Journal articles on the topic 'Silicotitanates'

To see the other types of publications on this topic, follow the link: Silicotitanates.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Silicotitanates.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Su, Yali, Mari Lou Balmer, and Bruce C. Bunker. "Raman Spectroscopic Studies of Silicotitanates." Journal of Physical Chemistry B 104, no. 34 (August 2000): 8160–69. http://dx.doi.org/10.1021/jp0018807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, Hongwu, Alexandra Navrotsky, May D. Nyman, and Tina M. Nenoff. "Thermochemistry of microporous silicotitanate phases in the Na2O–Cs2O–SiO2–TiO2–H2O system." Journal of Materials Research 15, no. 3 (March 2000): 815–23. http://dx.doi.org/10.1557/jmr.2000.0116.

Full text
Abstract:
Microporous silicotitanates can potentially be used as ion exchangers for removal of Cs+ from radioactive waste solutions. The enthalpies of formation from constituent oxides for two series of silicotitanates at 298 K have been determined by drop-solution calorimetry into molten 2PbO · B2O3 at 974 K: the (Na1−xCsx)3Ti4Si3O15(OH) · nH2O (n = 4 to 5) phases with a cubic structure (P43m), and the (Na1−xCsx)3Ti4Si2O13(OH) · nH2O (n = 4 to 5) phases with a tetragonal structure (P42/mcm). The enthalpies of formation from the oxides for the cubic series become more exothermic as Cs/(Na + Cs) increases, whereas those for the tetragonal series become less exothermic. This result indicates that the incorporation of Cs in the cubic phase is somewhat thermodynamically favorable, whereas that in the tetragonal phase is thermodynamically unfavorable and kinetically driven. In addition, the cubic phases are more stable than the corresponding tetragonal phases with the same Cs/Na ratios. These disparities in the energetic behavior between the two series are attributed to their differences in both local bonding configuration and degree of hydration.
APA, Harvard, Vancouver, ISO, and other styles
3

Strelko, V. V., V. V. Milyutin, V. M. Gelis, T. S. Psareva, I. Z. Zhuravlev, T. A. Shaposhnikova, V. G. Mil’grandt, and A. I. Bortun. "Sorption of cesium radionuclides onto semicrystalline alkali metal silicotitanates." Radiochemistry 57, no. 1 (January 2015): 73–78. http://dx.doi.org/10.1134/s1066362215010117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chitra, S., A. G. Shanmugamani, R. Sudha, S. Kalavathi, and Biplob Paul. "Selective removal of cesium and strontium by crystalline silicotitanates." Journal of Radioanalytical and Nuclear Chemistry 312, no. 3 (April 22, 2017): 507–15. http://dx.doi.org/10.1007/s10967-017-5249-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Clearfield, A., A. Tripathi, and D. Medvedev. "In situX-ray study of hydrothermally prepared titanates and silicotitanates." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (August 23, 2005): c3. http://dx.doi.org/10.1107/s0108767305099873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zheng, Z., C. V. Philip, R. G. Anthony, J. L. Krumhansl, D. E. Trudell, and J. E. Miller. "Ion Exchange of Group I Metals by Hydrous Crystalline Silicotitanates." Industrial & Engineering Chemistry Research 35, no. 11 (January 1996): 4246–56. http://dx.doi.org/10.1021/ie960073k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clearfield, A., A. Tripathi, D. Medvedev, A. J. Celestian, and J. B. Parise. "In situ type study of hydrothermally prepared titanates and silicotitanates." Journal of Materials Science 41, no. 5 (March 2006): 1325–33. http://dx.doi.org/10.1007/s10853-006-7317-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anthony, Rayford G., Robert G. Dosch, Ding Gu, and C. V. Philip. "Use of silicotitanates for removing cesium and strontium from defense waste." Industrial & Engineering Chemistry Research 33, no. 11 (November 1994): 2702–5. http://dx.doi.org/10.1021/ie00035a020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaminski, M. D., L. Nuñez, M. Pourfarzaneh, and C. Negri. "Cesium separation from contaminated milk using magnetic particles containing crystalline silicotitanates." Separation and Purification Technology 21, no. 1-2 (November 2000): 1–8. http://dx.doi.org/10.1016/s1383-5866(99)00062-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chitra, S., S. Viswanathan, S. V. S. Rao, and P. K. Sinha. "Uptake of cesium and strontium by crystalline silicotitanates from radioactive wastes." Journal of Radioanalytical and Nuclear Chemistry 287, no. 3 (October 17, 2010): 955–60. http://dx.doi.org/10.1007/s10967-010-0867-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Curi, Rodrigo F., and Vittorio Luca. "In-column immobilization of Cs-saturated crystalline silicotitanates using phenolic resins." Environmental Science and Pollution Research 25, no. 7 (December 21, 2017): 6850–58. http://dx.doi.org/10.1007/s11356-017-1019-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gu, Ding, Luan Nguyen, C. V. Philip, M. E. Huckman, Rayford G. Anthony, James E. Miller, and Daniel E. Trudell. "Cs+Ion Exchange Kinetics in Complex Electrolyte Solutions Using Hydrous Crystalline Silicotitanates." Industrial & Engineering Chemistry Research 36, no. 12 (December 1997): 5377–83. http://dx.doi.org/10.1021/ie960338v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Larentzos, James P., Abraham Clearfield, Akhilesh Tripathi, and Edward J. Maginn. "A Molecular Modeling Investigation of Cation and Water Siting in Crystalline Silicotitanates." Journal of Physical Chemistry B 108, no. 45 (November 2004): 17560–70. http://dx.doi.org/10.1021/jp047041s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chitra, S., R. Sudha, S. Kalavathi, A. G. S. Mani, S. V. S. Rao, and P. K. Sinha. "Optimization of Nb-substitution and Cs+/Sr+2 ion exchange in crystalline silicotitanates (CST)." Journal of Radioanalytical and Nuclear Chemistry 295, no. 1 (May 12, 2012): 607–13. http://dx.doi.org/10.1007/s10967-012-1812-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zheng, Zhixin, Ding Gu, Rayford G. Anthony, and Elmer Klavetter. "Estimation of Cesium Ion Exchange Distribution Coefficients for Concentrated Electrolytic Solutions When Using Crystalline Silicotitanates." Industrial & Engineering Chemistry Research 34, no. 6 (June 1995): 2142–47. http://dx.doi.org/10.1021/ie00045a026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zheng, Z., R. G. Anthony, and J. E. Miller. "Modeling Multicomponent Ion Exchange Equilibrium Utilizing Hydrous Crystalline Silicotitanates by a Multiple Interactive Ion Exchange Site Model." Industrial & Engineering Chemistry Research 36, no. 6 (June 1997): 2427–34. http://dx.doi.org/10.1021/ie960546n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Milcent, Théo, Audrey Hertz, Yves Barré, and Agnès Grandjean. "Influence of the Nb content and microstructure of sitinakite-type crystalline silicotitanates (CSTs) on their Sr2+ and Cs+ sorption properties." Chemical Engineering Journal 426 (December 2021): 131425. http://dx.doi.org/10.1016/j.cej.2021.131425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Venkatesan, K. A., V. Sukumaran, M. P. Antony, and T. G. Srinivasan. "Studies on the feasibility of using crystalline silicotitanates for the separation of cesium-137 from fast reactor high-level liquid waste." Journal of Radioanalytical and Nuclear Chemistry 280, no. 1 (March 18, 2009): 129–36. http://dx.doi.org/10.1007/s10967-008-7422-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Alahl, Amr A. Sayed, Hesham A. Ezzeldin, Abdullah A. Al-Kahtani, Sadanand Pandey, and Yousra H. Kotp. "Synthesis of a Novel Photocatalyst Based on Silicotitanate Nanoparticles for the Removal of Some Organic Matter from Polluted Water." Catalysts 13, no. 6 (June 8, 2023): 981. http://dx.doi.org/10.3390/catal13060981.

Full text
Abstract:
The use of waste from various agricultural sectors has recently drawn increased interest from the scientific, technological, ecological, economic, and social fields. As such, in this study, a novel production of an affordable and environmentally friendly photocatalyst of silicotitanate (S1, S2, and S3) made from silica solution (extracted from rice husk ash) and various molar ratios of titanium (IV) 2-ethylhexyl-oxide is reported. Following that, chitosan/silicotitanate (CHMix) nanocomposite material was created through a crosslinking reaction between chitosan and fabricated silicotitanate (S2). Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM-EDX), as well as N2 adsorption-desorption isotherm and zeta potential measurements were used to characterize each of the fabricated samples. Additionally, in comparison to neat chitosan, the newly fabricated material’s (CHMix) photocatalytic reactivity was investigated using two synthetic anionic dyes, reactive blue and Congo red, with decolorization rates of up to 95.76% and 99.9%, respectively. The decolorization results showed that CHMix is the most efficient photocatalyst for the degradation of reactive blue and Congo red. Reactive blue and Congo red’s molecular structures were almost completely broken when equilibrium was reached using sunlight, and the decolorization rate for both dyes was close to 100%. As a result, the combination of chitosan and silicotitanate, or CHMix, has an effective photocatalytic capability for dye degradation in both natural and concentrated sunlight.
APA, Harvard, Vancouver, ISO, and other styles
20

Dyer, Alan, Jon Newton, Luke O’Brien, and Scott Owens. "Studies on a synthetic sitinakite-type silicotitanate cation exchanger." Microporous and Mesoporous Materials 117, no. 1-2 (January 2009): 304–8. http://dx.doi.org/10.1016/j.micromeso.2008.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Taylor, P. A., and C. H. Mattus. "Thermal And Chemical Stability Of Baseline And Improved Crystalline Silicotitanate." Separation Science and Technology 38, no. 12-13 (January 8, 2003): 3031–48. http://dx.doi.org/10.1081/ss-120022585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Piret, Paul, Michel Deliens, and Michèle Pinet. "La trimounsite-(Y), nouveau silicotitanate de terres rares de Trimouns, Ariège, France: (TR)2Ti2SiO9." European Journal of Mineralogy 2, no. 5 (October 4, 1990): 725–30. http://dx.doi.org/10.1127/ejm/2/5/0725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Celestian, Aaron J., James D. Kubicki, Jonathon Hanson, Abraham Clearfield, and John B. Parise. "The Mechanism Responsible for Extraordinary Cs Ion Selectivity in Crystalline Silicotitanate." Journal of the American Chemical Society 130, no. 35 (September 3, 2008): 11689–94. http://dx.doi.org/10.1021/ja801134a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Warta, Andrew M., William A. Arnold, and Edward L. Cussler. "Permeable Membranes Containing Crystalline Silicotitanate As Model Barriers for Cesium Ion." Environmental Science & Technology 39, no. 24 (December 2005): 9738–43. http://dx.doi.org/10.1021/es0509681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hritzko, Benjamin J., D. Douglas Walker, and N. H. Linda Wang. "Design of a carousel process for cesium removal using crystalline silicotitanate." AIChE Journal 46, no. 3 (March 2000): 552–64. http://dx.doi.org/10.1002/aic.690460314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chen, Mengjun, Fu-Shen Zhang, and Jianxin Zhu. "Effective utilization of waste cathode ray tube glass—Crystalline silicotitanate synthesis." Journal of Hazardous Materials 182, no. 1-3 (October 2010): 45–49. http://dx.doi.org/10.1016/j.jhazmat.2010.05.135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Walker Jr., J., P. Taylor, and D. Lee. "CESIUM REMOVAL FROM HIGH-pH, HIGH-SALT WASTEWATER USING CRYSTALLINE SILICOTITANATE SORBENT." Separation Science and Technology 34, no. 6&7 (1999): 1167–81. http://dx.doi.org/10.1081/ss-100100703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Latheef, I. M., M. E. Huckman, and R. G. Anthony. "Modeling Cesium Ion Exchange on Fixed-Bed Columns of Crystalline Silicotitanate Granules." Industrial & Engineering Chemistry Research 39, no. 5 (May 2000): 1356–63. http://dx.doi.org/10.1021/ie990748u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Walker, J. F., P. A. Taylor, and D. D. Lee. "CESIUM REMOVAL FROM HIGH-pH, HIGH-SALT WASTEWATER USING CRYSTALLINE SILICOTITANATE SORBENT." Separation Science and Technology 34, no. 6-7 (January 1999): 1167–81. http://dx.doi.org/10.1080/01496399908951087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Young, J. S., Y. Su, L. Li, and M. L. Balmer. "Characterization of Aluminosilicate Formation on the Surface of a Crystalline Silicotitanate Ion Exchanger." Microscopy and Microanalysis 7, S2 (August 2001): 498–99. http://dx.doi.org/10.1017/s1431927600028567.

Full text
Abstract:
Millions of gallons of high-level radioactive waste are contained in underground tanks at U. S. Department of Energy sites such as Hanford and Savannah River. Most of the radioactivity is due to 137Cs and 90Sr, which must be extracted in order to concentrate the waste. An ion exchanger, crystalline silicotitanate IONSIV® IE911, is being considered for separation of Cs at the Savannah River Site (SRS). While the performance of this ion exchanger has been well characterized under normal operating conditions, Cs removal at slightly elevated temperatures, such as those that may occur in a process upset, is not clear. Our recent study indicates that during exposure to SRS simulant at 55°C and 80°C, an aluminosilicate coating formed on the exchanger surface. There was concern that the coating would affect its ion exchange properties. A LEO 982 field emission scanning electron microscope (FESEM) and an Oxford ISIS energy dispersive x-ray spectrometer (EDS) were used to characterize the coating.
APA, Harvard, Vancouver, ISO, and other styles
31

Nyman, M., B. X. Gu, L. M. Wang, R. C. Ewing, and T. M. Nenoff. "Synthesis and characterization of a new microporous cesium silicotitanate (SNL-B) molecular sieve." Microporous and Mesoporous Materials 40, no. 1-3 (November 2000): 115–25. http://dx.doi.org/10.1016/s1387-1811(00)00247-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lee, Eil-Hee, Keun-Young Lee, Kwang-Wook Kim, Ik-Soo Kim, Dong-Yong Chung, and Jei-Kwon Moon. "Removal of Cs by Adsorption with IE911 (Crystalline Silicotitanate) from High-Radioactive Seawater Waste." Journal of Nuclear Fuel Cycle and Waste Technology 13, no. 3 (September 30, 2015): 171–80. http://dx.doi.org/10.7733/jnfcwt.2015.13.3.171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Huckman, M., I. Latheef, and R. Anthony. "ION EXCHANGE OF SEVERAL RADIONUCLIDES ON THE HYDROUS CRYSTALLINE SILICOTITANATE, UOP IONSIV IE-911." Separation Science and Technology 34, no. 6&7 (1999): 1145–66. http://dx.doi.org/10.1081/ss-100100702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Rovira, A. M., S. K. Fiskum, H. A. Colburn, J. R. Allred, M. R. Smoot, R. A. Peterson, and K. M. Colisi. "Cesium ion exchange testing using crystalline silicotitanate with Hanford tank waste 241-AP-107." Separation Science and Technology 54, no. 12 (February 22, 2019): 1942–51. http://dx.doi.org/10.1080/01496395.2019.1577895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Westesen, Amy M., Sandra K. Fiskum, Truc T. Trang-Le, Andrew M. Carney, Reid A. Peterson, Matthew R. Landon, and Kristin A. Colosi. "Small to Full-Height Scale Comparisons of Cesium Ion Exchange Performance with Crystalline Silicotitanate." Solvent Extraction and Ion Exchange 39, no. 1 (October 12, 2020): 104–22. http://dx.doi.org/10.1080/07366299.2020.1831142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Huckman, M. E., I. M. Latheef, and R. G. Anthony. "ION EXCHANGE OF SEVERAL RADIONUCLIDES ON THE HYDROUS CRYSTALLINE SILICOTITANATE, UOP IONSIV IE-911." Separation Science and Technology 34, no. 6-7 (January 1999): 1145–66. http://dx.doi.org/10.1080/01496399908951086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, Rong, Zhenggang Luo, Qiuxia Tan, Rui Wang, Shuyuan Chen, Jiancheng Shu, Mengjun Chen, and Zhengxue Xiao. "Sol-gel hydrothermal synthesis of nano crystalline silicotitanate and its strontium and cesium adsorption." Environmental Science and Pollution Research 27, no. 4 (December 12, 2019): 4404–13. http://dx.doi.org/10.1007/s11356-019-06907-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Attallah, Mohamed F., Amira H. Elgazzar, Emad H. Borai, and Abdou S. El-Tabl. "Preparation and characterization of aluminum silicotitanate: ion exchange behavior for some lanthanides and iron." Journal of Chemical Technology & Biotechnology 91, no. 8 (September 30, 2015): 2243–52. http://dx.doi.org/10.1002/jctb.4810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

El-Naggar, I. M., E. S. Sheneshen, and E. A. Abdel-Galil. "Diffusion mechanism of Co2+, Cu2+, Cd2+, Cs+, and Pb2+ions in the particles of polyaniline silicotitanate." Particulate Science and Technology 34, no. 3 (July 30, 2015): 373–79. http://dx.doi.org/10.1080/02726351.2015.1063099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Smith, Frank G., Si Young Lee, William D. King, and Daniel J. McCabe. "Comparisons of Crystalline Silicotitanate and Resorcinol Formaldehyde Media for Cesium Removal by In-tank Column Processing." Separation Science and Technology 43, no. 9-10 (July 18, 2008): 2929–42. http://dx.doi.org/10.1080/01496390802119382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kamble, Priyanka, Prithwish Sinha Roy, Dayamoy Banerjee, Arvind Ananthanarayanan, Jayesh G. Shah, Gopalakrishnan Sugilal, and Kailash Agarwal. "A new composite of crystalline silicotitanate for sequestration of 137Cs and 90Sr from low-level aqueous waste solution." Separation Science and Technology 55, no. 9 (April 21, 2019): 1603–10. http://dx.doi.org/10.1080/01496395.2019.1605382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Campbell, Emily L., Sandra K. Fiskum, Truc T. Trang-Le, and Reid A. Peterson. "Ion Exchange of Selected Group II Metals and Lead by Crystalline Silicotitanate and Competition for Cs Exchange Sites." Solvent Extraction and Ion Exchange 39, no. 1 (October 16, 2020): 90–103. http://dx.doi.org/10.1080/07366299.2020.1830481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Park, Younjin, Won Sik Shin, G. Sankara Reddy, Soo-Jeong Shin, and Sang-June Choi. "Use of Nano Crystalline Silicotitanate for the Removal of Cs, Co and Sr from Low-Level Liquid Radioactive Waste." Journal of Nanoelectronics and Optoelectronics 5, no. 2 (August 1, 2010): 238–42. http://dx.doi.org/10.1166/jno.2010.1101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mostafa, M., M. A. Tawfic, M. A. El-Absy, H. E. Ramadan, and S. A. Sadeek. "Preparation of 137Cs-Loaded Silicotitanate Sealed Source and Standardization of Its Activity by DETEFF Code and Efficiency Transfer Concept." Radiochemistry 61, no. 6 (November 2019): 741–47. http://dx.doi.org/10.1134/s1066362219060171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Todd, T. A., and V. N. Romanovskiy. "A Comparison of Crystalline Silicotitanate and Ammonium Molybdophosphate-Polyacrylonitrile Composite Sorbent for the Separation of Cesium from Acidic Waste." Radiochemistry 47, no. 4 (July 2005): 398–402. http://dx.doi.org/10.1007/s11137-005-0109-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Cherry, Brian R., May Nyman, and Todd M. Alam. "Investigation of cation environment and framework changes in silicotitanate exchange materials using solid-state 23Na, 29Si, and 133Cs MAS NMR." Journal of Solid State Chemistry 177, no. 6 (June 2004): 2079–93. http://dx.doi.org/10.1016/j.jssc.2004.02.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhao, Xudong, Qinghui Meng, Geng Chen, Zhihao Wu, Guangai Sun, Guobing Yu, Liusi Sheng, Hanqin Weng, and Mingzhang Lin. "An acid-resistant magnetic Nb-substituted crystalline silicotitanate for selective separation of strontium and/or cesium ions from aqueous solution." Chemical Engineering Journal 352 (November 2018): 133–42. http://dx.doi.org/10.1016/j.cej.2018.06.175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

El-Naggar, I. M., E. S. Sheneshen, and E. A. Abdel-Galil. "Retention behavior studies for the removal of some hazardous metal ions from waste solutions using polyaniline silicotitanate as composite cation exchanger." Desalination and Water Treatment 56, no. 7 (August 26, 2014): 1820–28. http://dx.doi.org/10.1080/19443994.2014.952672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nyman, M., F. Bonhomme, D. M. Teter, R. S. Maxwell, B. X. Gu, L. M. Wang, R. C. Ewing, and T. M. Nenoff. "Integrated Experimental and Computational Methods for Structure Determination and Characterization of a New, Highly Stable Cesium Silicotitanate Phase, Cs2TiSi6O15(SNL-A)." Chemistry of Materials 12, no. 11 (November 2000): 3449–58. http://dx.doi.org/10.1021/cm000259g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Grandjean, Agnès, Yves Barré, Audrey Hertz, Virginie Fremy, Jérémy Mascarade, Eric Louradour, and Thierry Prevost. "Comparing hexacyanoferrate loaded onto silica, silicotitanate and chabazite sorbents for Cs extraction with a continuous-flow fixed-bed setup: Methods and pitfalls." Process Safety and Environmental Protection 134 (February 2020): 371–80. http://dx.doi.org/10.1016/j.psep.2019.12.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography