Dissertations / Theses on the topic 'Simulations CMIP6'

To see the other types of publications on this topic, follow the link: Simulations CMIP6.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 dissertations / theses for your research on the topic 'Simulations CMIP6.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ouhechou, Amine. "Analyse de la variabilité multi-échelles du rayonnement solaire incident sur la façade atlantique de l'Afrique Centrale : observations in-situ, estimations satellitaires, et simulations climatiques CMIP6." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALU007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'Afrique centrale occidentale abrite les forêts les plus denses du bassin du Congo, deuxième plus grand massif forestier tropical après l’Amazonie. Elle se caractérise par un climat équatorial avec des températures élevées, un régime pluviométrique bimodal et surtout une longue saison sèche nuageuse, de juin à septembre. Malgré son importance écologique, la variabilité climatique de cette région a été peu étudiée par rapport à d'autres régions du continent africain, principalement en raison de la rareté des observations in-situ.Reconnaissant ces défis posés par le manque de données in situ, cette étude explore la variabilité climatique en Afrique centrale occidentale sous l’angle du rayonnement solaire en surface, paramètre clef pour le fonctionnement des forêts tropicales. Dans ce contexte, cette thèse s’attache à établir une première climatologie du rayonnement solaire en surface pour la région, à en documenter la variabilité, en particulier durant la saison sèche nuageuse de juin à septembre, et à évaluer la performance des produits satellitaires, des réanalyses et des simulations des modèles climatiques CMIP6.Dans une première partie, une évaluation de huit produits satellitaires d’estimation du rayonnement solaire (CERES-EBAF, CERES-SYN1deg, TPDC, CMSAF SARAH-2, CMSAF CLARA-A2, CAMS-JADE, WorldClim 2 et les réanalyses ERA5), révèle des différences dans les champs spatiotemporels. Tout en capturant avec succès les cycles annuels moyens de rayonnement solaire, les produits présentent des variations régionales, soulignant l'impact des paramètres atmosphériques sur l'estimation précise du rayonnement solaire. En outre, tous les produits à l’exception de WorldClim 2 s’accordent sur le fait que la façade atlantique reçoit moins de rayonnement solaire que les autres régions d’Afrique Centrale. La performance de ces produits est également évaluée par rapport aux observations in-situ sur la base de quatre types de cycle diurne de rayonnement solaire - les jours Obscurs, Obscurs AM (matin), Obscurs PM (après-midi) et Lumineux. Les produits représentent correctement la forme de ces quatre types, mais avec une amplitude plus grande.La deuxième partie se concentre sur l’étude de la variabilité interannuelle et les tendances du rayonnement solaire pendant la saison sèche nuageuse juin-septembre, mettant en évidence des différences marquées entre le produit satellitaire CMSAF SARAH-2 et la réanalyse climatique ERA5. Dans cette partie, l’étude a également permis d’identifier les dates de début et de fin de la saison sèche à partir du rayonnement solaire, et en établissant une relation significative entre les températures de surface de l'océan Atlantique équatorial et le début de la saison sèche.Dans la dernière partie, la capacité des modèles climatiques globaux CMIP6 à reproduire les niveaux moyens de rayonnement solaire dans la région a été évaluée. Les résultats soulignent des disparités sous-régionales dans la performance des modèles. Les modèles utilisés dans cette étude sous-estiment le rayonnement solaire au sud-ouest du Gabon-Congo tandis qu’ils le surestiment au nord-est, principalement d’avril à décembre. Les différences les plus importantes étant observées pendant la saison des pluies octobre-novembre. Ces disparités semblent provenir de la nébulosité, en particulier des nuages de basse et moyenne altitude, qui influencent de manière significative le rayonnement solaire mais avec des relations variables selon les modèles. Cette partie met également en évidence la téléconnexion entre la température de surface de l’océan Atlantique équatorial et le rayonnement solaire dans les modèles, mais qui varie entre le littoral et l’intérieur du Gabon, soulignant la nécessité de travailler avec des modèles climatiques régionaux mieux résolus
Western Central Africa, home to the densest forests of the Congo Basin - the second largest tropical forest massif after Amazonia - is characterized by an equatorial climate with high temperatures, a bimodal rainfall pattern and, a long and cloudy dry season from June to September. Despite its ecological importance, the climate variability of this region has been less studied compared with other parts of the African continent, mainly because of the scarcity of in-situ observations.Recognizing these challenges posed by the lack of in-situ data, this study explores the climate variability in Western Central Africa through the lens of surface solar radiation, a key parameter for the functioning of tropical forests. In this context, this thesis aims to establish an initial climatology of surface solar radiation for the region, to document its variability, particularly during the cloudy dry season from June to September, and to assess the performance of satellite products, reanalyses and CMIP6 climate model simulations.In the first part, an evaluation of eight satellite products for estimating solar radiation (CERES-EBAF, CERES-SYN1deg, TPDC, CMSAF SARAH-2, CMSAF CLARA-A2, CAMS-JADE, WorldClim 2 and ERA5 reanalysis) reveals differences in the spatiotemporal fields. While successfully capturing mean annual solar radiation cycles, the products show regional variations, highlighting the impact of atmospheric parameters on the accurate estimation of solar radiation. In addition, all the products except WorldClim 2 agree that the Atlantic coast receives less solar radiation than the other regions of Central Africa. The performance of these products is also assessed against in-situ measurements based on four types of solar radiation diurnal cycle - Obscure, Obscure AM (morning), Obscure PM (afternoon) and Bright days. The products correctly represent the shape of these four types, but with a larger amplitude.The second part focuses on studying the interannual variability and trends in solar radiation during the June-September cloudy dry season, highlighting notable differences between CMSAF SARAH-2 satellite product and ERA5 reanalysis. The study also made it possible to identify the onset and cessation dates of the dry season based on solar radiation, and establishing a significant relationship between surface temperatures of the equatorial Atlantic ocean and the onset of the dry season.In the final part, the capacity of CMIP6 global climate models to reproduce average levels of solar radiation in the region was assessed. The results highlight sub-regional disparities in model performance. The models used in this study underestimate solar radiation in the south-west of Gabon-Congo, while they overestimate it in the north-east, mainly from april to december. The largest differences were observed during the october-november rainy season. These disparities seem to be caused by cloud cover, in particular low- and medium-level clouds, which have a significant influence on solar radiation, although the relationship varies according to the models. This section also highlights the teleconnection between the surface temperature of the equatorial Atlantic ocean and solar radiation in the models, which varies between the coastal and inland areas of Gabon, underlining the need to use regional climate models
2

Monerie, Paul-Arthur. "Le changement climatique en région de mousson africaine : évolution des champs pluviométriques et atmosphériques dans les simulations CMIP3 et CMIP5 sous scénario A1B et rcp45 (1960-1999, 2031-2070)." Phd thesis, Université de Bourgogne, 2013. http://tel.archives-ouvertes.fr/tel-00955371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Sur les effets du changement climatique aux échelles globale et régionale. Il montre en particulierqu'aucun consensus ne peut être trouvé pour ce qui concerne l'évolution future de lapluviométrie -- et de la dynamique atmosphérique associée -- en région de mousson africaine.Ce mémoire revisite cette question à la lumière des nouvelles données disponibles et selon uneapproche évitant toute surreprésentation du nombre de simulations disponibles pour un type demodèle donné, tout en prenant en compte la diversité des modèles ainsi que leur évolution dansle temps : sorties de vingt modèles de circulation générale (MCGs) ayant participé aux exercicesCMIP3 (douze MCGs) et CMIP5 (huit MCGs) sous les scénarios d'émissions A1B et rcp4.5,respectivement. Les sorties sont analysées principalement sur deux fenêtres de quarante ans --périodes actuelle (1960-1999) et future (2031-2070) -- et les résultats discutés au regard de leurvraisemblance selon une approche permettant à la fois de quantifier les différences futur moinsactuel, de mesurer les significativités et les robustesses statistiques et d'associer une probabilitémesurant le consensus des modèles en fonction des échelles et des variables considérées.Les analyses menées sur CMIP3 et CMIP5 montrent qu'un consensus sur l'effet du changementclimatique en Afrique de l'Ouest peut être obtenu si l'on ne fait pas de l'ensemble de labande sahélienne une entité homogène et qu'on raisonne à des échelles spatiales inférieures. Lesrésultats révèlent une évolution contrastée entre le centre et l'ouest du Sahel avec, pour le futur(i) une hausse des précipitations au centre s'expliquant surtout par une plus grande convergencedes flux dans les basses couches, ainsi qu'une pénétration plus au nord de la mousson ;(ii) une baisse des précipitations à l'ouest s'expliquant par le renforcement de la circulation detype Walker, du Jet d'Est Africain (JEA) et de la subsidence dans les couches moyennes. Parailleurs, on peut s'attendre à une modification du cycle annuel moyen avec un retrait retardé dela mousson. Ce retard est notamment lié aux apports supplémentaires d'humidité depuis l'Atlantique,dus au renforcement des contrastes thermiques et d'humidité entre océan et continent,mais aussi et surtout aux apports tardifs d'humidité depuis la Méditerranée et au renforcementdes flux de nord en septembre et octobre en direction du Sahel
3

Mitchell, D. M., S. Misios, L. J. Gray, K. Tourpali, K. Matthes, L. Hood, H. Schmidt, et al. "Solar signals in CMIP-5 simulations: the stratospheric pathway." Royal Meteorological Society, 2015. http://hdl.handle.net/10150/623311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The 11 year solar-cycle component of climate variability is assessed in historical simulations of models taken from the Coupled Model Intercomparison Project, phase 5 (CMIP-5). Multiple linear regression is applied to estimate the zonal temperature, wind and annular mode responses to a typical solar cycle, with a focus on both the stratosphere and the stratospheric influence on the surface over the period ∼1850–2005. The analysis is performed on all CMIP-5 models but focuses on the 13 CMIP-5 models that resolve the stratosphere (high-top models) and compares the simulated solar cycle signature with reanalysis data. The 11 year solar cycle component of climate variability is found to be weaker in terms of magnitude and latitudinal gradient around the stratopause in the models than in the reanalysis. The peak in temperature in the lower equatorial stratosphere (∼70 hPa) reported in some studies is found in the models to depend on the length of the analysis period, with the last 30 years yielding the strongest response. A modification of the Polar Jet Oscillation (PJO) in response to the 11 year solar cycle is not robust across all models, but is more apparent in models with high spectral resolution in the short-wave region. The PJO evolution is slower in these models, leading to a stronger response during February, whereas observations indicate it to be weaker. In early winter, the magnitude of the modelled response is more consistent with observations when only data from 1979–2005 are considered. The observed North Pacific high-pressure surface response during the solar maximum is only simulated in some models, for which there are no distinguishing model characteristics. The lagged North Atlantic surface response is reproduced in both high- and low-top models, but is more prevalent in the former. In both cases, the magnitude of the response is generally lower than in observations.
4

Parsons, Luke A., Garrison R. Loope, Jonathan T. Overpeck, Toby R. Ault, Ronald Stouffer, and Julia E. Cole. "Temperature and Precipitation Variance in CMIP5 Simulations and Paleoclimate Records of the Last Millennium." AMER METEOROLOGICAL SOC, 2017. http://hdl.handle.net/10150/626270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Accurate assessments of future climate impacts require realistic simulation of interannual-century-scale temperature and precipitation variability. Here, well-constrained paleoclimate data and the latest generation of Earth system model data are used to evaluate the magnitude and spatial consistency of climate variance distributions across interannual to centennial frequencies. It is found that temperature variance generally increases with time scale in patterns that are spatially consistent among models, especially over the mid-and high-latitude oceans. However, precipitation is similar to white noise across much of the globe. When Earth system model variance is compared to variance generated by simple autocorrelation, it is found that tropical temperature variability in Earth system models is difficult to distinguish from variability generated by simple autocorrelation. By contrast, both forced and unforced Earth system models produce variability distinct from a simple autoregressive process over most high-latitude oceans. This new analysis of tropical paleoclimate records suggests that low-frequency variance dominates the temperature spectrum across the tropical Pacific and Indian Oceans, but in many Earth system models, interannual variance dominates the simulated central and eastern tropical Pacific temperature spectrum, regardless of forcing. Tropical Pacific model spectra are compared to spectra from the instrumental record, but the short instrumental record likely cannot provide accurate multidecadal-centennial-scale variance estimates. In the coming decades, both forced and natural patterns of decade-century-scale variability will determine climate-related risks. Underestimating low-frequency temperature and precipitation variability may significantly alter our understanding of the projections of these climate impacts.
5

Sumi, Selina Jahan. "Eco-Hydrology Driven Evaluation of Statistically Downscaled Precipitation CMIP5 Climate Model Simulations over Louisiana." Thesis, University of Louisiana at Lafayette, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1594512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:

Statistically downscaled CMIP5 precipitation data are available at higher spatial resolution compared to global climate models. The downscaled climate models have been used in many hydrological applications. However, limited numbers of studies focused on downscaled CMIP5 precipitation data for Louisiana. Statistically downscaled precipitation data for Louisiana is critically needed for various water resources engineering, planning and design purposes. This study has focused on assessing the skill of CMIP5 climate models in reproducing observed precipitation of Louisiana and application of CMIP5 precipitation data to analyze the impact of precipitation on hydrology (salinity and water level). Assessment of CMIP5 precipitation showed that statistically downscaled and bias corrected precipitation data reproduce observed average annual precipitation. But for other statistics (standard deviation), model data are not the same as observation data. The bias correction procedure ensured that models would reproduce the observed average precipitation. The maps of correlation distance for the models do not match with that of observation. This may be an indication that bias correction does not force the model to perform better in all statistics except annual average. Based on the analysis over climate divisions, it can be stated that spatial and temporal aggregation enables the models to perform better than gridded dataset. Application of CMIP5 precipitation data indicates that precipitation has a significant effect on salinity and almost zero effect on water level. Different salinity variables control the hydrologic and habitat suitability indices in coastal Louisiana. The cell-based analysis shows that different variables have different degrees of effect on vegetation and species (brown shrimp and oyster). Some species thrive in a high salinity environment while some others in low salinity. The uncertainty in the salinity and water level may occur due to insufficient data and boundary conditions provided in the Eco-hydrology model environment.

6

Santolaria, Otín María. "Le rôle de la couverture de neige de l'Arctique dans le cycle hydrologique de hautes latitudes révélé par les simulations des modèles climatiques." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAU027/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La neige est une composante essentielle du système climatique arctique. Au nord de l'Eurasie et de l'Amérique du Nord, la couverture neigeuse est présente de 7 à 10 mois par an et son extension saisonnière maximale représente plus de 40% de la surface terrestre de l'hémisphère nord. La neige affecte une variété de processus climatiques et de rétroactions aux hautes latitudes. Sa forte réflectivité et sa faible conductivité thermique ont un effet de refroidissement et modulent la rétroaction neige-albédo. Sa contribution au bilan radiatif de la Terre est comparable à celle de la banquise. De plus, en empêchant d'importantes pertes d'énergie du sol sous-jacent, la neige limite la progression de la glace et le développement du pergélisol saisonnier. Réserve d'eau naturelle, la neige joue un rôle essentiel dans le cycle hydrologique aux hautes latitudes, notamment en ce qui concerne l'évaporation et le ruissellement. La neige est l'une des composantes du système climatique présentant la plus forte variabilité. Le réchauffement de l'Arctique étant deux fois plus rapide que celui du reste du globe, la variabilité présente et future des caractéristiques de la neige est cruciale pour une meilleure compréhension des processus et des changements climatiques.Cependant, notre capacité à observer l'Arctique terrestre étant limitée, les modèles climatiques jouent un rôle clé dans notre aptitude à comprendre les processus liés à la neige. À cet égard, la représentation des rétroactions associées à la neige dans les modèles climatiques, en particulier pendant les saisons intermédiaires (lorsque la couverture neigeuse de l'Arctique présente la plus forte variabilité), est primordiale.Notre étude porte principalement sur la représentation de la neige terrestre arctique dans les modèles de circulation générale issus du projet CMIP5 (Coupled Model Intercomparison Project) au cours du printemps (mars-avril) et de l’automne (octobre-novembre) de 1979 à 2005. Les caractéristiques de la neige des modèles de circulation générale ont été validées par rapport aux mesures de neige in situ, ainsi qu’à des produits satellitaires et à des réanalyses.Nous avons constaté que les caractéristiques de la neige dans les modèles ont un biais plus marqué au printemps qu'en automne. Le cycle annuel de la couverture neigeuse est bien reproduit par les modèles. Cependant, les cycles annuels d'équivalent en eau de la neige et de sa profondeur sont largement surestimés par les modèles, notamment en Amérique du Nord. Il y a un meilleur accord entre les modèles et les observations dans la position de la marge de neige au printemps plutôt qu'en automne. Les amplitudes de variabilité interannuelle pour toutes les variables de la neige sont nettement sous-estimées par la plupart des modèles CMIP5. Pour les deux saisons, les tendances des variables de la neige dans les modèles sont principalement négatives, mais plus faibles et moins significatives que celles observées. Les distributions spatiales des tendances de la couverture neigeuse sont relativement bien reproduites par les modèles, toutefois, la distribution spatiale des tendances en équivalent-eau et en profondeur de la neige présente de fortes hétérogénéités régionales.Enfin, nous concluons que les modèles CMIP5 fournissent des informations précieuses sur les caractéristiques de la neige en Arctique terrestre, mais qu’ils présentent encore des limites. Il y a un manque d’accord entre l’ensemble des modèles sur la distribution spatiale de la neige par rapport aux observations et aux réanalyses. Ces écarts sont particulièrement marqués dans les régions où la variabilité de la neige est la plus forte. Notre objectif dans cette étude était d'identifier les circonstances dans lesquelles ces modèles reproduisent ou non les caractéristiques observées de la neige en Arctique. Nous attirons l’attention de la communauté scientifique sur la nécessité de prendre compte nos résultats pour les futures études climatiques
Snow is a critical component of the Arctic climate system. Over Northern Eurasia and North America the duration of snow cover is 7 to 10 months per year and a maximum snow extension is over 40% of the Northern Hemisphere land each year. Snow affects a variety of high latitude climate processes and feedbacks. High reflectivity of snow and low thermal conductivity have a cooling effect and modulates the snow-albedo feedback. A contribution from terrestrial snow to the Earth’s radiation budget at the top of the atmosphere is close to that from the sea ice. Snow also prevents large energy losses from the underlying soil and notably the ice growth and the development of seasonal permafrost. Being a natural water storage, snow plays a critical role in high latitude hydrological cycle, including evaporation and run-off. Snow is also one of the most variable components of climate system. With the Arctic warming twice as fast as the globe, the present and future variability of snow characteristics are crucially important for better understanding of the processes and changes undergoing with climate. However, our capacity to observe the terrestrial Arctic is limited compared to the mid-latitudes and climate models play very important role in our ability to understand the snow-related processes especially in the context of a warming cryosphere. In this respect representation of snow-associated feedbacks in climate models, especially during the shoulder seasons (when Arctic snow cover exhibits the strongest variability) is of a special interest.The focus of this study is on the representation of the Arctic terrestrial snow in global circulation models from Coupled Model Intercomparison Project (CMIP5) ensemble during the melting (March-April) and the onset (October-November) season for the period from 1979 to 2005. Snow characteristics from the general circulation models have been validated against in situ snow measurements, different satellite-based products and reanalyses.We found that snow characteristics in models have stronger bias in spring than in autumn. The annual cycle of snow cover is well captured by models in comparison with observations, however, the annual cycles of snow water equivalent and snow depth are largely overestimated by models, especially in North America. There is better agreement between models and observations in the snow margin position in spring rather than in autumn. Magnitudes of interannual variability for all snow characteristics are significantly underestimated in most CMIP5 models compared to observations. For both seasons, trends of snow characteristics in models are primarily negative but weaker and less significant than those from observations. The patterns of snow cover trends are relatively well reproduced in models, however, the spatial distribution of trends for snow water equivalent and snow depth display strong regional heterogeneities.Finally, we have concluded CMIP5 general circulation models provides valuable information about the snow characteristics in the terrestrial Arctic, however, they have still limitations. There is a lack of agreement among the ensemble of models in the spatial distribution of snow compared to the observations and reanalysis. And these discrepancies are accentuated in regions where variability of snow is higher in areas with complex terrain such as Canada and Alaska and during the melting and the onset season. Our goal in this study was to identify where and when these models are or are not reproducing the real snow characteristics in the Arctic, thus we hope that our results should be considered when using these snow-related variables from CMIP5 historical output in future climate studies
7

Chavaillaz, Yann. "La vitesse du changement climatique et ses implications sur la perception des générations futures." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV021/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Dans la plupart des études, on s'intéresse au changement climatique futur en analysant l'évolution du climat entre une référence actuelle fixée et une période future. Le réchauffement est de plus en plus fort au fil du 21ème siècle. Dans un contexte où les conditions climatiques sont toujours en train d'évoluer, les écosystèmes doivent continuellement s'adapter à des modifications diverses du climat. Dans le cadre de cette thèse, je propose d'analyser les projections climatiques sous un angle alternatif. Afin d’être caractéristique des représentations des populations urbaines et rurales, je définis et analyse des indicateurs liés à la vitesse des changements de température, de précipitations et de végétation. Un ensemble de simulations CMIP5 de 18 modèles de climat est sélectionné. La vitesse est représentée par des différences entre deux périodes successives de 20 ans. Cette notion de vitesse pourrait offrir de nouveaux outils pour interagir avec les communautés scientifiques travaillant sur les impacts et l'adaptation.Sans politiques d’atténuation du changement (scénario RCP8.5), le réchauffement global sera au moins deux fois plus rapide à la fin du siècle qu’actuellement, et même trois fois dans certaines régions. Près de la moitié des surfaces continentales, principalement les zones tropicales, seront touchées par des décalages significatifs de la distribution de la température entre deux périodes de 20 ans d’ici à 2060, i.e. au moins 4 fois plus qu’actuellement. Dans ces régions, des années extrêmement chaudes ayant un temps de retour de 50 ans deviendront habituelles en l’espace de 20 ans seulement. La fraction de la population mondiale étant exposée à ces changements pourrait atteindre environ 60% (i.e. 6 milliards de personnes et 7 fois plus qu’actuellement). Il suffit de relativement légères mesures d’atténuation (RCP6.0) pour que la vitesse du réchauffement ne dépasse pas les valeurs actuelles et que 3 fois moins de personnes soient exposées à des décalages significatifs de température.Les vitesses d’humidification et d’assèchement en termes de précipitations augmenteront de 30 à 40%. Leur répartition géographique deviendra plus stable spatialement et les tendances tendront à persister sur les mêmes régions, et ce malgré l’accélération du réchauffement global. Cette stabilisation résulte de la contribution grandissante des processus thermodynamiques par rapport à ceux contrôlés par la circulation générale. La combinaison de l’accélération des tendances et de leur persistance peut avoir un impact sur l’adaptation des sociétés et des écosystèmes, particulièrement sur le bassin méditerranéen, en Amérique centrale, en Inde et dans les régions arctiques. Une telle évolution est déjà visible actuellement, mais pourrait disparaître avec de fortes mesures d’atténuation (RCP2.6).Les changements de la végétation peuvent être des repères visuels du changement climatique. Dans les moyennes et hautes latitudes Nord, le cycle saisonnier des arbres et des herbacées suit la vitesse du réchauffement. Sans politiques d’atténuation, le début de la saison foliaire avance et sa durée augmente plus rapidement au fil du siècle. La couverture de la végétation se densifie quelque soit le scénario proportionnellement à l’augmentation de la température. Le cycle saisonnier des cultures des moyennes latitudes dépend directement de la température et celui des cultures tropicales de l’évolution des caractéristiques de la saison des pluies. Sous les autres latitudes, aucune évolution robuste du cycle saisonnier n’est projetée. La vitesse des changements de répartition de la végétation a déjà doublé entre 1880 et 1950 correspondant à un changement marqué de l'utilisation des sols. Elle est stable tout au long du siècle si la végétation interagit dynamiquement avec le climat dans les modèles, traduisant un ralentissement du changement de l'utilisation des sols et l'accélération des changements de végétation sous l'effet du changement climatique
In most climate studies, climate change is approached by focusing on the evolution between a fixed current baseline and a future period, emphasizing stronger warming as we move further over the 21st century. Under climate conditions that are continuously evolving, human and natural systems might have to constantly adapt to a changing climate. This thesis proposes an alternative approach to climate projections. Here, I consider and analyze indicators of the pace of changes relative to temperature, precipitation and vegetation in order to be relevant for both urban and rural populations. An ensemble of CMIP5 simulations from 18 climate models is selected. The pace is represented by differences between two subsequent 20-year periods. Considering the pace of change would be beneficial for climate impacts and adaptation analyses.The models predict that the warming rate strongly increases without any mitigation policies (RCP8.5 scenario). It is twice as high by the end of the century compared to the current period, and even three times higher in some regions. Significant shifts in temperature distributions between two subsequent 20-year periods are projected to involve almost half of all land surfaces and most tropical areas by 2060 onwards (i.e. at least four times as many regions than currently). In these regions, an extremely warm year with a return period of about 50 years would become quite common only 20 years later. The fraction of the world population exposed to such shifts might reach about 60% (6 billion people, i.e. seven times more than currently). Low mitigation measures (RCP6.0) allow the warming rate to be kept at current values, and reduce the fraction of the world population exposed to significant shifts of temperature distributions by one third.Under RCP8.5, rainfall moistening and drying rates both increase by 30-40% above current levels. As we move further over the century, their patterns become geographically stationary and the trends become persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and ecosystems adapt to climate change, especially in the Mediterranean basin, Central America, South Asia and the Arctic. Such an evolution in precipitation has already become noticeable over the last few decades, but it could be reversed if strong mitigation policies were quickly implemented (RCP2.6).Changes in vegetation could be visual landmarks of climate change. In mid- and high-latitudes of the Northern Hemisphere, the phenology of grass and trees follows the warming rate. Without any mitigation policies, the start of spring occurs earlier, and its duration is extended faster as we move over the century. The vegetation cover becomes denser, regardless of the selected pathway, in proportion to the temperature rise. The seasonal cycle of mid-latitude crops also depends on the temperature, and the seasonal cycle of tropical crops directly follows the features of the wet season. In all other latitudes, no robust evolution of the seasonal cycle is projected. The pace of change of vegetation cover since 1880 already doubled before 1950, mainly due to a strong change in land use. This pace is then projected to be stable over the entire 21st century if the vegetation dynamically interacts with the climate system in the models. This corresponds to a reduction of land-use change and to the acceleration of changes of vegetation cover under climate change
8

Dars, Ghulam Hussain. "Climate Change Impacts on Precipitation Extremes over the Columbia River Basin Based on Downscaled CMIP5 Climate Scenarios." PDXScholar, 2013. https://pdxscholar.library.pdx.edu/open_access_etds/979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Hydro-climate extreme analysis helps understanding the process of spatio-temporal variation of extreme events due to climate change, and it is an important aspect in designing hydrological structures, forecasting floods and an effective decision making in the field of water resources design and management. The study evaluates extreme precipitation events over the Columbia River Basin (CRB), the fourth largest basin in the U.S., by simulating four CMIP5 global climate models (GCMs) for the historical period (1970-1999) and future period (2041-2070) under RCP85 GHG scenario. We estimated the intensity of extreme and average precipitation for both winter (DJF) and summer (JJA) seasons by using the GEV distribution and multi-model ensemble average over the domain of the Columbia River Basin. The four CMIP5 models performed very well at simulating precipitation extremes in the winter season. The CMIP5 climate models showed heterogeneous spatial pattern of summer extreme precipitation over the CRB for the future period. It was noticed that multi-model ensemble mean outperformed compared to the individual performance of climate models for both seasons. We have found that the multi-model ensemble shows a consistent and significant increase in the extreme precipitation events in the west of the Cascades Range, Coastal Ranges of Oregon and Washington State, the Canadian portion of the basin and over the Rocky Mountains. However, the mean precipitation is projected to decrease in both winter and summer seasons in the future period. The Columbia River is dominated by the glacial snowmelt, so the increase in the intensity of extreme precipitation and decrease in mean precipitation in the future period, as simulated by four CMIP5 models, is expected to aggravate the earlier snowmelt and contribute to the flooding in the low lying areas especially in the west of the Cascades Range. In addition, the climate change shift could have serious implications on transboundary water issues in between the United States and Canada. Therefore, adaptation strategies should be devised to cope the possible adverse effects of the changing the future climate so that it could have minimal influence on hydrology, agriculture, aquatic species, hydro-power generation, human health and other water related infrastructure.
9

Chavaillaz, Yann. "La vitesse du changement climatique et ses implications sur la perception des générations futures." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Dans la plupart des études, on s'intéresse au changement climatique futur en analysant l'évolution du climat entre une référence actuelle fixée et une période future. Le réchauffement est de plus en plus fort au fil du 21ème siècle. Dans un contexte où les conditions climatiques sont toujours en train d'évoluer, les écosystèmes doivent continuellement s'adapter à des modifications diverses du climat. Dans le cadre de cette thèse, je propose d'analyser les projections climatiques sous un angle alternatif. Afin d’être caractéristique des représentations des populations urbaines et rurales, je définis et analyse des indicateurs liés à la vitesse des changements de température, de précipitations et de végétation. Un ensemble de simulations CMIP5 de 18 modèles de climat est sélectionné. La vitesse est représentée par des différences entre deux périodes successives de 20 ans. Cette notion de vitesse pourrait offrir de nouveaux outils pour interagir avec les communautés scientifiques travaillant sur les impacts et l'adaptation.Sans politiques d’atténuation du changement (scénario RCP8.5), le réchauffement global sera au moins deux fois plus rapide à la fin du siècle qu’actuellement, et même trois fois dans certaines régions. Près de la moitié des surfaces continentales, principalement les zones tropicales, seront touchées par des décalages significatifs de la distribution de la température entre deux périodes de 20 ans d’ici à 2060, i.e. au moins 4 fois plus qu’actuellement. Dans ces régions, des années extrêmement chaudes ayant un temps de retour de 50 ans deviendront habituelles en l’espace de 20 ans seulement. La fraction de la population mondiale étant exposée à ces changements pourrait atteindre environ 60% (i.e. 6 milliards de personnes et 7 fois plus qu’actuellement). Il suffit de relativement légères mesures d’atténuation (RCP6.0) pour que la vitesse du réchauffement ne dépasse pas les valeurs actuelles et que 3 fois moins de personnes soient exposées à des décalages significatifs de température.Les vitesses d’humidification et d’assèchement en termes de précipitations augmenteront de 30 à 40%. Leur répartition géographique deviendra plus stable spatialement et les tendances tendront à persister sur les mêmes régions, et ce malgré l’accélération du réchauffement global. Cette stabilisation résulte de la contribution grandissante des processus thermodynamiques par rapport à ceux contrôlés par la circulation générale. La combinaison de l’accélération des tendances et de leur persistance peut avoir un impact sur l’adaptation des sociétés et des écosystèmes, particulièrement sur le bassin méditerranéen, en Amérique centrale, en Inde et dans les régions arctiques. Une telle évolution est déjà visible actuellement, mais pourrait disparaître avec de fortes mesures d’atténuation (RCP2.6).Les changements de la végétation peuvent être des repères visuels du changement climatique. Dans les moyennes et hautes latitudes Nord, le cycle saisonnier des arbres et des herbacées suit la vitesse du réchauffement. Sans politiques d’atténuation, le début de la saison foliaire avance et sa durée augmente plus rapidement au fil du siècle. La couverture de la végétation se densifie quelque soit le scénario proportionnellement à l’augmentation de la température. Le cycle saisonnier des cultures des moyennes latitudes dépend directement de la température et celui des cultures tropicales de l’évolution des caractéristiques de la saison des pluies. Sous les autres latitudes, aucune évolution robuste du cycle saisonnier n’est projetée. La vitesse des changements de répartition de la végétation a déjà doublé entre 1880 et 1950 correspondant à un changement marqué de l'utilisation des sols. Elle est stable tout au long du siècle si la végétation interagit dynamiquement avec le climat dans les modèles, traduisant un ralentissement du changement de l'utilisation des sols et l'accélération des changements de végétation sous l'effet du changement climatique
In most climate studies, climate change is approached by focusing on the evolution between a fixed current baseline and a future period, emphasizing stronger warming as we move further over the 21st century. Under climate conditions that are continuously evolving, human and natural systems might have to constantly adapt to a changing climate. This thesis proposes an alternative approach to climate projections. Here, I consider and analyze indicators of the pace of changes relative to temperature, precipitation and vegetation in order to be relevant for both urban and rural populations. An ensemble of CMIP5 simulations from 18 climate models is selected. The pace is represented by differences between two subsequent 20-year periods. Considering the pace of change would be beneficial for climate impacts and adaptation analyses.The models predict that the warming rate strongly increases without any mitigation policies (RCP8.5 scenario). It is twice as high by the end of the century compared to the current period, and even three times higher in some regions. Significant shifts in temperature distributions between two subsequent 20-year periods are projected to involve almost half of all land surfaces and most tropical areas by 2060 onwards (i.e. at least four times as many regions than currently). In these regions, an extremely warm year with a return period of about 50 years would become quite common only 20 years later. The fraction of the world population exposed to such shifts might reach about 60% (6 billion people, i.e. seven times more than currently). Low mitigation measures (RCP6.0) allow the warming rate to be kept at current values, and reduce the fraction of the world population exposed to significant shifts of temperature distributions by one third.Under RCP8.5, rainfall moistening and drying rates both increase by 30-40% above current levels. As we move further over the century, their patterns become geographically stationary and the trends become persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and ecosystems adapt to climate change, especially in the Mediterranean basin, Central America, South Asia and the Arctic. Such an evolution in precipitation has already become noticeable over the last few decades, but it could be reversed if strong mitigation policies were quickly implemented (RCP2.6).Changes in vegetation could be visual landmarks of climate change. In mid- and high-latitudes of the Northern Hemisphere, the phenology of grass and trees follows the warming rate. Without any mitigation policies, the start of spring occurs earlier, and its duration is extended faster as we move over the century. The vegetation cover becomes denser, regardless of the selected pathway, in proportion to the temperature rise. The seasonal cycle of mid-latitude crops also depends on the temperature, and the seasonal cycle of tropical crops directly follows the features of the wet season. In all other latitudes, no robust evolution of the seasonal cycle is projected. The pace of change of vegetation cover since 1880 already doubled before 1950, mainly due to a strong change in land use. This pace is then projected to be stable over the entire 21st century if the vegetation dynamically interacts with the climate system in the models. This corresponds to a reduction of land-use change and to the acceleration of changes of vegetation cover under climate change
10

Peings, Yannick. "Influence de la couverture de neige de l'hémisphère nord sur la variabilité interannuelle du climat." Phd thesis, Université Paul Sabatier - Toulouse III, 2010. http://tel.archives-ouvertes.fr/tel-00562496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La neige peut couvrir jusqu'à 40% des terres immergées de l'hémisphère Nord en hiver. De par son influence sur le bilan d'énergie en surface, elle constitue donc une source potentielle de variabilité et de prévisibilité climatique aux échelles mensuelles à saisonnières. Au-delà de ses effets locaux, la couverture neigeuse peut, à l'instar des surfaces océaniques, engendrer des téléconnexions et ainsi moduler le climat de régions plus lointaines. Cette thèse revisite plusieurs aspects des liens neige-climat en utilisant à la fois les jeux de données observées, les simulations réalisées pour le 4ème rapport du Groupe Intergouvernemental d'experts sur l'Evolution du Climat (GIEC), ainsi que le modèle atmosphérique ARPEGE-Climat pour réaliser des tests de sensibilité. L'influence de la neige eurasiatique/himalayenne sur la mousson indienne d'été, largement évoquée dans la littérature, est remise en cause par l'analyse des données observées étendues à la période 1967-2006. Toutefois, un prédicteur lié à la circulation atmosphérique de grande échelle sur le Pacifique Nord est proposé pour améliorer les prévisions saisonnières statistiques de la mousson indienne. L'influence des étendues de neige sibériennes en automne sur la variabilité atmosphérique hivernale de l'hémisphère Nord semble quant à elle plus robuste dans les observations. Si les modèles couplés du GIEC sont incapables de reproduire cette téléconnexion, les expériences de sensibilité réalisées avec ARPEGE-Climat confirment le mécanisme physique proposé dans la littérature, à condition que la perturbation en surface soit importante et que l'état moyen de la circulation extratropicale simulé soit suffisamment réaliste. Finalement, la prévisibilité de l'atmosphère associée à l'enneigement est quantifiée de façon plus systématique avec ARPEGE-Climat. Si les résultats montrent un impact mitigé sur la circulation de grande échelle, la relaxation/initialisation du modèle vers/avec des masses de neige plus réalistes permet une meilleure prévisibilité des températures de surface sur l'Europe et l'Amérique du Nord. La neige représente donc une source de prévisibilité climatique non négligeable à l'échelle locale et peut influencer à distance la circulation atmosphérique extratropicale. Les téléconnexions neige-climat doivent être cependant être confirmées dans les années qui viennent, et constituent encore un exercice difficile pour l'état de l'art des modèles de climat.
11

Tang, Chao. "Model estimations of possible climate changes of surface solar radiation at regional scales over Southern Africa and the South West Indian Ocean." Thesis, La Réunion, 2017. http://www.theses.fr/2017LARE0055/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les variations du rayonnement solaire en surface (SSR) peuvent avoir un impact significatif sur divers aspects du système climatique, et notamment sur le développement socio-économique d’un pays. Pour identifier les impacts possibles du changement climatique sur le rayonnement solaire en surface à l'échelle régionale (~ 50 km) en Afrique australe jusqu'à la fin du 21ème siècle, on a analysé les données mensuelles produites dans le cadre du projet CORDEX-Afrique sur la période 1979-2099. Ces données sont issues des sorties de 5 modèles régionaux de climat (RCM) forcés par 10 modèles globaux de climat (GCM) CMIP5, pour deux scénarios d’émissions, RCP4.5 et RCP8.5, en Afrique australe (SA) et sur une partie du SWIO (0-40°S ; 0- 60°E). Pour contribuer au projet futur proposé qui vise à approfondir l'étude des changements de SSR à l'échelle locale (~ 1 km de résolution horizontale) à l'île de la Réunion et à l'île Maurice, situées dans le Sud-ouest de l'océan Indien (SWIO), près du bord d’Est du domaine CORDEX-Afrique, des simulations climatiques ont été réalisées sur trois fenêtres temporelles de 10 ans : a) le passé 1996-2005 ; et b) le futur 2046-2055 et 2090-2099, en utilisant la version 4 du RCM RegCM (RegCM4), forcé par : 1) les réanalyses climatiques ERA-Interim (ERAINT) du centre européen pour les prévisions météorologiques à moyen terme (ECMWF) pour simuler un passé récent seulement ; et 2) deux GCMs (HadGEM2-ES et GFDL-ESM2M) de l’exercice CMIP5 de simulations du climat passé et futur pour le scénario d’émissions RCP8.5 à l’échelle régionale de 50km en Afrique australe et dans le sud-ouest de l’océan Indien (0-40°S ; 0- 100°E). L’analyse de l’impact du changement climatique sur le SSR sur la base de ces simulations reste cependant limitée, à cause de leur couverture temporelle (3 périodes de 10 ans) et du nombre de modèles (2 GCMs, 1 RCM) et de scénarios (1 RCP) utilisés. Il ressort de l’analyse des simulations de l’ensemble CORDEX-Afrique que : 1) sur la période passée récente, les GCMs forceurs surestiment généralement SSR d'environ 1 W/m2 en été austral (DJF : Décembre-Janvier-Février), et de 7,5 W/m2 en hiver austral (JJA : Juin-Juillet-Août), tandis que les RCMs, forcés par ces GCMs, sous-estiment SSR d'environ -32 W/m2 et de -14 W/m2 en été et en hiver, respectivement. 2) Les projections multi-modèles de changement de SSR simulées par les RCMs et leurs GCMs forceurs sont assez cohérentes. Les GCMs prévoient, en moyenne multi-modèles, une augmentation statistiquement significative de SSR d'environ 8 W/m2 en 2099 selon le scénario RCP4.5 et de 12 W/m2 en 2099 selon le scénario RCP8.5 sur le Centre de l’Afrique australe (SA-C), et une diminution de SSR, avec un degré de confiance élevé, d'environ -5 W/m2 en 2099 selon le scénario RCP4.5 et de -10 W/m2 en 2099 selon le scénario RCP8.5, pendant la saison DJF, en Afrique équatoriale (EA-E). Dans ces deux régions, les RCMs produisent, en moyenne multi-modèles, des tendances similaires (avec un degré de confiance élevé) à celles des GCMs, mais sur des zones d’extension spatiale plus faible que celle des GCMs. Cependant, pour la saison JJA, une augmentation de SSR, d'amplitude similaire dans les simulations GCMs et RCMs (~5 W/m2 en 2099 selon le scénario RCP4.5 et 10 W/m2 selon le scénario RCP8.5), est attendue dans la région EA-E. 3). Une diminution significative de la nébulosité (environ -6% en 2099) est attendue sur le continent sud-africain pour les GCMs comme pour les RCMs. 4) Le scénario RCP8.5 produit des changements d’amplitude supérieure de 2.5W/m2 pour les GCMs forceurs et de 5W/m2 pour les RCMs en 2099 à celle pour le scénario RCP4.5. 5). Comme pour les sorties du modèle RegCM4, les structures des biais ou des changements de SSR issu des RCMs du programme CORDEX-Afrique sont globalement corrélées avec celles de couverture nuageuse totale des RCMs. L’analyse des sorties du modèle RegCM4 indique que :
Changes in Surface Solar Radiation (SSR) have the potential to significantly impact diverse aspects of the climate system, and notably the socio-economic development of any nation. To identify the possible impacts of climate change on SSR at regional scales (~50 km) over Southern Africa and the South West Indian Ocean (SA-SWIO; 0-40°S ; 0- 100°E) up to the end of the 21st century, a slice downscaling experiment consisting of simulations covering three temporal windows: a) the present 1996-2005; b) the future 2046-2055 and 2090-2099 conducted with the Regional Climate Model (RCM) RegCM version 4, driven by the European Center for Medium-range Weather Forecasting (ECMWF) ERA-Interim reanalysis (ERAINT, only present) and 2 Global Climate Model (GCMs: HadGEM2-ES and GFDL-ESM2M) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under RCP8.5 scenario, are performed and evaluated. Since the slice simulation is of limited temporal coverage, number of regional and driven global models and climate change forcings, mainly because of the limit of available computational resources, the study towards a comprehensive knowledge of SSR changes in context of climate change is thus extended: an ensemble consisting of outputs from 20 regional climate downscaling realisations based on 5 RCMs that participated in the Coordinated Regional Downscaling Experiment (CORDEX) program (CORDEX-Africa) along with their 10 driving GCMs from CMIP5 covering southern Africa (0-40°S; 0- 100°E) during the period of 1990-2099 is analyzed under RCP4.5 and RCP8.5 up to 2099.The slice experiment indicates that 1) RegCM4 simulates present-day seasonal climatology, (surface air temperature, precipitation and SSR) quite well, but has a negative total cloud cover bias (about -20% in absolute percentage) when forced by the ERAINT and the two GCMs. 2) Internal variability of RegCM4-simulated annual means SSR (about 0.2 W/m2) is of one order smaller than the model bias compared with reference data. 3) RegCM4 simulates SSR changes in opposite signs when driven by the different GCMs under RCP8.5 scenario. 4) Electricity potential calculated using first-order estimation based on the RegCM simulations indicates a change less then 2% to 2099 with respect on present level.It is also found from the ensemble study that: 1) GCMs ensemble generally overestimates SSR by about 1 W/m2 in austral summer (December, January, and February, short as DJF) and 7.5 W/m2 in austral winter (June, July and August, short as JJA), while RCMs ensemble mean shows underestimations of SSR by about -32 W/m2 and -14 W/m2 in summer and winter seasons respectively when driven by GCMs. 2) Multi-model mean projections of SSR change patterns simulated by the GCMs and their embedded RCMs are fairly consistent. 3) GCMs project, in their multi-model means, a statistically significant increase of SSR of about 8 W/m2 in RCP4.5 and 12 W/m2 in RCP8.5 by 2099 over Centre Southern Africa (SA-C) and a highly confident decreasing SSR over Eastern Equatorial Africa (EA-E) of about -5 W/m2 in RCP4.5 and -10 W/m2 in RCP8.5 during the DJF season. RCMs simulate SSR change with statistical confidence over SA-C and EA-E area as well with a little spatial extension compared to GCMs. However, in the JJA season, an increase of SSR is found over EA-E of about 5 W/m2 by 2099 under RCP4.5 and 10 W/m2 under RCP8.5, of similar amplitudes in both the GCMs and RCMs simulations. 4) Significant cloudiness decrease (about -6 % to 2099) is found over continent of SA for GCMs and also shown in RCMs. 5) Larger SSR changes are found in the RCP8.5 scenario than in the RCP4.5 scenario in 2099, with about 2.5 W/m2 enhanced changes in GCMs and about 5 W/m2 in RCMs. 6) Either the biases or the changes pattern of SSR are overall correlated with the patterns of total cloud cover from RCMs in CORDEX-Africa program (for RegCM4 as well). The slice experiment indicates that
12

Ribu, Cherian, and Johannes Quaas. "Trends in AOD, Clouds, and Cloud Radiative Effects in Satellite Data and CMIP5 and CMIP6 Model Simulations Over Aerosol Source Regions." 2020. https://ul.qucosa.de/id/qucosa%3A72473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Several regions worldwide have seen significant trends in anthropogenic aerosol emissions during the period of detailed satellite observations since 2001. Over Europe (EUR) and North America (NAM) there were strong declines, over China increases then declines and over India, strong increases. Regional trends in model-simulated aerosol optical depth (AOD) and cloud radiative effects in both the Fifth and Sixth Coupled Model Intercomparison Projects (CMIP5 and CMIP6) are broadly consistent with the ones from satellite retrievals in most parts of EUR, NAMand India. CMIP6 models better match satellite-derived AOD trend in western NAM(increasing) and eastern China (decreasing), where CMIP5 models failed, pointing to improved anthropogenic aerosol emissions. Drop concentration trends in both observations and models qualitatively match AOD trends. The result for solar cloud radiative effect in models, however, is due to compensating errors: Models fail to reproduce observed liquid water path trends and show, in turn, opposite trends in cloud fraction.
13

Wu, Ren-Jie, and 吳仁傑. "The simulation of decadal variability in CMIP5." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/52499006156584821429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
碩士
國立臺灣大學
大氣科學研究所
100
Decadal variability is an oscillation for more than ten years, usually appears in the ocean. In the Atlantic, AMO is the main multi-decadal variability. There are several decadal oscillations in the Pacific, which we call Pacific decadal variability (PDV). These decadal structures may impact on regional climate. IPCC will take decadal variability as an important issue and publish the result in the fifth assessment report (AR5). This study uses Rotated-EOF (REOF) method, analyzes decadal variability in observation data and CMIP5 models. In observation data, AMO structure appears in REOF1. Decadal variability of Nino region, north Pacific and Indian Ocean are the 2nd mode in REOF analysis. SPDO, PDO and decadal variability in central Pacific appear in REOF3. The rotated principal components (RPCs) also match with the previous study. In CMIP5 models, we use three different model experiment designs: (1) Pre-industrial, refer as the internal variability in models. (2) Historical run, with the observation record from 1850 to 2005. (3) RCP8.5 identifies a concentration pathway that approximately results in a radiative forcing of 8.5 W/m2 at year 2100. In the pre-industrial run, most of the CMIP5 models show the decadal variability of El-Nino region, but the AMO structure which consider as a nature mode in decadal variability, does not appear in model’s pre-industrual run. In the Historical run, decadal structure shows variety types in each model. In the model’s RCP8.5 run, main decadal structure shows large region in global, with an upward parabola time series. We use pattern correlation analysis, and choose the models which are similar with observation data. In this study, historical run in HadGEM2-CC models are similar with the observation data. On the analysis of variance, we separate total variance to three different time scales: annual, decadal and trend. We compute the ratio of the three time scales and the total variance. The smallest ratio of trend variance is model’s pre-industrial run, but most significant in RCP8.5 run which the mean is more than 80% in box-plot analysis. In variance map, decadal variance ratio is most significant in North Hemisphere Ocean in observation data; it can be simulated in some model’s historical run. In RCP8.5 run, the decadal variability ratio is less than 10% in most regions. We find that the total mass of CO2 in RCP8.5 run, ascending with a parabolic curve. We remove the linear trend of total mass of CO2, the residual forcing could project on decadal variability and affect the RPC performance. Keywords: Decadal variability, Atlantic Multi-decadal Oscillation, pacific decadal variability, rotated-EOF, pattern correlation
14

"Evaluation of CMIP5 historical simulations in the Colorado River Basin." Master's thesis, 2018. http://hdl.handle.net/2286/R.I.49105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
abstract: The Colorado River Basin (CRB) is the primary source of water in the southwestern United States. A key step to reduce the uncertainty of future streamflow projections in the CRB is to evaluate the performance of historical simulations of General Circulation Models (GCMs). In this study, this challenge is addressed by evaluating the ability of nineteen GCMs from the Coupled Model Intercomparison Project Phase Five (CMIP5) and four nested Regional Climate Models (RCMs) in reproducing the statistical properties of the hydrologic cycle and temperature in the CRB. To capture the transition from snow-dominated to semiarid regions, analyses are conducted by spatially averaging the climate variables in four nested sub-basins. Most models overestimate the mean annual precipitation (P) and underestimate the mean annual temperature (T) at all locations. While a group of models capture the mean annual runoff at all sub-basins with different strengths of the hydrological cycle, another set of models overestimate the mean annual runoff, due to a weak cycle in the evaporation channel. An abrupt increase in the mean annual T in observed and most of the simulated time series (~0.8 °C) is detected at all locations despite the lack of any statistically significant monotonic trends for both P and T. While all models simulate the seasonality of T quite well, the phasing of the seasonal cycle of P is fairly reproduced in just the upper, snow-dominated sub-basin. Model performances degrade in the larger sub-basins that include semiarid areas, because several GCMs are not able to capture the effect of the North American monsoon. Finally, the relative performances of the climate models in reproducing the climatologies of P and T are quantified to support future impact studies in the basin.
Dissertation/Thesis
Masters Thesis Civil, Environmental and Sustainable Engineering 2018
15

Lemos, Gil Ramos Lopes Gonçalves. "Wave climate in a global warming scenario: simulations with a CMIP5 ensemble." Master's thesis, 2016. http://hdl.handle.net/10451/24664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Tese de mestrado em Ciências Geofísicas, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016
As ondas gravíticas geradas pelo vento na superfície do oceano são as mais energéticas do espectro, sendo responsáveis por mais de metade da energia presente em todas as ondas nesta superfície (Kinsman, 1965). São geradas pela transferência de momento do vento para a água e dominam o espectro de ondas oceânicas, ultrapassando a contribuição das marés, das “storm surges”, dos tsunamis, etc. (Munk, 1951). Pela sua prevalência no oceano e influência nas actividades humanas, o seu estudo deve ser aprofundado, e as potenciais alterações no seu regime devem ser tidas em conta. Porém, apesar da sua relevância, não existe ainda nenhum modelo teórico preciso de geração e crescimento das ondas, dado que os mecanismos presentes nestes fenómenos não são ainda totalmente compreendidos por forma a serem correctamente quantificados. Quando o vento sopra sobre a superfície do oceano, ondas são formadas pela transferência de momento no sentido da água. Esta perturbação inicial pode desenvolver-se se o vento continuar a soprar de forma constante, sendo que as ondas irão crescer até atingirem o seu nível de saturação. Os dois principais tipos de ondas à superfície do oceano são denominados “wind sea” ou apenas “sea”, e “swell”. As ondas de “sea” detêm alta frequência e curtos comprimentos de onda, estando directamente associadas ao campo de vento sobrejacente, crescendo rapidamente e depressa atingindo o nível de saturação. Por sua vez, as ondas de “swell”, com frequências mais baixas e comprimentos de onda maiores, crescem lentamente e podem propagar-se com velocidades de fase superiores à velocidade do vento, uma vez que também extraem energia de ondas com mais alta frequência, devido a interações não lineares entre as ondas. Estas ondas podem propagar-se por milhares de quilómetros (Barber and Ursell, 1948; Munk et al., 1963; Snodgrass et al., 1966) com muito ligeira atenuação (Ardhuin et al., 2009). Assim sendo, é possível assumir que existe uma ligação causal entre, por exemplo, um evento local de erosão costeira e uma tempestade que ocorreu “do outro lado” do mundo (em outro hemisfério). Este é apenas um dos factores interessantes que motivam a execução deste trabalho de análise das futuras alterações no clima de ondas global, uma vez que as alterações climáticas atmosféricas locais no vento podem propagar-se sob a forma de ondas à superfície do oceano, e gerar impactos a longas distâncias. Até recentemente, o impacto das alterações climáticas no clima de ondas futuro tinha recebido muito pouca atenção. Nos últimos anos, alguns estudos foram realizados, sob os auspícios do COWCLIP (Coordinated Ocean Wave Climate Project), utilizando um único modelo e um único cenário de concentração de gases de efeito estufa (CMIP3), recebendo atenção moderada por parte do IPCC-AR5 (Intergovernmental Panel for Climate Change - Fifth Assessment Report). No presente estudo, o impacto do aquecimento global no clima de ondas global é investigado, através de um “ensemble” composto por 2 membros (simulações do modelo de ondas WAM) de um conjunto maior, composto por 8 simulações dinâmicas e 20 simulações estatísticas, denominado GLOWAVES-2, e pertencente ao projecto COWCLIP. O (único) forçamento destas duas simulações (em termos de velocidade do vento e cobertura oceânica de gelo) provém do modelo climático EC-Earth, seguindo um cenário de elevadas emissões de gases de efeito estufa (RCP8.5). Ambas as simulações cobrem um período total de 130 anos (1971-2100), no entanto, para efeitos de análise comparativa, dois períodos mais curtos são utilizados como referência: o “clima presente” (PC20: média das duas simulações (PC20-1 e PC20-4); 1971-2000) e o “clima futuro” (projectado; FC21: média das duas simulações (FC21-1 e FC21-4); 2071-2100). O período de referência histórico (1971-2005) foi validado através da comparação com a reanálise ERA-Interim, do ECMWF (European Centre for Medium-Range Weather Forecasts) e com dados observacionais de bóias, revelando que o modelo WAM, com forçamento do EC-Earth, é capaz de produzir cenários realistas do clima de ondas global no final do século XX, fornecendo a confiança necessária na capacidade de simular uma alteração climática igualmente credível até ao final do século XXI. Os resultados (alterações futuras no clima de ondas como projectado pelas simulações) são obtidos através da comparação entre as médias de PC20 e FC21, para quatro variáveis diferentes: (altura significativa; m), (período médio da onda; s), (direcção média da frente de onda; º), (potência das ondas; W/m, = , como em Young, 1999). Para complementar os resultados destas variáveis, os impactos da alteração climática no campo do vento ( ; velocidade do vento a 10 metros de altura; m/s) foram também analisados. Os resultados expõem médias a nível anual e sazonal (estações extremas de Inverno e Verão: DJF (Dezembro, Janeiro e Fevereiro) e JJA (Junho, Julho e Agosto)). Como forma de complemento, são também apresentadas as tendências lineares ao longo do período 2006-2100, para a altura significativa e para a potência (fluxo de energia) das ondas. Devido às alterações climáticas, as projecções indicam alterações estatisticamente significativas em todas as variáveis analisadas, que poderão referir-se a aumentos ou decréscimos na sua intensidade, gradiente espacial ou mudanças na localização geográfica de determinados valores. No que toca à altura significativa, , os aumentos nesta variável dominam as projecções, essencialmente a nível anual, e durante o período JJA (verificando-se em 73.93% do oceano global), sendo no Oceano Antárctico (“Southern Ocean”) que os maiores aumentos se verificam, estando esta situação directamente relacionada com uma intensificação projectada a nível da velocidade do vento ( ) na mesma área. A região onde os decréscimos projectados se mostram mais prevalecentes é no Oceano Atlântico Norte, em particular durante DJF. A tendência linear de altura significativa projectada durante o período 2006-2100 estabelece-se, a nível anual, em 0.41 cm/década. No que toca ao período médio, , são esperados aumentos nos seus valores anuais e sazonais em praticamente todo o oceano global, excepto no Atlântico Norte e Pacífico Oeste durante DJF, e em maior extensão no verão boreal (JJA), em 87.48% da área de oceano global, em média. Tendo em conta os resultados para esta variável e para a altura significativa, uma vez que a potência das ondas ( ) depende destes, é esperado que o seu comportamento não se diferencie muito dos anteriormente referidos. É efectivamente o que acontece nas projecções de , onde se verifica um padrão de alterações muito semelhante ao da altura significativa, uma vez que as diferenças de apresentam valores reduzidos. Aumentos projectados de potência das ondas (que se observam em 81.43% do oceano global) alcançam os 30% no sector Índico do Oceano Antárctico (a sudoeste da Austrália), durante o inverno austral (JJA), sendo que o valor médio de incremento a nível global para esta estação se situa nos 7.18%. A tendência linear de potência das ondas projectada durante o período 2006-2100 estabelece-se, a nível anual, em 0.36 cm/década. Relativamente à direcção média da frente de onda ( ), as projecções indicam a prevalência de rotações anti-horárias (contra os ponteiros do relógio) nas latitudes médias e altas de ambos os hemisférios, associadas ao deslocamento latitudinal positivo das tempestades para latitudes mais elevadas (Arblaster et al., 2011). Nas regiões tropicais e subtropicais, rotações positivas (no sentido dos ponteiros do relógio) são consistentes com uma maior contribuição de “swell” proveniente do Oceano Antárctico, especialmente durante o inverno austral (JJA), quando a sua “produção” é maior. A análise de EOFs (“Empirical Orthogonal Functions”) para os campos de e no Oceano Atlântico Norte, em termos de alterações entre o clima presente (PC20) e o projectado para o futuro (FC21), relevou que é esperado um ligeiro enfraquecimento dos principais centros de acção de ambos os campos (redução da variabilidade), a nível anual. A nível sazonal, comportamento similar foi detectado para a altura significativa, porém, a nível de potência, um ligeiro fortalecimento dos seus centros de acção é esperado, com um deslocamento latitudinal positivo associado, de cerca de 2º. No entanto, deslocamentos da posição dos valores climatológicos máximos para latitudes mais elevadas não se verificam para o Atlântico Norte, apenas em algumas regiões do Oceano Antárctico.
Ocean surface wind waves are of outmost relevance for practical and scientific reasons. On the one hand, waves have a direct impact in coastal erosion, but also in sediment transport and beach nourishment, in ship routing and ship design, as well as in coastal and offshore infrastructures, just to mention the most relevant. On the other hand waves are part of the climate system, and modulate most of the exchanges that take place at the atmosphere-ocean interface. In fact waves are the “ultimate” air-sea interaction process, clearly visible and noticeable. Up until recently, the impact of climate change in future wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursued and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (Fifth Assessment Report). In the present study the impact of a warmer climate in the global ocean future wave climate is investigated through a 2-member “coherent” ensemble of wave climate projections: single-model, single-forcing, and single-scenario. The two ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble historic period has been set for 1971 to 2005. The projected changes in the global ocean wave climate are analyzed for the 2071-2100 period. The ensemble historical period is evaluated trough the comparison with the European Centre for medium-range weather forecasts (ECMWF) ERA-Interim reanalysis, and buoy observations.
16

蔡鴻鵬. "Analysis of the summer ISO simulation in CMIP-5 AGCMs and CGCMs." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/94816415105236989027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

"Climate Variability and Trend on Interannual-to-Centennial timescales from Global Observations and Atmosphere-Ocean Model Simulations." Doctoral diss., 2013. http://hdl.handle.net/2286/R.I.17718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
abstract: The numerical climate models have provided scientists, policy makers and the general public, crucial information for climate projections since mid-20th century. An international effort to compare and validate the simulations of all major climate models is organized by the Coupled Model Intercomparison Project (CMIP), which has gone through several phases since 1995 with CMIP5 being the state of the art. In parallel, an organized effort to consolidate all observational data in the past century culminates in the creation of several "reanalysis" datasets that are considered the closest representation of the true observation. This study compared the climate variability and trend in the climate model simulations and observations on the timescales ranging from interannual to centennial. The analysis focused on the dynamic climate quantity of zonal-mean zonal wind and global atmospheric angular momentum (AAM), and incorporated multiple datasets from reanalysis and the most recent CMIP3 and CMIP5 archives. For the observation, the validation of AAM by the length-of-day (LOD) and the intercomparison of AAM revealed a good agreement among reanalyses on the interannual and the decadal-to-interdecadal timescales, respectively. But the most significant discrepancies among them are in the long-term mean and long-term trend. For the simulations, the CMIP5 models produced a significantly smaller bias and a narrower ensemble spread of the climatology and trend in the 20th century for AAM compared to CMIP3, while CMIP3 and CMIP5 simulations consistently produced a positive trend for the 20th and 21st century. Both CMIP3 and CMIP5 models produced a wide range of the magnitudes of decadal and interdecadal variability of wind component of AAM (MR) compared to observation. The ensemble means of CMIP3 and CMIP5 are not statistically distinguishable for either the 20th- or 21st-century runs. The in-house atmospheric general circulation model (AGCM) simulations forced by the sea surface temperature (SST) taken from the CMIP5 simulations as lower boundary conditions were carried out. The zonal wind and MR in the CMIP5 simulations are well simulated in the AGCM simulations. This confirmed SST as an important mediator in regulating the global atmospheric changes due to GHG effect.
Dissertation/Thesis
Ph.D. Mechanical Engineering 2013

To the bibliography