To see the other types of publications on this topic, follow the link: Simulation plasma.

Journal articles on the topic 'Simulation plasma'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Simulation plasma.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Prikhodko, V. V., Z. Chen, I. A. Kotelnikov, D. V. Yakovlev, J. Yu, and Q. Zeng. "SIMULATION OF PLASMA PARAMETERS FOR ALIANCE PROJECT." Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion 44, no. 2 (2021): 166–67. http://dx.doi.org/10.21517/0202-3822-2021-44-2-166-167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Langdon, A. Bruce. "Implicit plasma simulation." Space Science Reviews 42, no. 1-2 (October 1985): 67–83. http://dx.doi.org/10.1007/bf00218224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ALVARADO, DANIEL, and FRANCISCO FRUTOS ALFARO. "SIMULATION OF MULTIPLE PLASMA EDDIES IN 2D." Revista de Matemática: Teoría y Aplicaciones 28, no. 1 (December 17, 2020): 95–104. http://dx.doi.org/10.15517/rmta.v28i1.42135.

Full text
Abstract:
In this contribution, we present the simulations of convective plasma cells of the Sun in two dimensions. With a simple stream function, it is possible to visualize multiple n × n convective cells. To obtain the simulation, we solve the magnetic diffusion equation with a fourth order scheme. Some applications for this simulations are also presented.
APA, Harvard, Vancouver, ISO, and other styles
4

Pflug, Andreas, Michael Siemers, Christoph Schwanke, and Bernd Szyszka. "Simulation von Plasma-Beschichtungsprozessen." Vakuum in Forschung und Praxis 22, no. 3 (May 2010): 31–34. http://dx.doi.org/10.1002/vipr.201000419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Taccogna, Francesco, Savino Longo, Mario Capitelli, and Ralf Schneider. "Stationary plasma thruster simulation." Computer Physics Communications 164, no. 1-3 (December 2004): 160–70. http://dx.doi.org/10.1016/j.cpc.2004.06.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Forslund, David W. "Fundamentals of plasma simulation." Space Science Reviews 42, no. 1-2 (October 1985): 3–16. http://dx.doi.org/10.1007/bf00218219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Takagi, Shigeyuki, Takumi Chikata, and Makoto Sekine. "Plasma simulation for dual-frequency capacitively coupled plasma incorporating gas flow simulation." Japanese Journal of Applied Physics 60, SA (October 30, 2020): SAAB07. http://dx.doi.org/10.35848/1347-4065/abc106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kashchenko, Nikolay M., Sergey A. Ishanov, and Sergey V. Matsievsky. "Simulation equatorial plasma bubbles started from plasma clouds." Computer Research and Modeling 11, no. 3 (June 2019): 463–76. http://dx.doi.org/10.20537/2076-7633-2019-11-3-463-476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abe, Hirotada. "Simulation of the Plasma Waves." Kakuyūgō kenkyū 54, no. 5 (1985): 512–31. http://dx.doi.org/10.1585/jspf1958.54.512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Belov, A. A., and N. N. Kalitkin. "Simulation of heterogeneous plasma microfield." Доклады Академии наук 489, no. 1 (November 10, 2019): 22–26. http://dx.doi.org/10.31857/s0869-5652489122-26.

Full text
Abstract:
Optical properties of plasma are determined by presence of fluctuating micro-scopic electric field. In the present work, we construct a simple ab initio model of plasma microfield accounting for its heterogeneity up to octupole term for the first time. Comparison with experiments shows that only this model describes the observed number of spectral lines.
APA, Harvard, Vancouver, ISO, and other styles
11

van Dijk, J., G. M. W. Kroesen, and A. Bogaerts. "Plasma modelling and numerical simulation." Journal of Physics D: Applied Physics 42, no. 19 (September 18, 2009): 190301. http://dx.doi.org/10.1088/0022-3727/42/19/190301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hassanein, A. "Plasma Disruption Modeling and Simulation." Fusion Technology 26, no. 3P2 (November 1994): 532–39. http://dx.doi.org/10.13182/fst94-a40212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Perevertailo, Volodymyr Volodymyrovych. "Simulation of microwave plasma generator." Microsystems, Electronics and Acoustics 23, no. 1 (February 28, 2018): 16–22. http://dx.doi.org/10.20535/2523-4455.2018.23.1.105252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tajima, T. "Plasma physics via computer simulation." Computer Physics Communications 42, no. 1 (September 1986): 151–52. http://dx.doi.org/10.1016/0010-4655(86)90240-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Piel, A. "Plasma crystals: experiments and simulation." Plasma Physics and Controlled Fusion 59, no. 1 (October 18, 2016): 014001. http://dx.doi.org/10.1088/0741-3335/59/1/014001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Christlieb, A. J., R. Krasny, J. P. Verboncoeur, J. W. Emhoff, and I. D. Boyd. "Grid-free plasma Simulation techniques." IEEE Transactions on Plasma Science 34, no. 2 (April 2006): 149–65. http://dx.doi.org/10.1109/tps.2006.871104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hewett, Dennis W., and A. Bruce Langdon. "Electromagnetic direct implicit plasma simulation." Journal of Computational Physics 72, no. 1 (September 1987): 121–55. http://dx.doi.org/10.1016/0021-9991(87)90075-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ross, David W., and William Dorland. "Comparing simulation of plasma turbulence with experiment. II. Gyrokinetic simulations." Physics of Plasmas 9, no. 12 (December 2002): 5031–35. http://dx.doi.org/10.1063/1.1518997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Battarbee, Markus, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, et al. "Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach." Annales Geophysicae 39, no. 1 (January 28, 2021): 85–103. http://dx.doi.org/10.5194/angeo-39-85-2021.

Full text
Abstract:
Abstract. Modern investigations of dynamical space plasma systems such as magnetically complicated topologies within the Earth's magnetosphere make great use of supercomputer models as well as spacecraft observations. Space plasma simulations can be used to investigate energy transfer, acceleration, and plasma flows on both global and local scales. Simulation of global magnetospheric dynamics requires spatial and temporal scales currently achievable through magnetohydrodynamics or hybrid-kinetic simulations, which approximate electron dynamics as a charge-neutralizing fluid. We introduce a novel method for Vlasov-simulating electrons in the context of a hybrid-kinetic framework in order to examine the energization processes of magnetospheric electrons. Our extension of the Vlasiator hybrid-Vlasov code utilizes the global simulation dynamics of the hybrid method whilst modelling snapshots of electron dynamics on global spatial scales and temporal scales suitable for electron physics. Our eVlasiator model is shown to be stable both for single-cell and small-scale domains, and the solver successfully models Langmuir waves and Bernstein modes. We simulate a small test-case section of the near-Earth magnetotail plasma sheet region, reproducing a number of electron distribution function features found in spacecraft measurements.
APA, Harvard, Vancouver, ISO, and other styles
20

Rhee, Tongnyeol, Minho Woo, and Chang-Mo Ryu. "Simulation Study of Plasma Emission in Beam-Plasma Interactions." Journal of the Korean Physical Society 54, no. 9(5) (January 15, 2009): 313–16. http://dx.doi.org/10.3938/jkps.54.313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ivanovski, S. L., A. Bonanno, S. Tudisco, N. Gambino, and D. Mascali. "Plasma astrophysics and laser experiments: hydrodynamical simulation of colliding plasmas." Radiation Effects and Defects in Solids 165, no. 6-10 (October 2010): 457–62. http://dx.doi.org/10.1080/10420151003718493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lapenta, Giovanni, and J. U. Brackbill. "Simulation of Plasma Shielding of Dust Particles in Anisotropic Plasmas." Physica Scripta T75, no. 1 (1998): 264. http://dx.doi.org/10.1238/physica.topical.075a00264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Brault, Pascal. "Multiscale Molecular Dynamics Simulations of Fuel Cell Nanocatalyst Plasma Sputtering Growth and Deposition." Energies 13, no. 14 (July 11, 2020): 3584. http://dx.doi.org/10.3390/en13143584.

Full text
Abstract:
Molecular dynamics simulations (MDs) are carried out for predicting platinum Proton Exchange Membrane (PEM) fuel cell nanocatalyst growth on a model carbon electrode. The aim is to provide a one-shot simulation of the entire multistep process of deposition in the context of plasma sputtering, from sputtering of the target catalyst/transport to the electrode substrate/deposition on the porous electrode. The plasma processing reactor is reduced to nanoscale dimensions for tractable MDs using scale reduction of the plasma phase and requesting identical collision numbers in experiments and the simulation box. The present simulations reproduce the role of plasma pressure for the plasma phase growth of nanocatalysts (here, platinum).
APA, Harvard, Vancouver, ISO, and other styles
24

Schulze, Hans Peter, and Katharina Mecke. "Influence of Plasma Channel Change on the Surface Topology in the Electrical Discharge Machining." Key Engineering Materials 611-612 (May 2014): 664–70. http://dx.doi.org/10.4028/www.scientific.net/kem.611-612.664.

Full text
Abstract:
For the EDM, it is important that the surface topology can be determined for given process parameters in advance. Simulations with constant plasma channel radius are very inaccurate and only give a limit of thermally-influenced zone to. Many functional relationships of the temporal change of the plasma channel are only for small time periods and do not reflect properties of the dielectric. In the paper is shown how various properties of the dielectric, contribute to the change of the plasma channel and the plasma channel as different behaviors can be treated with one simulation program. The maximum thermal load may be calculated by selective application of simulation, but also the topologies through moving or split plasma channels. This extended simulation is important because in the micro-EDM process instabilities leading to the splitting of the plasma channels. The simulations are reviewed on the basis of individual discharges and corrected corresponding weighting factors.
APA, Harvard, Vancouver, ISO, and other styles
25

OSTRIKOV, KEN, and SHUYAN XU. "PLASMA-AIDED NANOFABRICATION: "PLASMA-BUILDING BLOCK" APPROACH." International Journal of Nanoscience 05, no. 04n05 (August 2006): 439–44. http://dx.doi.org/10.1142/s0219581x06004607.

Full text
Abstract:
Unique features and benefits of the plasma-aided nanofabrication are considered by using the "plasma-building block" approach, which is based on plasma diagnostics and nanofilm characterization, cross-referenced by numerical simulation of generation and dynamics of building blocks in the gas phase, their interaction with nanostructured surfaces, and ab initio simulation of chemical structure of relevant nanoassemblies. The examples include carbon nanotip microemitter structures, semiconductor quantum dots and nanowires synthesized in the integrated plasma-aided nanofabrication facility.
APA, Harvard, Vancouver, ISO, and other styles
26

Brinca, A. L., U. Motschmann, and F. J. Romeiras. "On the dispersion of two coexisting nongyrotropic ion species." Annales Geophysicae 17, no. 9 (September 30, 1999): 1134–44. http://dx.doi.org/10.1007/s00585-999-1134-x.

Full text
Abstract:
Abstract. Space observations in the solar wind and simulations of high Mach number bow-shocks have detected particle populations with two coexisting nongyrotropic ion species. We investigate the influence of these two sources of free energy on the stability of parallel (with respect to the ambient magnetic field) and perpendicular propagation. For parallel modes, we derive their dispersion equation in a magnetoplasma with protons and alpha particles that may exhibit stationary nongyrotropy (SNG) and discuss the characteristics of its solutions. Kinetic simulations study the behaviour of perpendicular electrostatic (Bernstein-like) waves in a plasma whose ion populations (positrons and fictitious singly-charged particles with twice the electron mass, for the sake of simulation feasability) can be time-varying nongyrotropic (TNG). The results show that the coexistence of two gyrophase bunched species does not significantly enhance the parallel SNG instability already found for media with only one nongyrotropic species, whereas it strongly intensifies the growth of Bernstein-like modes in TNG plasmas. Key words. Magnetospheric physics (plasma waves and instabilities) · Space plasma physics (numerical simulation studies; waves and instabilities)
APA, Harvard, Vancouver, ISO, and other styles
27

Auweter-Kurtz, Monika, Helmut L. Kurtz, and Stefan Laure. "Plasma generators for re-entry simulation." Journal of Propulsion and Power 12, no. 6 (November 1996): 1053–61. http://dx.doi.org/10.2514/3.24143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Garcia, Cristina, and Eugene Olevsky. "Numerical Simulation of Spark Plasma Sintering." Advances in Science and Technology 63 (October 2010): 58–61. http://dx.doi.org/10.4028/www.scientific.net/ast.63.58.

Full text
Abstract:
A macro-scale model of spark plasma sintering (SPS) that couples electrical, thermal, stress-strain and densification components is presented. The continuum theory of sintering is incorporated enabling the evolution of the densification based on local conditions, thus a true spatial density distribution could be obtained. Specimen behavior is described through a non-linear viscous constitutive relation. The simulation is based on an FEM computer code. Several examples are shown and results are compared with experimental data available.
APA, Harvard, Vancouver, ISO, and other styles
29

Yang Zheng-Quan, Li Cheng, and Lei Yi-An. "Magnetohydrodynamic simulation of conical plasma compression." Acta Physica Sinica 65, no. 20 (2016): 205201. http://dx.doi.org/10.7498/aps.65.205201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Liu Shao-Bin, Zhu Chuan-Xi, and Yuan Nai-Chang. "FDTD simulation for plasma photonic crystals." Acta Physica Sinica 54, no. 6 (2005): 2804. http://dx.doi.org/10.7498/aps.54.2804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

MASAMUNE, Sadao. "Simulation Studies on Plasma Ion Processes." Journal of the Vacuum Society of Japan 51, no. 2 (2008): 93–98. http://dx.doi.org/10.3131/jvsj2.51.93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ishiguro, S., S. Usami, R. Horiuchi, H. Ohtani, A. Maluckov, and M. M. Škorić. "Multi-scale simulation for plasma science." Journal of Physics: Conference Series 257 (November 1, 2010): 012026. http://dx.doi.org/10.1088/1742-6596/257/1/012026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Vlad, G., S. Briguglio, G. Fogaccia, and B. Di Martino. "Gridless finite-size-particle plasma simulation." Computer Physics Communications 134, no. 1 (February 2001): 58–77. http://dx.doi.org/10.1016/s0010-4655(00)00191-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Coutsias, E. A., F. R. Hansen, T. Huld, G. Knorr, and J. P. Lynov. "Spectral methods in numerical plasma simulation." Physica Scripta 40, no. 3 (September 1, 1989): 270–79. http://dx.doi.org/10.1088/0031-8949/40/3/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Belov, A. A., and N. N. Kalitkin. "Simulation of an Inhomogeneous Plasma Microfield." Doklady Mathematics 100, no. 3 (November 2019): 589–93. http://dx.doi.org/10.1134/s1064562419060024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Tamura, Yuichi, Hiroaki Ohtani, Tomohiro Umetani, and Hiroaki Nakamura. "Haptization on Numerical Simulation of Plasma." IEEE Transactions on Plasma Science 38, no. 10 (October 2010): 2974–79. http://dx.doi.org/10.1109/tps.2010.2060363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Misaka, Takashi, and Satoyuki Kawano. "Oxygen plasma simulation for sterilization processes." Proceedings of The Computational Mechanics Conference 2004.17 (2004): 577–78. http://dx.doi.org/10.1299/jsmecmd.2004.17.577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lin, Hai, and Chengpu Liu. "Plasma Simulation beyond Rigid-Macroparticle Approximation." Journal of Modern Physics 09, no. 05 (2018): 807–15. http://dx.doi.org/10.4236/jmp.2018.95051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tanaka, Yasunori, Takayasu Fujino, and Toru Iwao. "Review of Thermal Plasma Simulation Technique." IEEJ Transactions on Electrical and Electronic Engineering 14, no. 11 (October 27, 2019): 1582–94. http://dx.doi.org/10.1002/tee.23040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Eastwood, James W. "Particle simulation methods in plasma physics." Computer Physics Communications 43, no. 1 (December 1986): 89–106. http://dx.doi.org/10.1016/0010-4655(86)90055-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Masoud, M. M., H. A. El-Gamal, H. A. El-Tayeb, M. A. Hassouba, and M. A. Abd Al-Halim. "Magnetohydrodynamic simulation for plasma focus devices." Plasma Devices and Operations 15, no. 4 (December 2007): 263–81. http://dx.doi.org/10.1080/10519990701616877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Fu-qiu, Shao, Wang Long, Yao Xin-zi, and Wu Han-min. "Numerical simulation of ECR plasma sources." Acta Physica Sinica (Overseas Edition) 5, no. 9 (September 1996): 677–91. http://dx.doi.org/10.1088/1004-423x/5/9/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bai, Bing, Jun Zha, Xiaoning Zhang, Cheng Wang, and Weidong Xia. "Simulation of Magnetically Dispersed Arc Plasma." Plasma Science and Technology 14, no. 2 (February 2012): 118–21. http://dx.doi.org/10.1088/1009-0630/14/2/07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bujarbarua, S., M. Nambu, B. J. Saikia, M. Eda, and J. I. Sakai. "Simulation Study of Nonlinear Plasma Maser." Physica Scripta T75, no. 1 (1998): 46. http://dx.doi.org/10.1238/physica.topical.075a00046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Geng, Z., K. Yao, and Y. Zou. "Spectra simulation of the argon plasma." Physica Scripta T144 (June 1, 2011): 014029. http://dx.doi.org/10.1088/0031-8949/2011/t144/014029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Presura, R., V. V. Ivanov, Y. Sentoku, V. I. Sotnikov, P. J. Laca, N. Le Galloudec, A. Kemp, et al. "Laboratory Simulation of Magnetospheric Plasma Shocks." Astrophysics and Space Science 298, no. 1-2 (July 2005): 299–303. http://dx.doi.org/10.1007/s10509-005-3950-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Horton, W., C. Chiu, T. Ditmire, P. Valanju, R. Presura, V. V. Ivanov, Y. Sentoku, et al. "Laboratory simulation of magnetospheric plasma shocks." Advances in Space Research 39, no. 3 (January 2007): 358–69. http://dx.doi.org/10.1016/j.asr.2005.01.087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Nieter, Chet, and John R. Cary. "VORPAL: a versatile plasma simulation code." Journal of Computational Physics 196, no. 2 (May 2004): 448–73. http://dx.doi.org/10.1016/j.jcp.2003.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Carboni, Rodrigo, and Francisco Frutos-Alfaro. "Computer simulation of convective plasma cells." Journal of Atmospheric and Solar-Terrestrial Physics 67, no. 17-18 (December 2005): 1809–14. http://dx.doi.org/10.1016/j.jastp.2004.11.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Decyk, Viktor K. "Wave-particle diagnostics for plasma simulation." Space Science Reviews 42, no. 1-2 (October 1985): 113–30. http://dx.doi.org/10.1007/bf00218227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography