Academic literature on the topic 'Simulation of joint extremes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Simulation of joint extremes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Simulation of joint extremes"
Phalitnonkiat, Pakawat, Peter G. M. Hess, Mircea D. Grigoriu, Gennady Samorodnitsky, Wenxiu Sun, Ellie Beaudry, Simone Tilmes, et al. "Extremal dependence between temperature and ozone over the continental US." Atmospheric Chemistry and Physics 18, no. 16 (August 21, 2018): 11927–48. http://dx.doi.org/10.5194/acp-18-11927-2018.
Full textYao, L., W. Dongxiao, Z. Zhenwei, H. Weihong, and S. Hui. "A Monte Carlo simulation of multivariate general Pareto distribution and its application." Ocean Science Discussions 11, no. 6 (December 8, 2014): 2733–53. http://dx.doi.org/10.5194/osd-11-2733-2014.
Full textMuheki, Derrick, Axel A. J. Deijns, Emanuele Bevacqua, Gabriele Messori, Jakob Zscheischler, and Wim Thiery. "The perfect storm? Co-occurring climate extremes in East Africa." Earth System Dynamics 15, no. 2 (April 24, 2024): 429–66. http://dx.doi.org/10.5194/esd-15-429-2024.
Full textTencer, Bárbara, Andrew Weaver, and Francis Zwiers. "Joint Occurrence of Daily Temperature and Precipitation Extreme Events over Canada." Journal of Applied Meteorology and Climatology 53, no. 9 (September 2014): 2148–62. http://dx.doi.org/10.1175/jamc-d-13-0361.1.
Full textSanga, Bharat, Reeta Wattal, and D. S. Nagesh. "An FEA based study of thermal behaviour of ultrasonically welded phosphor bronze sheets." Journal of Mechanical Engineering and Sciences 15, no. 2 (June 10, 2021): 8057–71. http://dx.doi.org/10.15282/jmes.15.2.2021.10.0635.
Full textAnderson, Dylan, Peter Ruggiero, Fernando J. Mendez, Ana Rueda, Jose A. Antolinez, Laura Cagigal, Curt Storlazzi, Patrick Barnard, and John Marra. "TIME-VARYING EMULATOR FOR SHORT- AND LONG-TERM ANALYSIS OF COASTAL FLOODING (TESLA-FLOOD)." Coastal Engineering Proceedings, no. 36 (December 30, 2018): 4. http://dx.doi.org/10.9753/icce.v36.currents.4.
Full textBrunner, Manuela I., and Eric Gilleland. "Stochastic simulation of streamflow and spatial extremes: a continuous, wavelet-based approach." Hydrology and Earth System Sciences 24, no. 8 (August 12, 2020): 3967–82. http://dx.doi.org/10.5194/hess-24-3967-2020.
Full textBarbariol, Francesco, Alvise Benetazzo, Sandro Carniel, and Mauro Sclavo. "Space–Time Wave Extremes: The Role of Metocean Forcings." Journal of Physical Oceanography 45, no. 7 (July 2015): 1897–916. http://dx.doi.org/10.1175/jpo-d-14-0232.1.
Full textVosniakos, G.-C., and A. Chronopoulos. "Industrial robot path planning in a constraint-based computer-aided design and kinematic analysis environment." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 223, no. 5 (March 27, 2009): 523–33. http://dx.doi.org/10.1243/09544054jem1234.
Full textZheng, Feifei, Michael Leonard, and Seth Westra. "Efficient joint probability analysis of flood risk." Journal of Hydroinformatics 17, no. 4 (February 9, 2015): 584–97. http://dx.doi.org/10.2166/hydro.2015.052.
Full textDissertations / Theses on the topic "Simulation of joint extremes"
Legrand, Juliette. "Simulation and assessment of multivariate extreme models for environmental data." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASJ015.
Full textAccurate estimation of the occurrence probabilities of extreme environmental events is a major issue for risk assessment. For example, in coastal engineering, the design of structures installed at or near the coasts must be such that they can withstand the most severe events they may encounter in their lifetime. This thesis focuses on the simulation of multivariate extremes, motivated by applications to significant wave height, and on the evaluation of models predicting the occurrences of extreme events.In the first part of the manuscript, we propose and study a stochastic simulator that, given offshore conditions, produces jointly offshore and coastal extreme significant wave heights (Hs). We rely on bivariate Peaks over Threshold and develop a non-parametric simulation scheme of bivariate generalised Pareto distributions. From such joint simulator, we derive a conditional simulation model. Both simulation algorithms are applied to numerical experiments and to extreme Hs near the French Brittanny coast. A further development is addressed regarding the marginal modelling of Hs. To take into account non-stationarities, we adapt the extended generalised Pareto model, letting the marginal parameters vary with the peak period and the peak direction.The second part of this thesis provides a more theoretical development. To evaluate different prediction models for extremes, we study the specific case of binary classifiers, which are the simplest type of forecasting and decision-making situation: an extreme event did or did not occur. Risk functions adapted to binary classifiers of extreme events are developed, answering our second question. Their properties are derived under the framework of multivariate regular variation and hidden regular variation, allowing to handle finer types of asymptotic independence. This framework is applied to extreme river discharges
Li, Qinglan 1971. "Statistical downscaling and simulation of daily temperature extremes." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99521.
Full textFirstly, a systematic data analysis procedure was proposed for analyzing the variability of daily maximum (Tmax) and minimum (Tmin) temperature characteristics. The suggested procedure consists of performing a detailed statistical analysis of twelve relevant temperature indices that are important for various practical application purposes: mean of diurnal temperature range, frost season length, growing season length, freeze and thaw cycle, 90th percentile of Tmax, 10th percentile of Tmin, means and standard deviations of Tmax, Tmin, and the daily mean temperature. The suggested method was applied to the analysis of daily Tmax and Tmin data for 20 stations in Quebec. The available records used are different from station to station, varying from 44 years to 107 years. In general, it was found that, depending on the temperature index considered as well as on the particular season of the year, there are some significant increasing or decreasing trends at some locations in Quebec. Results of this analysis would provide valuable information on the temporal and spatial variations of daily extreme temperature processes in the region. Furthermore, it can be observed that no systematic spatial variability of the increasing or decreasing trends of any of the twelve temperature indices considered could be identified for a given area in Quebec.
Secondly, two new statistical downscaling models were proposed using the stepwise and robust regression methods in order to describe the linkage between largescale climate variables and the characteristics of Tmax and Tmin at a local site. The performance of these two models was tested using daily extreme temperature data available at Dorval Airport station in Quebec and the NCEP data for 25 different climate variables for the 1961-1990 period. It was found that the proposed stepwise and robust regression downscaling models can provide accurate estimates of fundamental statistical and physical properties of Tmax and Tmin. In addition, it has been observed that three climate variables, the mean sea level pressure, the 850hPa-geopotential height, and the near surface specific humidity, had the most significant effect on Tmax and Tmin at Dorval Airport. Furthermore, as compared with the popular SDSM model, the stepwise and robust regression models can provide more accurate estimates of the local Tmax and Tmin characteristics. In particular, the robust regression model was found to be the most accurate.
Finally, a new stochastic simulation procedure was developed in this study for simulating the Tmax and Tmin temperature time series at a local site using the combination of the first-order autoregressive AR(1) model and the SVD technique. Results of the evaluation of the proposed AR(1)-SVD simulation method using daily extreme temperature data at Dorval Airport for the 1961-1990 period have indicated the feasibility of this method in describing accurately the observed basic statistical properties (mean, standard deviation, and first order autocorrelation) of the daily Tmax and Tmin time series at a local site.
Oesting, Marco [Verfasser]. "Analysis and simulation of multivariate and spatial extremes / Marco Oesting." Siegen : Universitätsbibliothek der Universität Siegen, 2019. http://d-nb.info/1238353541/34.
Full textCasson, Edward Anthony. "Stochastic methodology for the extremes and directionality of meteorological processes." Thesis, Lancaster University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287095.
Full textWu, Elizabeth. "Spatio-Temporal Data Mining and Analysis of Precipitation Extremes." Thesis, The University of Sydney, 2008. https://hdl.handle.net/2123/28120.
Full textVanLandingham, Steve. "Applications of Joint Tactical Simulation modeling." Thesis, Monterey, California. Naval Postgraduate School, 1997. http://hdl.handle.net/10945/7975.
Full textAdvances in technology allow Computer Simulation Models (CSM) to be used as a powerful tool to aid military decision makers. This thesis explores the usefulness of one of these models, the Joint Tactical Simulation (JTS). First, this thesis outlines the information and tasks required to run JTS, which will give the reader a basic understanding of the program and how much effort it requires. Next, it describes the scenario presented in this thesis by detailing the methodology of terrain development, listing the assets required and the mission concept employed. It concludes by discussing some of the advantages and disadvantages of JTS followed by a reevaluation of the simulation and its possible uses. The concluding appendix is a tutorial that guides the reader through an amphibious assault modeled on the UNIX-based computer systems at the Naval Postgraduate School's (NPS) Secure Systems Technology Laboratory. It was designed to be accomplished in less than four hours and give the user an opportunity to run a simulation while conducting minimal interaction
Revel, Aldric. "Nuclear forces at the extremes." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC227/document.
Full textThe emission of neutron pairs from the neutron-rich N = 12 isotones 18C and 20O has been studied by high-energy nucleon knockout from 19N and 21O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay 19N(−1p) → 18C → 16C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a 14C core surrounded by four neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay 21O(−1n) → 20O → 18O+n+n, attributed to its formation through the knockout of a deeply-bound neutron that breaks the 16O core and reduces the number of pairs.Moreover, unbound states in 26F and 28F have been studied. The two systems were probed using single-nucleon knockout reaction from secondary beams of 27F respectively in the case of 26F, and 29Ne and 29F for 28F. Five possible states have been identified in 26F, with in particular the lowest energy one (0.39 MeV) being identified as the 3+ state resulting from the d5/2 ⊗ d3/2 coupling. In the case of 28F, five unbound state have also been observed and in particular its ground state (200 keV) has been identified as a negative parity state, meaning that 28F is located inside the island of inversion
Nykänen, Robin. "Simulation of Bolted Joint with Frictional Contacts." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74490.
Full textSullivan, Mark James. "A methodology for evaluating a joint mobilizatoin plan using the Joint Theater Level Simulation (JTLS)." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA321112.
Full textBoucher, Alexandre. "Conditional joint simulation of random fields on block-support /." St. Lucia, Qld, 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17169.pdf.
Full textBooks on the topic "Simulation of joint extremes"
Office, General Accounting. Joint simulation training. Washington, D.C: The Office, 1994.
Find full textOffice, General Accounting. Joint simulation training. Washington, D.C: The Office, 1994.
Find full textUnited States. General Accounting Office. National Security and International Affairs Division, ed. Joint simulation training. Washington, D.C: The Office, 1994.
Find full textElectronics Manufacturing Productivity Facility (U.S.), ed. Solder joint rework simulation analysis. Ridgecrest, Calif: The Facility, 1990.
Find full textVanLandingham, Steve. Applications of Joint Tactical Simulation modeling. Monterey, Calif: Naval Postgraduate School, 1997.
Find full textUnited States. Joint Chiefs of Staff, ed. Joint modeling and simulation evolutionary overview. [Washington, D.C.?]: Joint Chief of Staff, 1994.
Find full textBrown, SA, LN Gilbertson, and VD Good, eds. Wear of Articulating Surfaces: Understanding Joint Simulation. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2006. http://dx.doi.org/10.1520/stp1472-eb.
Full textSteenman, G. J. J. Modelling and simulation of a manipulator joint. Amsterdam: National Aeronautical Laboratories, 1987.
Find full textSullivan, Mark James. A methodology for evaluating a joint mobilizatoin plan using the Joint Theater Level Simulation (JTLS). Monterey, Calif: Naval Postgraduate School, 1996.
Find full textE, Barr Ronald, Abraham Lawrence D, and United States. National Aeronautics and Space Administration., eds. A musculoskeletal model of the elbow joint complex. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textBook chapters on the topic "Simulation of joint extremes"
Sharma, Ashish, and Fiona M. Johnson. "Latest Advances and Challenges in Extreme Flood 3D Simulation." In Arts, Research, Innovation and Society, 25–36. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-56114-6_3.
Full textSchwitalla, Thomas, Volker Wulfmeyer, and Kirsten Warrach-Sagi. "Seasonal Simulation of Weather Extremes." In High Performance Computing in Science and Engineering ' 17, 441–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68394-2_26.
Full textHarr, Patrick A., Antoni Jordi, and Luke Madaus. "Analysis of the Future Change in Frequency of Tropical Cyclone-Related Impacts Due to Compound Extreme Events." In Hurricane Risk in a Changing Climate, 87–120. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08568-0_5.
Full textSchwitalla, Thomas, Volker Wulfmeyer, and Kirsten Warrach-Sagi. "Seasonal Simulation of Weather Extremes (WRFXXXL)." In High Performance Computing in Science and Engineering ' 18, 383–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13325-2_24.
Full textZhang, Yu, Xiaodong Wang, Zhixiang Min, Shiqiang Wu, Xiufeng Wu, Jiangyu Dai, Fangfang Wang, and Ang Gao. "Adaptive Regulation of Cascade Reservoirs System Under Non-stationary Runoff." In Lecture Notes in Civil Engineering, 985–1000. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_88.
Full textWang, Fengcai, and Hanyu Wang. "Biotribological Joint Simulation System." In Encyclopedia of Tribology, 196–212. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_1200.
Full textFalk, Michael. "Best Attainable Rate of Joint Convergence of Extremes." In Lecture Notes in Statistics, 1–9. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3634-4_1.
Full textKlein, Gary, Paul J. Feltovich, Jeffrey M. Bradshaw, and David D. Woods. "Common Ground and Coordination in Joint Activity." In Organizational Simulation, 139–84. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471739448.ch6.
Full textHahn, Marjorie G., and Daniel C. Weiner. "On Joint Estimation of an Exponent of Regular Variation and an Asymmetry Parameter for Tail Distributions." In Sums, Trimmed Sums and Extremes, 111–34. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4684-6793-2_4.
Full textCampbell, John. "9. Joint attention and simulation." In Simulation and Knowledge of Action, 241–53. Amsterdam: John Benjamins Publishing Company, 2002. http://dx.doi.org/10.1075/aicr.45.18cam.
Full textConference papers on the topic "Simulation of joint extremes"
Sando, Kosuke, Ryota Wada, Jeremy Rohmer, Sophie Lecacheux, and Philip Jonathan. "Estimating Joint Extremes of Significant Wave Height and Wind Speed for Tropical Cyclones." In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-79888.
Full textJonathan, Philip, Kevin Ewans, and Jan Flynn. "On the Estimation of Ocean Engineering Design Contours." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49886.
Full textMiao, Qingqing, Ankang Cheng, and Ying Min Low. "A Combination of Surrogate Model and Subset Simulation Method for Long-Term Extreme Response Analysis of Marine Risers." In ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/omae2023-101700.
Full textLopatoukhin, Leonid J., and Alexander V. Boukhanovsky. "Extreme and Freak Waves: Results of Measurements and Simulation." In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57841.
Full textLeong, Darrell, Ying Min Low, and Youngkook Kim. "Long-Term Extreme Response Prediction of Mooring Lines Using Subset Simulation." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77064.
Full textZhao, Yuliang, Sheng Dong, Zihao Yang, and Lance Manuel. "Estimating Design Loads for Floating Structures Using Environmental Contours." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18453.
Full textDing, Hui, Yu Jiang, Hao Wu, and Jian Wang. "Two Phase Flow Simulation of Water Ring Vacuum Pump Using VOF Model." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-33654.
Full textAmir, Yosef. "Bolted Joints-Stochastic Modeling." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65548.
Full textYu, Yaxin, Ching Eng Png, and Dongying Li. "FDTD simulation of an extremely thin dispersive material sheet." In 2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 2014. http://dx.doi.org/10.1109/usnc-ursi.2014.6955429.
Full textKerimov, Bulat, Franz Tscheikner-Gratl, Riccardo Taormina, and David B. Steffelbauer. "The Shape of Water Distribution Systems - Describing local structures of water networks via graphlet analysis." In 2nd WDSA/CCWI Joint Conference. València: Editorial Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/wdsa-ccwi2022.2022.14784.
Full textReports on the topic "Simulation of joint extremes"
Burchett, S. N., D. R. Frear, and M. M. Rashid. Computer simulation of solder joint failure. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/477670.
Full textFikus, John. Global Information Enterprise Simulation (GIESIM) Joint Tactical Information Distribution Systems Simulation Experimentation. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada438999.
Full textSmith, Mark E. Distributed Test and Evaluation of Aerospace Systems: The Joint Advanced Distributed Simulation Joint Test Force Experience. Fort Belvoir, VA: Defense Technical Information Center, August 1999. http://dx.doi.org/10.21236/ada378017.
Full textShahani, Ashwin, and Sharon Glotzer. Probing the solidification of quasicrystals via joint experiment and simulation. Office of Scientific and Technical Information (OSTI), March 2022. http://dx.doi.org/10.2172/1856862.
Full textSahu, Devaraj. A Study of the Defense Simulation Internet (DSI) for the Joint Advanced Distributed Simulation (JADS) Project. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada381147.
Full textWilson, Jimmy H. USAF Concept of Operations for the Joint Simulation System (JSIMS), Version 1.0. Fort Belvoir, VA: Defense Technical Information Center, July 1998. http://dx.doi.org/10.21236/ada358714.
Full textBaxley, Carl R. Mutual Security and Arms Reductions in Europe: A Joint Soviet-American Simulation Exercise. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada227289.
Full textJoyner, Tom, and Bob Maker. Joint Installed System Test Facility (JISTF) Infrared Sensor Simulation/Stimulation Enhancement: Dynamic Virtual Reality Simulation/Stimulation Technologies for Test, Evaluaiton, and Training. Fort Belvoir, VA: Defense Technical Information Center, June 1999. http://dx.doi.org/10.21236/ada367704.
Full textWinters, Leslie S., and Andreas Tolk. The Integration of Modeling and Simulation with Joint Command and Control on the Global Information Grid. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada433871.
Full textGagnon, Colleen M., and William K. Stevens. Use of Modeling and Simulation (M&S) in Support of Joint Command and Control Experimentation: Naval Simulation System (NSS) Support to Fleet Battle Experiments. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada461113.
Full text