
Find full textWolf, E. L. Solar Cell Physics and Technologies. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198769804.003.0010.
Full textRadiation Effects on Multi-Junction Solar Cells. Storming Media, 2001.
Find full textMulti-junction thin-film solar cells on flexible substrates for space power. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Find full textNational Aeronautics and Space Administration (NASA) Staff. Multi-Junction Thin-Film Solar Cells on Flexible Substrates for Space Power. Independently Published, 2018.
Find full textBook chapters on the topic "Single and Multi-junction Solar Cells"
Zhang, Chunfu, Jincheng Zhang, Xiaohua Ma, and Qian Feng. "High-Efficiency III-V Single-Junction and Multi-junction Solar Cells." In Semiconductor Photovoltaic Cells, 127–75. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_4.
Full textGrover, Sachit, and Garret Moddel. "Metal Single-Insulator and Multi-Insulator Diodes for Rectenna Solar Cells." In Rectenna Solar Cells, 89–109. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_5.
Full textYuan, Yujie, Guofu Hou, Junming Xue, Jianjun Zhang, Xiaoyan Han, Yunzhou Liu, Ying Zhao, and Xinhua Geng. "Hydrogenated Microcrystalline Silicon Single-Junction Nip Solar Cells." In Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 1247–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_251.
Full textNomoto, Katsuhiko, and Takashi Tomita. "Development of Amorphous-Silicon Single-Junction Solar Cells and Their Application Systems." In Springer Series in Photonics, 105–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10549-8_6.
Full textAhmad, Khursheed, and Qazi Mohd Suhail. "Multi-junction Polymer Solar Cells." In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1817–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-36268-3_196.
Full textHeidler, K., and B. Müller-Bierl. "Measurement of Multi-Junction Solar Cells." In Tenth E.C. Photovoltaic Solar Energy Conference, 111–14. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_29.
Full textAli, Khuram, Afifa Khalid, Muhammad Raza Ahmad, Hasan M. Khan, Irshad Ali, and S. K. Sharma. "Multi-junction (III–V) Solar Cells: From Basics to Advanced Materials Choices." In Solar Cells, 325–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36354-3_13.
Full textDimroth, Frank. "III-V Solar Cells - Materials, Multi-Junction Cells - Cell Design and Performance." In Photovoltaic Solar Energy, 371–82. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118927496.ch34.
Full textDiedenhofen, Silke L., Gabriele Vecchi, Gerard Bauhuis, and Jaime Gómez Rivas. "Broadband and Omnidirectional Anti-reflection Coating for III/V Multi-junction Solar Cells." In High-Efficiency Solar Cells, 571–95. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01988-8_19.
Full textAhmad, Khursheed, and Qazi Mohd Suhail. "Multi-Junction Polymer Solar Cells: Recent Trends and Challenges." In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1–18. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-11155-7_196-1.
Full textConference papers on the topic "Single and Multi-junction Solar Cells"
Wilson, Tom, Tomos Thomas, Markus Führer, Nicholas J. Ekins-Daukes, Radek Roucka, Andrew Clark, Andrew Johnson, Rick Hoffman, and David Begarney. "Single and multi-junction solar cells utilizing a 1.0 eV SiGeSn junction." In 12TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-12). Author(s), 2016. http://dx.doi.org/10.1063/1.4962096.
Full textLorentzen, Justin, David Scheiman, Woojun Yoon, Robert Walters, and Phillip Jenkins. "Photoluminescence Imaging and Characterization of Single and Multi-Junction Solar Cells." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300495.
Full textSnaith, Henry. "Improving efficiency and stability in single and multi-junction perovskite solar cells." In 2nd Asia-Pacific Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.ap-hopv.2018.076.
Full textEkins-Daukes, Nicholas J., Anastasia Soeriyadi, Wenqi Zhao, Stephen Bremner, and Andreas Pusch. "Loss analysis for single junction concentrator solar cells." In 14TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-14). Author(s), 2018. http://dx.doi.org/10.1063/1.5053511.
Full textZhang, Suoliang, Lei Liu, Yongqing Wang, Tianshu Zhang, and Zhipeng Zhang. "Single light path quantum efficiency measurement system used for multi-junction solar cells." In Instruments (ICEMI). IEEE, 2009. http://dx.doi.org/10.1109/icemi.2009.5274586.
Full textKurtz, Sarah R. "Implications of light management in single- and multi-junction solar cells (Conference Presentation)." In Women in Renewable Energy (WiRE), edited by Monica Lira-Cantu and Zakya H. Kafafi. SPIE, 2019. http://dx.doi.org/10.1117/12.2530811.
Full textMaros, Aymeric, Srikanth Gangam, Yi Fang, Justin Smith, Dragica Vasileska, Stephen Goodnick, Mariana I. Bertoni, and Christiana B. Honsberg. "High temperature characterization of GaAs single junction solar cells." In 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7356338.
Full textFaruque, M. A., Rezwan Ahmed, M. H. Rahat, and Khairul Alam. "Comparative Performance Analysis Between CIGS Single-Junction and CIGS Tandem Multi-Junction Solar Cell." In 2018 10th International Conference on Electrical and Computer Engineering (ICECE). IEEE, 2018. http://dx.doi.org/10.1109/icece.2018.8636746.
Full textHong Zhu and S. J. Fonash. "Study of buffer layer design in single junction solar cells." In Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996. IEEE, 1996. http://dx.doi.org/10.1109/pvsc.1996.564322.
Full textBolink, Henk. "Vapor Phase Deposited Single Junction and Tandem Perovskite Solar Cells." In 11th International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.hopv.2019.019.
Full textReports on the topic "Single and Multi-junction Solar Cells"
Starkenburg, Daken, Asmerom Weldeab, Danielle Fagnani, Lei Li, Zhengtao Xu, Xiaoyang Yan, Michael Sexton, Davita Watkins, Ronald Castellano, and Jiangeng Xue. Final Scientific/Technical Report -- Single-Junction Organic Solar Cells with >15% Efficiency. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1435607.
Full textCarlson, D., R. Ayra, M. Bennett, J. Brewer, A. Catalano, R. D'Aiello, C. Dickson, et al. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5434340.
Full textCatalano, A., D. Carlson, R. Ayra, M. Bennett, R. D'Aiello, C. Dickson, C. Fortmann, et al. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5496057.
Full textAyra, R., M. Bennett, C. Dickson, B. Fieselmann, C. Fortmann, B. Goldstein, J. Morris, et al. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5383673.
Full textWiesmann, H., J. Dolan, G. Fricano, and V. Danginis. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells: Annual subcontract report, May 1985 - Jul 1986. Office of Scientific and Technical Information (OSTI), February 1987. http://dx.doi.org/10.2172/6587080.
Full textDelahoy, A. E., E. Eser, F. Kampas, and R. Lenskold. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells: Final report, October 1, 1983--January 31, 1987. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6304136.
Full textAshton, G., F. Aspen, K. Epstein, R. Jacobson, F. Jeffrey, R. Patel, and J. Shirck. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells. Annual report, 1 December 1983-30 November 1984. Office of Scientific and Technical Information (OSTI), April 1985. http://dx.doi.org/10.2172/5586079.
Full textAshton, G., F. Aspen, R. Jacobson, F. Jeffrey, and N. Tran. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells. Semiannual subcontract progress report, 1 December 1984-31 May 1985. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/6103083.
Full textDelahoy, A., F. Ellis, Jr., E. Eser, H. Volltrauer, and H. Weakliem. Research on high-efficiency, single-junction, monolithic thin-film amorphous silicon solar cells. Semiannual subcontract progress report, 1 October 1984-31 March 1985. Office of Scientific and Technical Information (OSTI), November 1985. http://dx.doi.org/10.2172/6315679.
Full textCarlson, D., A. Catalano, R. D'Aiello, C. Dickson, and R. Oswald. Research on high-efficiency, single-junction, monolithic, thin-film a-Si solar cells. Annual subcontract progress report, 1 February 1984-31 January 1985. Office of Scientific and Technical Information (OSTI), November 1985. http://dx.doi.org/10.2172/6315691.
Full text