Contents
Academic literature on the topic 'Simulation numérique Monte-Carlo'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Simulation numérique Monte-Carlo.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Simulation numérique Monte-Carlo"
Imbert, L., E. Galbrun, S. Poussier, D. Wolf, G. Karcher, A. Noel, and P. Y. Marie. "Modélisation numérique de la camera à semi-conducteurs DSPECT avec la plateforme de simulations Monte Carlo Gate." Médecine Nucléaire 37, no. 5 (May 2013): 145–46. http://dx.doi.org/10.1016/j.mednuc.2013.03.048.
Full textMakovicka, L., R. Gschwind, and E. Martin. "Le rôle des simulations numériques Monte Carlo dans les domaines associés à la physique des rayonnements ionisants." Radioprotection 41 (2006): S161—S175. http://dx.doi.org/10.1051/radiopro:2007022.
Full textZergane, Slimane, and Arezki Smaïli. "Optimisation de la micro-localisation des aérogénérateurs dans un parc éolien." Journal of Renewable Energies 14, no. 4 (October 24, 2023). http://dx.doi.org/10.54966/jreen.v14i4.295.
Full textPoda, Pasteur, Samir Saoudi, Thierry Chonavel, Frédéric GUILLOUD, and Théodore Tapsoba. "Non-parametric kernel-based bit error probability estimation in digital communication systems: An estimator for soft coded QAM BER computation." Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 27 - 2017 - Special... (August 3, 2018). http://dx.doi.org/10.46298/arima.4348.
Full textNyobe, Samuel, Fabien Campillo, Serge Moto, and Vivien Rossi. "The one step fixed-lag particle smoother as a strategy to improve the prediction step of particle filtering." Revue Africaine de Recherche en Informatique et Mathématiques Appliquées Volume 39 - 2023 (December 14, 2023). http://dx.doi.org/10.46298/arima.10784.
Full textDissertations / Theses on the topic "Simulation numérique Monte-Carlo"
Fakhereddine, Rana. "Méthodes de Monte Carlo stratifiées pour l'intégration numérique et la simulation numériques." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM047/document.
Full textMonte Carlo (MC) methods are numerical methods using random numbers to solve on computers problems from applied sciences and techniques. One estimates a quantity by repeated evaluations using N values ; the error of the method is approximated through the variance of the estimator. In the present work, we analyze variance reduction methods and we test their efficiency for numerical integration and for solving differential or integral equations. First, we present stratified MC methods and Latin Hypercube Sampling (LHS) technique. Among stratification strategies, we focus on the simple approach (MCS) : the unit hypercube Is := [0; 1)s is divided into N subcubes having the same measure, and one random point is chosen in each subcube. We analyze the variance of the method for the problem of numerical quadrature. The case of the evaluation of the measure of a subset of Is is particularly detailed. The variance of the MCS method may be bounded by O(1=N1+1=s). The results of numerical experiments in dimensions 2,3, and 4 show that the upper bounds are tight. We next propose an hybrid method between MCS and LHS, that has properties of both approaches, with one random point in each subcube and such that the projections of the points on each coordinate axis are also evenly distributed : one projection in each of the N subintervals that uniformly divide the unit interval I := [0; 1). We call this technique Sudoku Sampling (SS). Conducting the same analysis as before, we show that the variance of the SS method is bounded by O(1=N1+1=s) ; the order of the bound is validated through the results of numerical experiments in dimensions 2,3, and 4. Next, we present an approach of the random walk method using the variance reduction techniques previously analyzed. We propose an algorithm for solving the diffusion equation with a constant or spatially-varying diffusion coefficient. One uses particles, that are sampled from the initial distribution ; they are subject to a Gaussian move in each time step. The particles are renumbered according to their positions in every step and the random numbers which give the displacements are replaced by the stratified points used above. The improvement brought by this technique is evaluated in numerical experiments. An analogous approach is finally used for numerically solving the coagulation equation ; this equation models the evolution of the sizes of particles that may agglomerate. The particles are first sampled from the initial size distribution. A time step is fixed and, in every step and for each particle, a coalescence partner is chosen and a random number decides if coalescence occurs. If the particles are ordered in every time step by increasing sizes an if the random numbers are replaced by statified points, a variance reduction is observed, when compared to the results of usual MC algorithm
Coulibaly, Ibrahim. "Contributions à l'analyse numérique des méthodes quasi-Monte Carlo." Phd thesis, Université Joseph Fourier (Grenoble), 1997. http://tel.archives-ouvertes.fr/tel-00004933.
Full textTarhini, Ali. "Analyse numérique des méthodes quasi-Monte Carlo appliquées aux modèles d'agglomération." Chambéry, 2008. http://www.theses.fr/2008CHAMS015.
Full textMonte Carlo (MC) methods are probabilistic methods based on the use of random numbers in repeated experiments. Quasi-Monte Carlo (QMC) methods are deterministic versions of Monte Carlo methods. Random sequences are replaced by low discrepancy sequences. These sequences ha ve a better uniform repartition in the s-dimensional unit cube. We use a special class of low discrepany sequences called (t,s)-sequences. In this work, we develop and analyze Monte Carlo and quasi-Monte Carlo particle methods for agglomeration phenomena. We are interested, in particular, in the numerical simulation of the discrete coagulation equations (the Smoluchowski equation), the continuous coagulation equation, the continuous coagulation-fragmentation equation and the general dynamics equation (GDE) for aerosols. In all these particle methods, we write the equation verified by the mass distribution density and we approach this density by a sum of n Dirac measures ; these measures are weighted when simulating the GDE equation. We use an explicit Euler disretiza tion scheme in time. For the simulation of coagulation and coagulation-fragmentation, the numerical particles evolves by using random numbers (for MC simulations) or by quasi-Monte Carlo quadratures. To insure the convergence of the numerical scheme, we reorder the numerical particles by their increasing mass at each time step. In the case of the GDE equation, we use a fractional step iteration scheme : coagulation is simulated as previously, other phenomena (like condensation, evaporation and deposition) are integrated by using a deterministic particle method for solving hyperbolic partial differential equation. We prove the convergence of the QMC numerical scheme in the case of the coagulation equation and the coagulation-fragmentation equation, when the number n of numerical particles goes to infinity. All our numerical tests show that the numerical solutions calculated by QMC algorithms converges to the exact solutions and gives better results than those obtained by the corresponding Monte Carlo strategies
Thauvoye, Christophe. "Simulation numérique d'écoulements turbulents réactifs par une méthode hybride à fonction densité de probabilité transportée." Poitiers, 2005. http://www.theses.fr/2005POIT2276.
Full textThis work concerns the field of numerical simulation of turbulent reactive flows. The aim of this work is to study a hybrid method based on the use of a lagrangian transported Probability Density Function (PDF) method coupled with a eulerian method which solves the Reynolds Averaged Navier-Stokes equations (R. A. N. S). The first part is devoted to the description of the RANS and the transported PDF methods. The latter is more precisely detailed : it allows to highlight both advantages and drawbacks of the two approaches. In this context, we will develop all the aspects related to the modelling and resolution of the transported joint PDF equation. Its resolution generally uses a Monte-Carlo numerical simulation. We also show how the statistical nature of Monte-Carlo methods induces numerical difficulties, which led to the development of hybrid methods associating RANS method with a transported PDF approach. In the second part of this study, theoretical and numerical aspects of the hybrid methods are detailed, and more precisely the PEUL+ model developed at ONERA. A new – instationary – way of coupling is proposed. It improves the stability and precision of the model in comparison with the stationary way of coupling. It is then tested and validated on two configurations : a methane-air nonpremixed flame stabilised by a piloted flame ; and a premixed flame in a sudden symmetric plane expansion
Xiao, Yi-Jun. "Contribution aux méthodes arithmétiques pour la simulation accélérée." Marne-la-vallée, ENPC, 1990. http://www.theses.fr/1990ENPC9031.
Full textMateu, armengol Jan. "Étude numérique des effets du couplage du rayonnement thermique aux jets turbulents libres de vapeur d'eau." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC052/document.
Full textRadiation plays an important role in a broad range of thermal engineering applications comprising turbulent flows. The growing need for accurate and reliable numerical simulations to support the design stages of such applications is the main motivation of this thesis.Of special interest in this work are the free-shear flows and the fundamental understanding of how radiation can modify their fluid dynamics and heat trans- port as well as how their turbulence fluctuations can alter radiative transfer. The goal of this thesis is to provide high-fidelity data of turbulent free jets coupled with thermal radiation in order to develop and validate free-shear turbulent models accounting for coupling interactions. To this end, turbulent free jets are described by direct numerical simulations (DNS) coupled to a reciprocal Monte- Carlo method to solve the radiative transfer equation. The spectral dependency of the radiative properties is accounted for with an accurate Correlated-k (ck) method. The numerical study is carried out with state-of-the-art fidelity to be as representative as possible of an actual jet in a participating medium. The simulation is optimized in terms of processing time taking advantage of an acceleration method called Acoustic Speed Reduction and by injecting artificial turbulence to enhance inlet boundaries.Two direct simulations of heated jets coupled with thermal radiation are carried out. On the one hand, a heated jet with moderate radiation is simulated. The analysis of its high-fidelity coupled DNS data has allow to derive a new scaling law for the decay of the temperature profile. This scaling accounts for the effects of modified density due to moderate radiation. Moreover, it allows for distinguishing whether thermal radiation modifies the nature of heat transfer mechanisms in the jet developed region or not. On the other hand, a strongly heated free jet is computed in order to quantify the effects of radiation on mean temperature and velocity fields as well as on second order moments.Besides the coupled DNS data, a RANS solver for variable-density flows coupled with thermal radiation has been implemented during the course of this thesis. The goal is to directly quantify the accuracy of the existing turbulent models, and to identify key parameters for further modeling of coupling interactions
Sénégas, Julien. "Méthode de Monte Carlo en vision stéréoscopique : Application à l'étude de modèles numériques de terrain." Paris, ENMP, 2002. https://pastel.archives-ouvertes.fr/tel-00005637.
Full textWang, Ye. "Ecoulement dans une pompe à vide turbomoléculaire : modélisation et analyse par voie numérique." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENI062/document.
Full textThe thesis is devoted to the modeling and the numerical analysis of the flow in a turbomolecular vacuum pump of hybrid type, that is combining a succession of rotor and stator stages with an Holweck. A 3D Test Particle Monte Carlo approach has been developed for simulating industrial pump configurations (complex blade geometries, management of rotor and stator stages), with attention paid to the optimization of the computational cost. The numerical tool developed in the thesis has been validated for academic and industrial test cases, relying in particular on reference experimental results obtained on the test rig of the aVP company. The prediction improvement brought by the TPMC 3D approach with respect to the design tools available at the start of the thesis has been clearly demonstrated for the free molecular flow regime. Some design recommendations have also been formulated using the developed solver. The potential of a Direct Simulation Monte Carlo approach, taking into account the interactions between gas molecules, has also been established in 2D for the transition regime
Ung, Philippe. "Simulation numérique du transport sédimentaire : aspects déterministes et stochastiques." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2019/document.
Full textIn this thesis, we are interested on the study of a sediment transport model through two different approaches. One of them concerns the numerical modelling of the problem and proposes a numerical problem-solving method based on an approximate Riemann solver for the Saint-Venant-Exner system which is one of the most common model to deal with sedimentary bed-load transport. This last one is based on a coupling between the hydraulic model of Saint-Venant and the morphodynamic model of Exner. The key point of the proposed method is the treatment of the coupling issue. Indeed, there exists two strategies; the first one consists on decoupling the resolution of the fluid part from the solid part and making them interact at fixed times whereas the second one considers a coupled approach to solve the system by jointly updating the hydraulic and solid quantities at same times. We then raise the issue of the choice of the strategy for which we suggest answers by comparing both approaches. The other one focuses on the development of a methodology to study the uncertainties related to the model previously mentioned. To this end, we propose a stochastic formulation of the Saint-Venant-Exner system and we look for characterizing the variabilities of the outputs in relation to the naturally random input parameters. This first study reveals the need for a return to the Saint-Venant system with a perturbed bed to understand the sensitivity of the hydraulic quantities on the topographical perturbations
Thiam, Cheik Oumar. "Dosimétrie en radiothérapie et curiethérapie par simulation Monte-Carlo GATE sur grille informatique." Clermont-Ferrand 2, 2007. http://www.theses.fr/2007CLF21771.
Full text