To see the other types of publications on this topic, follow the link: Silicone soft robots.

Journal articles on the topic 'Silicone soft robots'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Silicone soft robots.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Lin, Hao, Yihui Chen, and Wei Tang. "Soft Electrohydraulic Bending Actuators for Untethered Underwater Robots." Actuators 13, no. 6 (June 8, 2024): 214. http://dx.doi.org/10.3390/act13060214.

Full text
Abstract:
Traditional underwater rigid robots have some shortcomings that limit their applications in the ocean. In contrast, because of their inherent flexibility, soft robots, which have gained popularity recently, offer greater adaptability, efficiency, and safety than rigid robots. Among them, the soft actuator is the core component to power the soft robot. Here, we propose a class of soft electrohydraulic bending actuators suitable for underwater robots, which realize the bending motion of the actuator by squeezing the working liquid with an electric field. The actuator consists of a silicone rubber film, polydimethylsiloxane (PDMS) films, soft electrodes, silicone oils, an acrylic frame, and a soft flipper. When a square wave voltage is applied, the actuator can generate continuous flapping motions. By mimicking Haliclystus auricula, we designed an underwater robot based on six soft electrohydraulic bending actuators and constructed a mechanical model of the robot. Additionally, a high-voltage square wave circuit board was created to achieve the robot’s untethered motions and remote control using a smart phone via WiFi. The test results show that 1 Hz was the robot’s ideal driving frequency, and the maximum horizontal swimming speed of the robot was 7.3 mm/s.
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Huaqing, Yutong Han, Xinyu Chen, Rong Lu, Erxing Zhuang, Huaping Wu, Xiaodi Jiang, Xiaojun Tan, and Bo Cao. "Design, Fabrication, and Characterization of a Novel Crawling Pneumatic Soft Robot." Automation 6, no. 1 (February 12, 2025): 7. https://doi.org/10.3390/automation6010007.

Full text
Abstract:
Soft robots have shown great application potential in human–computer interaction, scientific exploration, and biomedical fields. However, they generally face issues like poor load capacity. Inspired by the propagation and movement mechanisms of ocean waves, this study proposes a novel type of pneumatically driven crawling soft robot. An automated pneumatic drive system was first constructed for driving and controlling the crawling soft robot, and then the soft robot body was made using additive manufacturing and silicone molding. Experimental testing of the robot’s performance revealed that it can move efficiently on surfaces with varying friction coefficients and has a strong load-bearing capacity. This work is expected to provide a reference for the design of other soft robots.
APA, Harvard, Vancouver, ISO, and other styles
3

Sun, Hao, Bin Cheng, Ning Yang Wang, and Xiao Ping Chen. "A Preliminary Study of the HPN Robot." Applied Mechanics and Materials 575 (June 2014): 726–30. http://dx.doi.org/10.4028/www.scientific.net/amm.575.726.

Full text
Abstract:
Soft robots are robots made of soft materials and actuators. Previously we proposed the HPN (Honeycomb PneuNets) Robot, where PneuNets were placed as actuators into honeycomb shaped elastomer. In this paper, we present some progress of this effort. A random search algorithm is applied to plan the obstacle-avoid movements of an HPN robot. We test it through several cases, and the results showed that the algorithm can work effectively. We introduce an HPN robot prototype, which is made of RTV-2 silicone rubber. Preliminary experiments showed that some good expansion rate and flexibility can be achieved. A piston and soft body simulation model of HPN robots is also presented, which can mimic the basic behaviors of the HPN robot.
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Ruomeng, and Qingsong Xu. "Design of a Bio-Inspired Untethered Soft Octopodal Robot Driven by Magnetic Field." Biomimetics 8, no. 3 (June 22, 2023): 269. http://dx.doi.org/10.3390/biomimetics8030269.

Full text
Abstract:
Inspired by insects in nature, an increasing number of soft robots have been proposed to mimic their locomotion patterns. As a wireless actuation method, the magnetic actuation technique has been widely applied to drive soft magnetic robots for diverse applications. Although recent works on soft materials have stimulated the development of soft robots, it is challenging to achieve the efficient movement of soft robots for in vivo biomedical application. Inspired by centipede locomotion, a soft octopodal robot is designed in this paper. The robot is fabricated by mixing magnetic particles with silicone polymers, which is then magnetized by a specific magnetic field. The prototypes can be actuated by an external magnetic field (5–8 mT) produced by custom-made electromagnetic coils. Experimental results show that the soft robot can move at a high speed in the range of 0.536–1.604 mm/s on different surfaces, including paper, wood, and PMMA. This indicates that the soft robot can achieve comparable speeds to other robots, while being driven by a lower magnitude, resulting in energy savings. Furthermore, it achieves a high speed of 0.823 mm/s on the surface of a pig colon. The fine capabilities of the soft robot in terms of crossing uneven biological surfaces and carrying external loads are demonstrated. The results indicate that the reported soft robot exhibits promising applications in the biomedical field.
APA, Harvard, Vancouver, ISO, and other styles
5

Jyothi, Mrs N. Krishna. "Plucking Flowers using Soft Robot." International Journal for Research in Applied Science and Engineering Technology 11, no. 11 (November 30, 2023): 575–79. http://dx.doi.org/10.22214/ijraset.2023.56490.

Full text
Abstract:
Abstract: Soft robotics is a subfield of robotics that concerns the design, control, and fabrication of robots composed of complaint materials, instead of rigid links. In contrast to the rigid-bodied robots built from metals, ceramics, and hard plastics, the compliance of soft robots can improve their safety when working in close contact with humans. The main objective of this project is to pluck flowers using a soft robot. The proposed system is designed to provide gentle manipulation of flowers in a horticultural setting. The soft robot is composed of flexible and deformable materials, such as silicone or elastomer, and is designed to mimic the motion and compliance of human fingers. The system is implemented and tested in a real-world scenario, and the results show that it can effectively pluck flowers without causing damage or injury to the plant. The proposed approach has potential applications in the floriculture industry, where the system can improve efficiency and reduce labour costs, while also minimizing damage to the flowers
APA, Harvard, Vancouver, ISO, and other styles
6

Ribuan, Mohamed Najib, Shuichi Wakimoto, Koichi Suzumori, and Takefumi Kanda. "Omnidirectional Soft Robot Platform with Flexible Actuators for Medical Assistive Device." International Journal of Automation Technology 10, no. 4 (July 5, 2016): 494–502. http://dx.doi.org/10.20965/ijat.2016.p0494.

Full text
Abstract:
This manuscript explains the employment of flexible actuators to act as a soft robot and transporting agent to assist medical X-ray examinations. Although soft robots from silicone material can be transparence and a human compliance used as medical assistive devices, soft robots have some problems: they tend to be sluggish, have long and imprecise gait trajectories, and need their control parameters to be adjusted for motion diversion. A soft robot with omnidirectional locomotion has been created, one that has a combination of pneumatic rubber legs that form a soft robot platform and an associated hardware setup. Tests have confirmed its omnidirectional locomotion ability; it has a maximum speed of 6.90 mm/s in forward locomotion and a maximum payload of 70 g. These features indicate that the robot can be used as a medical assistive device for fluoroscopy examinations.
APA, Harvard, Vancouver, ISO, and other styles
7

García-Samartín, Jorge Francisco, Adrián Rieker, and Antonio Barrientos. "Design, Manufacturing, and Open-Loop Control of a Soft Pneumatic Arm." Actuators 13, no. 1 (January 17, 2024): 36. http://dx.doi.org/10.3390/act13010036.

Full text
Abstract:
Soft robots distinguish themselves from traditional robots by embracing flexible kinematics. Because of their recent emergence, there exist numerous uncharted territories, including novel actuators, manufacturing processes, and advanced control methods. This research is centred on the design, fabrication, and control of a pneumatic soft robot. The principal objective is to develop a modular soft robot featuring multiple segments, each one with three degrees of freedom. This yields a tubular structure with five independent degrees of freedom, enabling motion across three spatial dimensions. Physical construction leverages tin-cured silicone and a wax-casting method, refined through an iterative processes. PLA moulds that are 3D-printed and filled with silicone yield the desired model, while bladder-like structures are formed within using solidified paraffin wax-positive moulds. For control, an empirically fine-tuned open-loop system is adopted. This paper culminates in rigorous testing. Finally, the bending ability, weight-carrying capacity, and possible applications are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Jie, Haoyu Zhou, Yong Gao, Yupeng Xie, Jing Zhang, Yaocheng Hu, Dengwang Wang, et al. "The Characterization of Silicone-Tungsten-Based Composites as Flexible Gamma-Ray Shields." Materials 14, no. 20 (October 11, 2021): 5970. http://dx.doi.org/10.3390/ma14205970.

Full text
Abstract:
Robots are very essential for modern nuclear power plants to monitor equipment conditions and eliminate accidents, allowing one to reduce the radiations on personnel. As a novel robot, a soft robot with the advantages of more degrees of freedom and abilities of continuously bending and twisting has been proposed and developed for applications in nuclear power industry. Considering the radiation and high-temperature environment, the overall performance improvement of the flexible materials used in the soft nuclear robot, such as the tensile property and gamma-ray shielding property, is an important issue, which should be paid attention. Here, a flexible gamma-ray shielding material silicone-W-based composites were initially doped with nano titanium oxide and prepared, with the composition of 20 silicone-(80-x) W-(x) TiO2, where x varied from 0.1 to 2.0 wt.%. Structural investigations on SEM and EDS were performed to confirm the structure of the prepared composites and prove that all the chemicals were included in the compositions. Moreover, the tensile property of the composites at 25, 100, and 150 °C were investigated to study the effect of working temperature on the flexibility of the compositions. The attenuation characteristics including the linear attenuation coefficients and mass attenuation coefficients of the prepared silicone-W or silicone-W-TiO2-based composites with respect to gamma ray were investigated. The stability of the silicone–tungsten-TiO2-based composite at high temperature was studied for the first time. In addition, the influence of nano TiO2 additive on the property’s variation of silicone-W-based composites was initially studied. The comparison of the properties such as the tensile elongation, thermal stability, and gamma-ray shielding of the synthesized silicone-W and silicone-W-TiO2 composites showed that the addition of nano TiO2 powders could be useful to develop novel gamma-ray-shielding materials for radiation protection of soft robots or other applications for which soft gamma-ray-shielding materials are needed.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Junfeng, Songyu Chen, and Minjie Sun. "Design and fabrication of a crawling robot based on a soft actuator." Smart Materials and Structures 30, no. 12 (November 9, 2021): 125018. http://dx.doi.org/10.1088/1361-665x/ac2e1b.

Full text
Abstract:
Abstract Inspired by biological systems, soft crawling robots provide unique advantages in terms of resilience and adaptive shaping during robotic motion. However, soft robots actuated by motors and pumps are usually heavy, noisy and bulky. In this paper, based on the principle of liquid-vapor changes of ethanol, a novel soft crawling robot that demonstrates more silent actuation and lighter weight compared with other robots is proposed. To increase the crawling speed of the robot, silicone mixed with liquid metal with a volume ratio of 20% is used to fabricate the actuators. The deformation of the actuator is analyzed and can be predicted using a theoretical model. To obtain effective crawling performance, a crawling locomotion sequence consisting of the three different parts (central, head and tail) based on the variable friction mechanism of actuators B and C is presented. The experimental results demonstrate that the robot can achieve forward movement on a horizontal surface and along vertical pipes and sticks. This study will provide further inspiration and guidance for the future development of crawling robots.
APA, Harvard, Vancouver, ISO, and other styles
10

Sui, Xin, Mingzhu Lai, Jian Qi, Zhiyuan Yang, Ning Zhao, Jie Zhao, Hegao Cai, and Yanhe Zhu. "A Fluid-Driven Loop-Type Modular Soft Robot with Integrated Locomotion and Manipulation Capability." Biomimetics 8, no. 5 (August 26, 2023): 390. http://dx.doi.org/10.3390/biomimetics8050390.

Full text
Abstract:
In nature, some animals, such as snakes and octopuses, use their limited body structure to conduct various complicated tasks not only for locomotion but also for hunting. Their body segments seem to possess the intelligence to adapt to environments and tasks. Inspired by nature, a modular soft robot with integrated locomotion and manipulation abilities is presented in this paper. A soft modular robot is assembled using several homogeneous cubic pneumatic soft actuator units made of silicone rubber. Both a mathematical model and backpropagation neural network are established to describe the nonlinear deformation of the soft actuator unit. The locomotion process of the chain-type soft robot is analyzed to provide a general rhythmic control principle for modular soft robots. A vision sensor is adopted to control the locomotion and manipulation processes of the modular soft robot in a closed loop. The experimental results indicate that the modular soft robot put forward in this paper has both locomotion and manipulation abilities.
APA, Harvard, Vancouver, ISO, and other styles
11

Yu, Zhang, Huang Peiyu, You Bo, Yu Zhibin, Li Dongjie, and Dong Guoqi. "Design and Motion Simulation of a Soft Robot for Crawling in Pipes." Applied Bionics and Biomechanics 2023 (February 5, 2023): 1–8. http://dx.doi.org/10.1155/2023/5334604.

Full text
Abstract:
In recent years, soft pipeline robot, as a new concept, is proposed to adapt to tunnel. The soft pipeline robots are made of soft materials such as rubber or silicone. These materials have good elasticity, which enhance the adaptability of the soft pipeline robot. Therefore, the soft pipeline robot has better performance on deformability than rigid robot. However, the structure of tunnel is complex and varied that brought challenges on design structure of soft pipeline robot. In this paper, we propose soft pipeline robot with simple structure and easy fabrication, which can be realized straight, turning motion in a variety of tunnels with different diameters. The soft pipeline robot composed of two types of structure, which are expansion part and deformation part. Front and rear deformation part for bending and position fixation, and middle expansion part for elongation, so the pipeline soft robot can be moved in various structures of tunnels. Moreover, the locomotion ability and adaptability in tunnel are verified by simulating on software. The structure of chamber proposed in this paper can guide the design method of soft pipeline robot.
APA, Harvard, Vancouver, ISO, and other styles
12

Sun, Xiyang, Akinao Nose, and Hiroshi Kohsaka. "A vacuum-actuated soft robot inspired by Drosophila larvae to study kinetics of crawling behaviour." PLOS ONE 18, no. 4 (April 5, 2023): e0283316. http://dx.doi.org/10.1371/journal.pone.0283316.

Full text
Abstract:
Peristalsis, a motion generated by the propagation of muscular contraction along the body axis, is one of the most common locomotion patterns in limbless animals. While the kinematics of peristalsis has been examined intensively, its kinetics remains unclear, partially due to the lack of suitable physical models to simulate the locomotion patterns and inner drive in soft-bodied animals. Inspired by a soft-bodied animal, Drosophila larvae, we propose a vacuum-actuated soft robot mimicking its crawling behaviour. The soft structure, made of hyperelastic silicone rubber, was designed to imitate the larval segmental hydrostatic structure. Referring to a numerical simulation by the finite element method, the dynamical change in the vacuum pressure in each segment was controlled accordingly, and the soft robots could exhibit peristaltic locomotion. The soft robots successfully reproduced two previous experimental phenomena on fly larvae: 1. Crawling speed in backward crawling is slower than in forward crawling. 2. Elongation of either the segmental contraction duration or intersegmental phase delay makes peristaltic crawling slow. Furthermore, our experimental results provided a novel prediction for the role of the contraction force in controlling the speed of peristaltic locomotion. These observations indicate that soft robots could serve to examine the kinetics of crawling behaviour in soft-bodied animals.
APA, Harvard, Vancouver, ISO, and other styles
13

Maestre, Juan Montes, Ronan Hinchet, Stelian Coros, and Bernhard Thomaszewski. "ToRoS: A Topology Optimization Approach for Designing Robotic Skins." ACM Transactions on Graphics 42, no. 6 (December 5, 2023): 1–11. http://dx.doi.org/10.1145/3618382.

Full text
Abstract:
Soft robotics offers unique advantages in manipulating fragile or deformable objects, human-robot interaction, and exploring inaccessible terrain. However, designing soft robots that produce large, targeted deformations is challenging. In this paper, we propose a new methodology for designing soft robots that combines optimization-based design with a simple and cost-efficient manufacturing process. Our approach is centered around the concept of robotic skins---thin fabrics with 3D-printed reinforcement patterns that augment and control plain silicone actuators. By decoupling shape control and actuation, our approach enables a simpler and cost-efficient manufacturing process. Unlike previous methods that rely on empirical design heuristics for generating desired deformations, our approach automatically discovers complex reinforcement patterns without any need for domain knowledge or human intervention. This is achieved by casting reinforcement design as a nonlinear constrained optimization problem and using a novel, three-field topology optimization approach tailored to fabrics with 3D-printed reinforcements. We demonstrate the potential of our approach by designing soft robotic actuators capable of various motions such as bending, contraction, twist, and combinations thereof. We also demonstrate applications of our robotic skins to robotic grasping with a soft three-finger gripper and locomotion tasks for a soft quadrupedal robot.
APA, Harvard, Vancouver, ISO, and other styles
14

Cho, Geun-Sik, and Yong-Jai Park. "Soft Gripper with EGaIn Soft Sensor for Detecting Grasp Status." Applied Sciences 11, no. 15 (July 28, 2021): 6957. http://dx.doi.org/10.3390/app11156957.

Full text
Abstract:
With the Fourth Industrial Revolution, many factories aim for efficient mass production, and robots are being used to reduce human workloads. In recent years, the field of gripper robots with a soft structure that can grip and move objects without damaging them has attracted considerable attention. This paper proposes a variable-stiffness soft gripper, based on previous designs, with an added silicone coating for increased friction and an EGaIn soft sensor for monitoring grip forces. The variable-stiffness structure used in this study was constructed by connecting soft structures to rigid structures and using tendons fixed to the rigid structures. Furthermore, a more responsive EGaIn soft sensor compared to existing sensors was designed by adding bumps to the path traced by the alloy. After selecting the appropriate fingertip shape, changes in the output of the EGaIn soft sensor corresponding to the object held by the soft gripper were observed, confirming that the strength of the device could be changed according to the intended purpose.
APA, Harvard, Vancouver, ISO, and other styles
15

Gao, Hang, James Lynch, and Nick Gravish. "Soft Molds with Micro-Machined Internal Skeletons Improve Robustness of Flapping-Wing Robots." Micromachines 13, no. 9 (September 7, 2022): 1489. http://dx.doi.org/10.3390/mi13091489.

Full text
Abstract:
Mobile millimeter and centimeter scale robots often use smart composite manufacturing (SCM) for the construction of body components and mechanisms. The fabrication of SCM mechanisms requires laser machining and laminating flexible, adhesive, and structural materials into small-scale hinges, transmissions, and, ultimately, wings or legs. However, a fundamental limitation of SCM components is the plastic deformation and failure of flexures. In this work, we demonstrate that encasing SCM components in a soft silicone mold dramatically improves the durability of SCM flexure hinges and provides robustness to SCM components. We demonstrate this advance in the design of a flapping-wing robot that uses an underactuated compliant transmission fabricated with an inner SCM skeleton and exterior silicone mold. The transmission design is optimized to achieve desired wingstroke requirements and to allow for independent motion of each wing. We validate these design choices in bench-top tests, measuring transmission compliance, kinematics, and fatigue. We integrate the transmission with laminate wings and two types of actuation, demonstrating elastic energy exchange and limited lift-off capabilities. Lastly, we tested collision mitigation through flapping-wing experiments that obstructed the motion of a wing. These experiments demonstrate that an underactuated compliant transmission can provide resilience and robustness to flapping-wing robots.
APA, Harvard, Vancouver, ISO, and other styles
16

Marzi, Christian, Nikola Fischer, and Franziska Mathis-Ullrich. "Biocompatible Soft Material Actuator for Compliant Medical Robots." Current Directions in Biomedical Engineering 7, no. 1 (August 1, 2021): 58–62. http://dx.doi.org/10.1515/cdbme-2021-1013.

Full text
Abstract:
Abstract Robots from material-based actuators offer high potential for small-scale robots with abilities hardly achievable by classical methods like electric motors. Besides excellent scaling to minimally invasive systems, allowing for omission of metallic components, such robots can be applied in imaging modalities such as MRI or CT. To allow for higher accessibility in this field of research, a facile method for fabrication of such soft actuators was developed. It comprises only two materials: graphene oxide and silicone elastomer. The facile fabrication method does not require specialized equipment. The resulting actuator is biocompatible and controllable by light mediated heat. The bending motion can be controlled by the intensity of applied infrared light and the actuator was experimentally shown to move five times its own weight. Thus, providing capabilities for a medical soft robotic actuator.
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Ning, Yu Zhang, Guofeng Zhang, Wenchuan Zhao, and Linghui Peng. "Development and Analysis of Key Components of a Multi Motion Mode Soft-Bodied Pipe Robot." Actuators 11, no. 5 (April 29, 2022): 125. http://dx.doi.org/10.3390/act11050125.

Full text
Abstract:
In order to enhance the environmental adaptability of peristaltic soft-bodied pipe robots, based on the nonlinear and hyperelastic characteristics of silicone rubber combined with the biological structure and motion characteristics of worms, a hexagonal prism soft-bodied bionic actuator is proposed. The actuator adopts different inflation patterns to produce different deformations, so that the soft-bodied robot can realize different motion modes in the pipeline. Based on the Yeoh binomial parameter silicone rubber constitutive model, the deformation analysis model of the hexagonal prism soft-bodied bionic actuator is established, and the numerical simulation algorithm is used to ensure both that the drive structure and deformation mode are reasonable, and that the deformation analysis theoretical model is accurate. The motion and dynamic characteristics of the prepared hexagonal prism soft-bodied bionic actuator are tested and analyzed, the motion and dynamic characteristic curves of the actuator are obtained, and the empirical deformation formula of the actuator is fitted. The experimental results are consistent with the deformation analysis model and numerical simulation result, which shows that the deformation analysis model and numerical simulation method are accurate and can provide design methods and reference basis for the development of a pneumatic soft-bodied body bionic actuator. The above research results can also prove that the hexagonal prism soft-bodied bionic actuator is reasonable and feasible.
APA, Harvard, Vancouver, ISO, and other styles
18

Wei, Qiong, Ding Ke, Zihang Sun, Zilong Wu, Yue Zhou, and Daode Zhang. "A Structural Design and Motion Characteristics Analysis of an Inchworm-Inspired Soft Robot Based on Shape Memory Alloy Actuation." Actuators 13, no. 1 (January 22, 2024): 43. http://dx.doi.org/10.3390/act13010043.

Full text
Abstract:
Inchworms are a widely adopted bio-inspired model for soft crawling robots. Taking advantage of the good controllability of Shape Memory Alloy (SMA), this paper designs and manufactures an inchworm-inspired soft robot driven by SMA. Firstly, in the structural design, the paper compares the heat dissipation performance and driving efficiency of SMA actuators with two assembly forms: embedded and external to the silicone body. The external structure assembly design with superior performance is chosen. Secondly, in the analysis of the motion characteristics of the soft robot, a kinematic model is developed. Addressing the issue of inaccurate representation in traditional constitutive models due to difficult-to-measure parameters, such as martensite volume fraction, this paper derives an exclusive new constitutive model starting from traditional models using methods like the Taylor series and thermodynamic laws. The kinematic model is simulated using the Simulink platform to obtain its open-loop step response and sinusoidal signal response. Finally, an experimental platform is set up to conduct crawling tests on the soft robot in different planes. The experimental results show that the inchworm-inspired soft robot can perform continuous crawling motion, with a crawling speed of 0.041 mm/s on sandpaper under a constant current of 4A.
APA, Harvard, Vancouver, ISO, and other styles
19

Zhao, Wenchuan, Yu Zhang, Lijian Yang, Ning Wang, and Linghui Peng. "Research and Implementation of Pneumatic Amphibious Soft Bionic Robot." Machines 12, no. 6 (June 7, 2024): 393. http://dx.doi.org/10.3390/machines12060393.

Full text
Abstract:
To meet the requirements of amphibious exploration, ocean exploration, and military reconnaissance tasks, a pneumatic amphibious soft bionic robot was developed by taking advantage of the structural characteristics, motion forms, and propulsion mechanisms of the sea lion fore-flippers, inchworms, Carangidae tails, and dolphin tails. Using silicone rubber as the main material of the robot, combined with the driving mechanism of the pneumatic soft bionic actuator, and based on the theory of mechanism design, a systematic structural design of the pneumatic amphibious soft bionic robot was carried out from the aspects of flippers, tail, head–neck, and trunk. Then, a numerical simulation algorithm was used to analyze the main executing mechanisms and their coordinated motion performance of the soft bionic robot and to verify the rationality and feasibility of the robot structure design and motion forms. With the use of rapid prototyping technology to complete the construction of the robot prototype body, based on the motion amplitude, frequency, and phase of the bionic prototype, the main execution mechanisms of the robot were controlled through a pneumatic system to carry out experimental testing. The results show that the performance of the robot is consistent with the original design and numerical simulation predictions, and it can achieve certain maneuverability, flexibility, and environmental adaptability. The significance of this work is the development of a pneumatic soft bionic robot suitable for amphibious environments, which provides a new idea for the bionic design and application of pneumatic soft robots.
APA, Harvard, Vancouver, ISO, and other styles
20

Du, Tianhao, Lechen Sun, and Jingjing Wan. "A Worm-like Crawling Soft Robot with Pneumatic Actuators Based on Selective Laser Sintering of TPU Powder." Biomimetics 7, no. 4 (November 20, 2022): 205. http://dx.doi.org/10.3390/biomimetics7040205.

Full text
Abstract:
Soft robotics is one of the most popular areas in the field of robotics due to advancements in bionic technology, novel materials, and additive manufacturing. Existing soft crawling robots with specific structures have a single locomotion mode and cannot complete turning. Moreover, some silicone-based robots lack stiffness, leading to unstable movements especially when climbing walls, and have limited environmental adaptability. Therefore, in this study, a novel crawling soft robot with a multi-movement mode and high environmental adaptability is proposed. As the main structure of the robot, pneumatic single-channeled and double-channeled actuators are designed, inspired by the worm’s somite expansion and contraction. Model-based methods are employed to evaluate and analyze the characteristics of the actuators. By the application of selective laser sintering technology and thermoplastic polyurethane (TPU) material, the fabricated actuators with an auxetic cavity structure are able to maintain a certain stiffness. Via the coordination between the actuators and the suckers, two locomotion modes—straight-line and turning—are realized. In the testing, the speed of straight-line crawling was 7.15 mm/s, and the single maximum turning angle was 28.8 degrees. The testing verified that the robot could realize crawling on flat ground, slopes, and smooth vertical walls with a certain stability and equipment-carrying capacity. This research could lay the foundation for subsequent applications, including large tank interior inspections, civil aviation fuselage and wing inspections, and wall-cleaning in high-rise buildings.
APA, Harvard, Vancouver, ISO, and other styles
21

Nagase, Jun-Ya, Norihiko Saga, Toshiyuki Satoh, and Koichi Suzumori. "Development and control of a multifingered robotic hand using a pneumatic tendon-driven actuator." Journal of Intelligent Material Systems and Structures 23, no. 3 (September 4, 2011): 345–52. http://dx.doi.org/10.1177/1045389x11420590.

Full text
Abstract:
Because of the rapid aging of the Japanese population and the acute decrease in young workers in Japan, robots are anticipated for use in performing rehabilitation and daily domestic tasks for nursing and welfare services. Use in environments with humans, safety, and human affinity are particularly important robot hand characteristics. Such robot hands must have flexible movements and be lightweight. Under these circumstances, this study specifically addresses the expansion of a silicone rubber, tendon-driven actuator, which has been developed using a pneumatic balloon. A multifingered robotic hand using the actuator is developed. Moreover, a fuzzy grasping control system is applied to the proposed robotic hand. The robot hand’s development is described incorporating pneumatic balloon actuator with the softness, size, and weight of a human hand. The fuzzy grasping control system is shown to be effective for the proposed robot hand, which can grasp soft objects easily.
APA, Harvard, Vancouver, ISO, and other styles
22

Ning, Kewei, and Hideyuki Sawada. "A wireless bionic soft robotic fish using shape-memory alloy actuators." IAES International Journal of Robotics and Automation (IJRA) 11, no. 4 (December 1, 2022): 278. http://dx.doi.org/10.11591/ijra.v11i4.pp278-287.

Full text
Abstract:
<span lang="EN-US">In this study, we present the construction of a wireless bionic soft robotic fish that has a silicone tail and uses shape-memory alloys (SMAs) as actuators. Even though there have been a lot of recent advancements in the field of soft robotics, the use of SMAs as actuators for soft robots is still not something that is investigated very often. In the course of this research, we plan to work toward the creation of a realistic bionic fish robot that possesses a high level of mobility in the water, in addition to being light enough, strong enough, and flexible enough. The purpose of this study is to expound on the process of optimizing the morphologies of the fish body, as well as the optimization of the electromechanical behavior of the SMAs, in order to generate swimming motions in the fish. Our attention will be on the optimization of these two aspects. This report also outlines some preliminary but promising physical tests that were conducted to create a robotic fish with the similar shape.</span>
APA, Harvard, Vancouver, ISO, and other styles
23

Liu, Sijia, Yingjie Wang, Zhennan Li, Miao Jin, Lei Ren, and Chunbao Liu. "A fluid-driven soft robotic fish inspired by fish muscle architecture." Bioinspiration & Biomimetics 17, no. 2 (February 8, 2022): 026009. http://dx.doi.org/10.1088/1748-3190/ac4afb.

Full text
Abstract:
Abstract Artificial fish-like robots developed to date often focus on the external morphology of fish and have rarely addressed the contribution of the structure and morphology of biological muscle. However, biological studies have proven that fish utilize the contraction of muscle fibers to drive the protective flexible connective tissue to swim. This paper introduces a pneumatic silicone structure prototype inspired by the red muscle system of fish and applies it to the fish-like robot named Flexi-Tuna. The key innovation is to make the fluid-driven units simulate the red muscle fiber bundles of fish and embed them into a flexible tuna-like matrix. The driving units act as muscle fibers to generate active contraction force, and the flexible matrix as connective tissue to generate passive deformation. Applying alternant pressure to the driving units can produce a bending moment, causing the tail to swing. As a result, the structural design of Flexi-Tuna has excellent bearing capacity compared with the traditional cavity-type and keeps the body smooth. On this basis, a general method is proposed for modeling the fish-like robot based on the independent analysis of the active and passive body, providing a foundation for Flexi-Tuna’s size design. Followed by the robot’s static and underwater dynamic tests, we used finite element static analysis and fluid numerical simulation to compare the results. The experimental results showed that the maximum swing angle of the tuna-like robot reached 20°, and the maximum thrust reached 0.185 N at the optimum frequency of 3.5 Hz. In this study, we designed a unique system that matches the functional level of biological muscles. As a result, we realized the application of fluid-driven artificial muscle to bionic fish and expanded new ideas for the structural design of flexible bionic fish.
APA, Harvard, Vancouver, ISO, and other styles
24

Rusu, Dan Mihai, Olivia Laura Petrașcu, Adrian Marius Pascu, and Silviu Dan Mândru. "The Influence of Industrial Environmental Factors on Soft Robot Materials." Materials 16, no. 8 (April 7, 2023): 2948. http://dx.doi.org/10.3390/ma16082948.

Full text
Abstract:
This work aims to identify the effects that a series of environmental factors, specific to the industrial conditions, have on the materials in the structure of soft robots and, therefore, on soft robotics systems. The purpose is to understand the changes in the mechanical characteristics of silicone materials, with the aim of transferring soft robotics applications from the sphere of services in the industrial field. Distilled water, hydraulic oil, cooling oil, and UV rays are the environmental factors considered in which the specimens were immersed/exposed for 24 h according to ISO-62/2008. The analysis was carried out on two of the most widely used materials in the field, belonging to the category of silicone rubber, which were subjected to uniaxial tensile tests on the strength testing machine Titan 2 Universal. The results show that the greatest impact on the characteristics of the two materials was when exposed to UV rays, while the other media tested had relatively little impact on the mechanical and elastic properties (tensile strength, elongation at break, and tensile modulus) of these materials.
APA, Harvard, Vancouver, ISO, and other styles
25

Long, Fei, Gaojie Xu, Jing Wang, Yong Ren, and Yuchuan Cheng. "Variable Stiffness Conductive Composites by 4D Printing Dual Materials Alternately." Micromachines 13, no. 8 (August 19, 2022): 1343. http://dx.doi.org/10.3390/mi13081343.

Full text
Abstract:
Materials that can be designed with programmable properties and which change in response to external stimuli are of great importance in numerous fields of soft actuators, involving robotics, drug delivery and aerospace applications. In order to improve the interaction of human and robots, materials with variable stiffness are introduced to develop their compliance. A variable stiffness composite has been investigated in this paper, which is composed of liquid metals (LMs) and silicone elastomers. The phase changing materials (LMs) have been encapsulated into silicone elastomer by printing the dual materials alternately with three-dimensional direct ink writing. Such composites enable the control over their own stiffness between soft and rigid states through LM effective phase transition. The tested splines demonstrated that the stiffness changes approximately exceeded 1900%, and the storage modulus is 4.75 MPa and 0.2 MPa when LM is rigid and soft, respectively. In the process of heating up, the stretching strain can be enlarged by at least three times, but the load capacity is weakened. At a high temperature, the resistance of the conductive composites changes with the deformation degree, which is expected to be applied in the field of soft sensing actuators.
APA, Harvard, Vancouver, ISO, and other styles
26

Wang, Zili, Ding Weng, Zhaoxin Li, Lei Chen, Yuan Ma, and Jiadao Wang. "A Magnetic-Controlled Flexible Continuum Robot with Different Deformation Modes for Vascular Interventional Navigation Surgery." Actuators 12, no. 6 (June 14, 2023): 247. http://dx.doi.org/10.3390/act12060247.

Full text
Abstract:
A magnetic-controlled flexible continuum robot (MFCR) is a kind of continuum robot with small-size and flexibility that deforms under controlled magnetic fields, which makes MFCRs easy to fit in special sizes and designs and provides them with the ability to feasibly arrive at the desired area through certain blood vessel bifurcation. The magnetic drive method is suitable for the miniaturization of soft continuum robots but shows limitations in realizing high flexibility. To achieve miniaturization and high flexibility, in this work, the deformation schemes of a magnetic-controlled flexible continuum robot (MFCR) are proposed, simulated, and experimentally validated. The proposed MFCR includes a soft steering part made of a silicone elastomer with uniformly dispersed NdFeB powder which has a specific magnetization direction. With the actuation of different magnetic fields, the proposed MFCR shows three different deformation modes (C-shape, J-shape, and S-shape) and high flexibility. By using the potential energy model combined with magnetic and elastic potential energy, the quasi-static deformation model of MFCR is built. Through various simulations and experiments, we analyzed and predicted different deformation modes. The results from the experiments demonstrate the accuracy of the deformation model. The results indicate that the MFCR has good control precision and deformation performance with potential applications in robot-assisted minimally invasive surgery.
APA, Harvard, Vancouver, ISO, and other styles
27

Mersch, Johannes, Najmeh Keshtkar, Henriette Grellmann, Carlos Alberto Gomez Cuaran, Mathis Bruns, Andreas Nocke, Chokri Cherif, Klaus Röbenack, and Gerald Gerlach. "Integrated Temperature and Position Sensors in a Shape-Memory Driven Soft Actuator for Closed-Loop Control." Materials 15, no. 2 (January 10, 2022): 520. http://dx.doi.org/10.3390/ma15020520.

Full text
Abstract:
Soft actuators are a promising option for the advancing fields of human-machine interaction and dexterous robots in complex environments. Shape memory alloy wire actuators can be integrated into fiber rubber composites for highly deformable structures. For autonomous, closed-loop control of such systems, additional integrated sensors are necessary. In this work, a soft actuator is presented that incorporates fiber-based actuators and sensors to monitor both deformation and temperature. The soft actuator showed considerable deformation around two solid body joints, which was then compared to the sensor signals, and their correlation was analyzed. Both, the actuator as well as the sensor materials were processed by braiding and tailored fiber placement before molding with silicone rubber. Finally, the novel fiber-rubber composite material was used to implement closed-loop control of the actuator with a maximum error of 0.5°.
APA, Harvard, Vancouver, ISO, and other styles
28

Matharu, Pawandeep Singh, Akash Ashok Ghadge, Yara Almubarak, and Yonas Tadesse. "Jelly-Z: Twisted and coiled polymer muscle actuated jellyfish robot for environmental monitoring." ACTA IMEKO 11, no. 3 (September 5, 2022): 1. http://dx.doi.org/10.21014/acta_imeko.v11i3.1255.

Full text
Abstract:
Silent underwater actuation and object detection are desired for certain applications in environmental monitoring. However, several challenges need to be faced when addressing simultaneously the issues of actuation and object detection using vision system. This paper presents a swimming underwater soft robot inspired by the moon jellyfish (Aurelia aurita) species and other similar robots; however, this robot uniquely utilizes novel artificial muscles and incorporates camera for visual information processing. The actuation characteristics of the novel artificial muscles in water are presented which can be used for any other applications. The bio-inspired robot, Jelly-Z, has the following characteristics: (1) The integration of three 60 mm-long twisted, and coiled polymer fishing line (TCPFL) muscles in a silicone bell to achieve contraction and expansion motions for swimming; (2) A Jevois camera is mounted on Jelly-Z to perform object detection while swimming using a pre-trained neural network; (3) Jelly-Z weighs a total of 215 g with all its components and is capable of swimming 360 mm in 63 seconds. The present work shows, for the first time, the integration of camera detection and TCPFL actuators in an underwater soft jellyfish robot, and the associated performance characteristics. This kind of robot can be a good platform for monitoring of aquatic environment either for detection of objects by estimating the percentage of similarity to pre-trained network or by mounting sensors to monitor water quality when fully developed.
APA, Harvard, Vancouver, ISO, and other styles
29

Muratbakeev, Eduard, Yuriy Kozhubaev, Yao Yiming, and Shehzad Umar. "Symmetrical Modeling of Physical Properties of Flexible Structure of Silicone Materials for Control of Pneumatic Soft Actuators." Symmetry 16, no. 6 (June 16, 2024): 750. http://dx.doi.org/10.3390/sym16060750.

Full text
Abstract:
With the ongoing advancements in material technology, the domain of soft robotics has garnered increasing attention. Soft robots, in contrast to their rigid counterparts, offer superior adaptability to the environment, enhanced flexibility, and improved safety, rendering them highly suitable for complex application scenarios such as rescue operations and medical interventions. In this paper, a new type of pneumatic software actuator is proposed. The actuator adopts a combination of a soft structure and pneumatic control, which is highly flexible and versatile. By using the flow of gas inside the soft structure, high-precision and flexible motion control is realized. In the design process, the extensibility and adaptability of the structure are considered, so that the actuator can adapt to different working environments and task requirements. The experimental results show that the pneumatic soft actuator exhibits excellent performance in terms of accuracy, response speed, and controllability. This research provides new ideas and methods for the development of the field of pneumatic actuators and has wide application prospects. The main research content of this paper is as follows: first, the soft pneumatic actuator is modeled and simulated, the structure is optimized on the basis of simulation, and finally, the performance of the actuator is tested.
APA, Harvard, Vancouver, ISO, and other styles
30

Hu, Jinjin, Beizhi Chu, Xueqing Liu, Huaixiao Wei, Jianwen Wang, Xue Kan, Yumin Xia, Shuohan Huang, and Yuwei Chen. "Preparation of PANI/CuPc/PDMS Composite Elastomer with High Dielectric Constant and Low Modulus Assisted by Electric Fields." Polymers 16, no. 11 (May 30, 2024): 1549. http://dx.doi.org/10.3390/polym16111549.

Full text
Abstract:
Dielectric elastomer is a kind of electronic electroactive polymer, which plays an important role in the application of soft robots and flexible electronics. In this study, an all-organic polyaniline/copper phthalocyanine/silicone rubber (PANI/CuPc/PDMS) dielectric composite with superior comprehensive properties was prepared by manipulating the arrangement of filler in a polymer matrix assisted by electric fields. Both CuPc particles and PANI particles can form network structures in the PDMS matrix by self-assembly under electric fields, which can enhance the dielectric properties of the composites at low filler content. The dielectric constant of the assembled PANI/CuPc/PDMS composites can reach up to 140 at 100 Hz when the content of CuPc and PANI particles is 4 wt% and 2.5 wt%, respectively. Moreover, the elastic modulus of the composites remains below 2 MPa, which is important for electro-deforming. The strain of assembled PANI/CuPc/PDMS three-phase composites at low electric field strength (2 kV/mm) can increase up to five times the composites with randomly dispersed particles, which makes this composite have potential application in the field of soft robots and flexible electronics.
APA, Harvard, Vancouver, ISO, and other styles
31

Tiboni, Monica, and Davide Loda. "Monolithic PneuNets Soft Actuators for Robotic Rehabilitation: Methodologies for Design, Production and Characterization." Actuators 12, no. 7 (July 24, 2023): 299. http://dx.doi.org/10.3390/act12070299.

Full text
Abstract:
Soft-robotics for biomedical applications, such as rehabilitation robots, is a field of intense research activity. Different actuation solutions have been proposed in the last decades, involving study and development of soft actuators of different types and materials. The purpose of the paper is to present procedures for an optimized design, and for easy and low cost production and characterization of monolithic PneuNets soft-actuators. An innovative design approach has been developed. The parameterization of the geometry, combined with FEM simulations is the basis for an optimized design of the actuator, as a function of the obtained bending and of the generated forces. Simple and cheap characterization setup and procedures have been identified for the actuator characterization and for simulation results validation. An easy and low-cost fabrication method based on lost wax core obtained through a silicone based mold has been developed for a monolithic PneuNets soft-actuator. The proposed solution performs well in bending, without the need for a strain limiting layer. Experimental results validated simulations, confirming the feasibility of adopting an optimized simulation-based design approach.
APA, Harvard, Vancouver, ISO, and other styles
32

Sardesai, Aditya N., Xavier M. Segel, Matthew N. Baumholtz, Yiheng Chen, Ruhao Sun, Bram W. Schork, Richard Buonocore, Kyle O. Wagner, and Holly M. Golecki. "Design and Characterization of Edible Soft Robotic Candy Actuators." MRS Advances 3, no. 50 (2018): 3003–9. http://dx.doi.org/10.1557/adv.2018.557.

Full text
Abstract:
ABSTRACTOne of the goals of soft robotics is the ability to interface with the human body. Traditionally, silicone materials have dominated the field of soft robotics. In order to shift to materials that are more compatible with the body, developments will have to be made into biodegradable and biocompatible soft robots. This investigation focused on developing gummy actuators which are biodegradable, edible, and tasty. Creating biodegradable and edible actuators can be both sold as an interactive candy product and also inform the design of implantable soft robotic devices. First, commercially available gelatin-based candies were recast into pneumatic actuators utilizing molds. Edible robotic devices were pneumatically actuated repeatedly (up to n=8 actuations) using a 150 psi power inflator. To improve upon the properties of actuators formed from commercially available candy, a novel gelatin-based formulation, termed the “Fordmula” was also developed and used to create functional actuators. To investigate the mechanics and functionality of the recast gummy material and the Fordmula, compression testing and biodegradation studies were performed. Mechanical compression tests showed that recast gummy materials had similar properties to commercially available candies and at low strain had similar behavior to traditional silicone materials. Degradation studies showed that actuation was possible within 15 minutes in a biologically relevant solution followed by complete dissolution of the actuator afterwards. A taste test with elementary aged children demonstrated the fun, edible, and educational appeal of the candy actuators. Edible actuator development was an entry and winning submission in the High School Division of the Soft Robotics Toolkit Design Competition hosted by Harvard University. Demonstration of edible soft robotic actuators created by middle and high school aged students shows the applicability of the Soft Robotics Toolkit for K12 STEM education.
APA, Harvard, Vancouver, ISO, and other styles
33

Ruppel, Philipp, and Jianwei Zhang. "Elastic Tactile Sensor Glove for Dexterous Teaching by Demonstration." Sensors 24, no. 6 (March 16, 2024): 1912. http://dx.doi.org/10.3390/s24061912.

Full text
Abstract:
We present a thin and elastic tactile sensor glove for teaching dexterous manipulation tasks to robots through human demonstration. The entire glove, including the sensor cells, base layer, and electrical connections, is made from soft and stretchable silicone rubber, adapting to deformations under bending and contact while preserving human dexterity. We develop a glove design with five fingers and a palm sensor, revise material formulations for reduced thickness, faster processing and lower cost, adapt manufacturing processes for reduced layer thickness, and design readout electronics for improved sensitivity and battery operation. We further address integration with a multi-camera system and motion reconstruction, wireless communication, and data processing to obtain multimodal reconstructions of human manipulation skills.
APA, Harvard, Vancouver, ISO, and other styles
34

Joseph, Vincent Sebastian, Theo Calais, Thileepan Stalin, Snehal Jain, Naresh Kumar Thanigaivel, Naresh D. Sanandiya, and Pablo Valdivia y Alvarado. "Silicone/epoxy hybrid resins with tunable mechanical and interfacial properties for additive manufacture of soft robots." Applied Materials Today 22 (March 2021): 100979. http://dx.doi.org/10.1016/j.apmt.2021.100979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cross, Liam B., Rafsan Al Shafatul Islam Subad, Md Mahmud Hasan Saikot, and Kihan Park. "Waterproof Design of Soft Multi-Directional Force Sensor for Underwater Robotic Applications." Applied Mechanics 3, no. 3 (June 22, 2022): 705–23. http://dx.doi.org/10.3390/applmech3030042.

Full text
Abstract:
Directional force sensing is an intrinsic feature of tactile sensing. As technologies of exploratory robots evolve, with special emphasis on the emergence of soft robotics, it is crucial to equip robotic end-effectors with effective means of characterizing trends in force detection and grasping phenomena, while these trends are largely derived from networks of tactile sensors working together, individual sensors must be built to meet an intended function and maintain functionality with respect to environmental operating conditions. The harshness of underwater exploration imposes a unique set of circumstances onto the design of tactile sensors. When exposed to underwater conditions a tactile sensor must be able to withstand the effects of increased pressure paired with water intrusion while maintaining computational and mechanical integrity. Robotic systems designed for the underwater environment often become expensive and cumbersome. This paper presents the design, fabrication, and performance of a low-cost, soft-material sensor capable of multi-directional force detection. The fundamental design consists of four piezo-resistive flex elements offset at 90∘ increments and encased inside of a hemispherical silicone membrane filled with a non-compressive and non-conductive fluid. The sensor is simulated numerically to characterize soft-material deformation and is experimentally interrogated with indentation equipment to investigate sensor-data patterns when subject to different contact forces. Furthermore, the sensor is subject to a cyclic loading test to analyze the effects of hysteresis in the silicone and is submerged underwater for a 7-day period to investigate any effect of water intrusion at a shallow depth. The outcome of this paper is the proposed design of a waterproofed, soft-material tactile sensor capable of directional force detection and contact force localization. The overall goal is to widen the scope of tactile sensor concepts outfitted for the underwater environment.
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Fei, and Xiaoming Tao. "Carbon/Silicone Nanocomposite-Enabled Soft Pressure Sensors with a Liquid-Filled Cell Structure Design for Low Pressure Measurement." Sensors 21, no. 14 (July 10, 2021): 4732. http://dx.doi.org/10.3390/s21144732.

Full text
Abstract:
In the fields of humanoid robots, soft robotics, and wearable electronics, the development of artificial skins entails pressure sensors that are low in modulus, high in sensitivity, and minimal in hysteresis. However, few sensors in the literature can meet all the three requirements, especially in the low pressure range (<10 kPa). This article presents a design for such pressure sensors. The bioinspired liquid-filled cell-type structural design endows the sensor with appropriate softness (Young’s modulus < 230 kPa) and high sensitivity (highest at 0.7 kPa−1) to compression forces below 0.65 N (6.8 kPa). The low-end detection limit is ~0.0012 N (13 Pa), only triple the mass of a bee. Minimal resistance hysteresis of the pressure sensor is 7.7%. The low hysteresis is attributed to the study on the carbon/silicone nanocomposite, which reveals the effect of heat treatment on its mechanical and electromechanical hysteresis. Pressure measurement range and sensitivity of the sensor can be tuned by changing the structure and strain gauge parameters. This concept of sensor design, when combined with microfluidics technology, is expected to enable soft, stretchable, and highly precise touch-sensitive artificial skins.
APA, Harvard, Vancouver, ISO, and other styles
37

Arifin, Muhammad, Rian Putra Pratama, Oka Mahendra, Aris Munandar, Catur Hilman Adritya Haryo Bhakti Baskoro, Muhtadin Muhtadin, and Abdullah Iskandar. "An open-source parallel gripper with an embedded soft skin fingertip sensor." Journal of Mechatronics, Electrical Power, and Vehicular Technology 14, no. 2 (December 29, 2023): 114–26. http://dx.doi.org/10.14203/j.mev.2023.v14.114-126.

Full text
Abstract:
The demand for implementing robots into our daily lives has surged in recent years, necessitating safe grasping for effective interaction with the environment. However, a majority of researchers rely on commercial grippers for their experimental studies, which are typically expensive and not accessible to everyone. Despite the existence of open-source designs, the assembly process is often challenging and requires modifications to enhance secure grasping. This paper presents a simple, compact, and low-cost gripper to offer an accessible and readily deployable solution for research and education. The gripper utilizes a parallel four-bar linkage mechanism, minimizing the number of components and incorporating off-the-shelf parts for straightforward assembly. Furthermore, to enhance its capabilities, the proposed gripper implements a soft skin tactile sensor on its fingertips. These sensors offer three-directional measurements using Hall effect sensing and embedded silicone. By controlling fingertip force based on information from the tactile sensors, the gripper achieves safe grasping. The gripper is evaluated to grasp daily life objects with different properties such as shapes, sizes, and levels of deformability. Evaluation results showcase the gripper's versatility, enabling it to securely grasp various objects, including fragile items. This outcome underscores the gripper's effectiveness, versatility, and safety in practical use.
APA, Harvard, Vancouver, ISO, and other styles
38

Prechtl, J., J. Kunze, G. Moretti, D. Bruch, S. Seelecke, and G. Rizzello. "Modeling and experimental validation of thin, tightly rolled dielectric elastomer actuators." Smart Materials and Structures 31, no. 1 (November 19, 2021): 015008. http://dx.doi.org/10.1088/1361-665x/ac34be.

Full text
Abstract:
Abstract Due to their large deformation, high energy density, and high compliance, dielectric elastomer actuators (DEAs) have found a number of applications in several areas of mechatronics and robotics. Among the many types of DEAs proposed in the literature, rolled DEAs (RDEAs) represent one of the most popular configurations. RDEAs can be effectively used as compact muscle-like actuators for soft robots, since they allow eliminating the need for external motors or compressors while providing at the same time a flexible and lightweight structure with self-sensing capabilities. To effectively design and control complex RDEA-driven systems and robots, accurate and numerically efficient mathematical models need to be developed. In this work, we propose a novel lumped-parameter model for silicone-based, thin and tightly rolled RDEAs. The model is grounded on a free-energy approach, and permits to describe the electro-mechanically coupled response of the transducer with a set of nonlinear ordinary differential equations. After deriving the constitutive relationships, the model is validated by means of an extensive experimental campaign, conducted on three RDEA specimens having different geometries. It is shown how the developed model permits to accurately predict the effects of several parameters (external load, applied voltage, actuator geometry) on the RDEA electro-mechanical response, while maintaining an overall simple mathematical structure.
APA, Harvard, Vancouver, ISO, and other styles
39

Liu, Cheng, Yitao Zhuang, Amir Nasrollahi, Lingling Lu, Mohammad Faisal Haider, and Fu-Kuo Chang. "Static Tactile Sensing for a Robotic Electronic Skin via an Electromechanical Impedance-Based Approach." Sensors 20, no. 10 (May 16, 2020): 2830. http://dx.doi.org/10.3390/s20102830.

Full text
Abstract:
Tactile sensing is paramount for robots operating in human-centered environments to help in understanding interaction with objects. To enable robots to have sophisticated tactile sensing capability, researchers have developed different kinds of electronic skins for robotic hands and arms in order to realize the ‘sense of touch’. Recently, Stanford Structures and Composites Laboratory developed a robotic electronic skin based on a network of multi-modal micro-sensors. This skin was able to identify temperature profiles and detect arm strikes through embedded sensors. However, sensing for the static pressure load is yet to be investigated. In this work, an electromechanical impedance-based method is proposed to investigate the response of piezoelectric sensors under static normal pressure loads. The smart skin sample was firstly fabricated by embedding a piezoelectric sensor into the soft silicone. Then, a series of static pressure tests to the skin were conducted. Test results showed that the first peak of the real part impedance signal was sensitive to static pressure load, and by using the proposed diagnostic method, this test setup could detect a resolution of 0.5 N force. Numerical simulation methods were then performed to validate the experimental results. The results of the numerical simulation prove the validity of the experiments, as well as the robustness of the proposed method in detecting static pressure loads using the smart skin.
APA, Harvard, Vancouver, ISO, and other styles
40

Wang, Jie, Tengfei Zheng, Yong Gao, Dengwang Wang, Wei Cui, Jiakun Fan, Zhiming You, et al. "Preparation and properties characterization of a novel soft robots partially made of silicone/W-based composites for gamma ray shielding." Progress in Nuclear Energy 130 (December 2020): 103531. http://dx.doi.org/10.1016/j.pnucene.2020.103531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Matsuda, R., Y. Isano, K. Ueno, and H. Ota. "Highly stretchable and sensitive silicone composites with positive piezoconductivity using nickel powder and ionic liquid." APL Bioengineering 7, no. 1 (March 1, 2023): 016108. http://dx.doi.org/10.1063/5.0124959.

Full text
Abstract:
Conductive rubber composites are mixtures of stretchable rubber and conductive materials. They can achieve conductivity and high elasticity and are used in soft robots and wearable devices. In general, these composites exhibit high electrical resistance owing to their bonds between the fillers breaking during elongation. However, there are several types of composite materials that decrease resistance by increasing contact between the conductive materials during elongation through optimization of the shape and size of the filler. These composite materials can rapidly decrease the resistance and are expected to be applicable to switch in electric circuits and sensors. However, to use such composite materials in circuits, the electrical resistance at the time of resistance reduction must be sufficiently low to not affect the electric circuit. To achieve this, a considerable amount of filler must be mixed; however, this reduces the elasticity of the composite. Simultaneously achieving elasticity of the composite and a sufficient decrease in the resistance is challenging. This study developed a conductive rubber composite gel by mixing silicone rubber, ionic liquid, and metal filler. Consequently, the composite achieved an elongation rate of over six times and a decrease in the resistance of less than 1/105. In addition, this composite material was used as a switch circuit wherein an electric circuit is turned on and off according to elongation through a connection to a DC power source.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhu, Xinping, Hanwei Zhou, Xiaoxiao Zhu, and Kundong Wang. "A Novel Caterpillar-Inspired Vascular Interventional Robot Navigated by Magnetic Sinusoidal Mechanism." Actuators 13, no. 10 (October 13, 2024): 412. http://dx.doi.org/10.3390/act13100412.

Full text
Abstract:
Magnetic soft continuum robots (MSCRs) hold significant potential in fulfilling the requirements of vascular interventional robots, enabling safe access to difficult-to-reach areas with enhanced active maneuverability, shape morphing capabilities, and stiffness variability. Their primary advantage lies in their tether-less actuation mechanism that can safely adapt to complex vessel structures. Existing commercial MSCRs primarily employ a magnetic-pull strategy, which suffers from insufficient driving force and a single actuation strategy, limiting their clinical applicability. Inspired by the inchworm crawling locomotion gait, we herein present a novel MSCR that integrates a magnetic sinusoidal actuation mechanism with adjustable frequency and kirigami structures. The developed MSCRs consist of two permanent magnets connected by a micro-spring, which is coated with a silicone membrane featuring a specific notch array. This design enables bio-inspired crawling with controllable velocity and active maneuverability. An analytical model of the magnetic torque and finite element analysis (FEA) simulations of the MSCRs has been constructed. Additionally, the prototype has been validated through two-dimensional in-vitro tracking experiments with actuation frequencies ranging from 1 to 10 Hz. Its stride efficiency has also been verified in a three-dimensional (3D) coronary artery phantom. Diametrically magnetized spherical chain tip enhances active steerability. Kirigami skin is coated over the novel guidewire and catheter, not only providing proximal anchorage for improved stride efficiency but also serving similar function as a cutting balloon. Under the actuation of an external magnetic field, the proposed MSCRs demonstrate the ability to traverse bifurcations and tortuous paths, indicating their potential for dexterous flexibility in pathological vessels.
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Zhe, Yuqi Xiong, Jinghao Hao, Hao Zhang, Xiao Cheng, Hua Wang, Wei Chen, and Chuanjian Zhou. "Liquid Crystal-Based Organosilicone Elastomers with Supreme Mechanical Adaptability." Polymers 14, no. 4 (February 18, 2022): 789. http://dx.doi.org/10.3390/polym14040789.

Full text
Abstract:
Elastomers with supreme mechanical adaptability where the increasing stress under continuous deformation is significantly inhibited within a large deformation zone, are highly desired in many areas, such as artificial muscles, flexible and wearable electronics, and soft artificial-intelligence robots. Such system comprises the advantages of recoverable elasticity and internal compensation to external mechanical work. To obtain elastomer with supreme mechanical adaptability, a novel liquid crystal-based organosilicon elastomer (LCMQ) is developed in this work, which takes the advantages of reversible strain-induced phase transition of liquid crystal units in polymer matrix and the recoverable nano-sized fillers. The former is responsible for the inhibition of stress increasing during deformation, where the external work is mostly compensated by internal phase transition, and the latter provides tunable and sufficient high tensile strength. Such LCMQs were synthesized with 4-methoxyphenyl 4-(but-3-en-1-yloxy)benzoate (MBB) grafted thiol silicone oil (crosslinker-g-MBB) as crosslinking agent, vinyl terminated polydimethylsiloxane as base adhesive, and fumed silica as reinforcing filler by two-step thiol-ene “click” reaction. The obtained tensile strength and the elongation at break are better than previously reported values. Moreover, the resulting liquid crystal elastomers exhibit different mechanical behavior from conventional silicone rubbers. When the liquid crystal content increases from 1% (w/w) to 4% (w/w), the stress plateau for mechanical adaptability becomes clearer. Moreover, the liquid crystal elastomer has no obvious deformation from 25 °C to 120 °C and is expected to be used in industrial applications. It also provides a new template for the modification of organosilicon elastomers.
APA, Harvard, Vancouver, ISO, and other styles
44

Rizzello, Gianluca. "A Review of Cooperative Actuator and Sensor Systems Based on Dielectric Elastomer Transducers." Actuators 12, no. 2 (January 18, 2023): 46. http://dx.doi.org/10.3390/act12020046.

Full text
Abstract:
This paper presents an overview of cooperative actuator and sensor systems based on dielectric elastomer (DE) transducers. A DE consists of a flexible capacitor made of a thin layer of soft dielectric material (e.g., acrylic, silicone) surrounded with a compliant electrode, which is able to work as an actuator or as a sensor. Features such as large deformation, high compliance, flexibility, energy efficiency, lightweight, self-sensing, and low cost make DE technology particularly attractive for the realization of mechatronic systems that are capable of performance not achievable with alternative technologies. If several DEs are arranged in an array-like configuration, new concepts of cooperative actuator/sensor systems can be enabled, in which novel applications and features are made possible by the synergistic operations among nearby elements. The goal of this paper is to review recent advances in the area of cooperative DE systems technology. After summarizing the basic operating principle of DE transducers, several applications of cooperative DE actuators and sensors from the recent literature are discussed, ranging from haptic interfaces and bio-inspired robots to micro-scale devices and tactile sensors. Finally, challenges and perspectives for the future development of cooperative DE systems are discussed.
APA, Harvard, Vancouver, ISO, and other styles
45

Hou, Jiaoyi, Yuntai Shi, Zihao Li, Jiaqi Wu, Yongjun Gong, Weifeng Zou, Han Zuo, and Dayong Ning. "Numerical simulation and experimental study on flexible buoyancy material of hollow glass microsphere and silicone rubber for small deep-sea soft robots." Applied Materials Today 21 (December 2020): 100875. http://dx.doi.org/10.1016/j.apmt.2020.100875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wu, Xiongxiong, Ben Lu, Ningbin Liao, Wenchuan Jia, and Yi Sun. "Electrostatic layer jamming variable stiffness based on AC waveform regulation." Journal of Physics: Conference Series 2557, no. 1 (July 1, 2023): 012032. http://dx.doi.org/10.1088/1742-6596/2557/1/012032.

Full text
Abstract:
Abstract As a method to achieve variable stiffness of soft robots, electrostatic layer jamming (ELJ) has the disadvantages of low breakdown strength and a single stiffness control method. In this paper, we propose to replace the air of the traditional ELJ device with giant electrorheological fluid (GERF) and introduce the method of adjusting the stiffness by AC waveform to solve these problems. We perform friction experiments on ELJ devices (ELJ-GERF, ELJ-Air, ELJ-Oil) under three different dielectrics of GERF, air, and silicone oil. The results show that the breakdown probability of ELJ-Air increased significantly when the applied voltage is greater than 3000 V, while ELJ-GERF and ELJ-Oil can withstand voltage exceeding 5000 V. ELJ-GERF has higher breakdown strength than ELJ-Air. At the same time, the AC waveform can regulate the stiffness of the three devices. By applying voltages with three different AC waveforms (sine wave, square wave, and triangle wave), all three devices exhibit different stiffness properties. The stiffness of ELJ-GERF is increased by 2.6 times, 4.5 times, and 2.7 times under the sine wave, square wave, and triangular wave respectively compared with DC voltage. The other two devices also have a certain increase in stiffness.
APA, Harvard, Vancouver, ISO, and other styles
47

Waters, Ian, Dominic Jones, Ali Alazmani, and Peter Culmer. "Encouraging and Detecting Preferential Incipient Slip for Use in Slip Prevention in Robot-Assisted Surgery." Sensors 22, no. 20 (October 19, 2022): 7956. http://dx.doi.org/10.3390/s22207956.

Full text
Abstract:
Robotic surgical platforms have helped to improve minimally invasive surgery; however, limitations in their force feedback and force control can result in undesirable tissue trauma or tissue slip events. In this paper, we investigate a sensing method for the early detection of slip events when grasping soft tissues, which would allow surgical robots to take mitigating action to prevent tissue slip and maintain stable grasp control while minimising the applied gripping force, reducing the probability of trauma. The developed sensing concept utilises a curved grasper face to create areas of high and low normal, and thus frictional, force. In the areas of low normal force, there is a higher probability that the grasper face will slip against the tissue. If the grasper face is separated into a series of independent movable islands, then by tracking their displacement it will be possible to identify when the areas of low normal force first start to slip while the remainder of the tissue is still held securely. The system was evaluated through the simulated grasping and retraction of tissue under conditions representative of surgical practice using silicone tissue simulants and porcine liver samples. It was able to successfully detect slip before gross slip occurred with a 100% and 77% success rate for the tissue simulant and porcine liver samples, respectively. This research demonstrates the efficacy of this sensing method and the associated sensor system for detecting the occurrence of tissue slip events during surgical grasping and retraction.
APA, Harvard, Vancouver, ISO, and other styles
48

Ota, Hiroki. "(Invited) Stretchable Sensing Devices Combining Ionic Liquids and Soft Electrodes." ECS Meeting Abstracts MA2022-02, no. 36 (October 9, 2022): 1321. http://dx.doi.org/10.1149/ma2022-02361321mtgabs.

Full text
Abstract:
In recent years, a variety of ultra-flexible devices have been proposed. Their applications include wearable devices and soft robots. Among ultra-flexible devices, the devices with stretchablity is attracting attention as next-generation sensing devices. In such devices, ionic liquids can be used as a sensing material. Ionic liquids are polymers in a liquid state and their structure can be easily altered, For example, ionic liquids can be developed reactive to temperature, humidity, light, gases, and many other factors. Furthermore, since they are in a liquid state, they are durable against device stretching. In this study, we report on a stretchable sensing device using ionic liquids. In particular, by using liquid metal and CNT(Carbon nanotube) as electrode materials, we propose a super-stretchable device and a super-flexible device with transparency and high breathability. <Temperature/humidity/oxygen/optical sensors using liquid metal electrodes> liquid metal was used as electrode, and ionic liquids as a sensing material. Equivalent circuit of the sensors were established based on Nyquist plot The sensor showed stable sensitivity to temperature without hysteresis as shown with a 0.039/°C increase in conductivity, which is quite high compared to other reports. We also show proof of concept for humidity, oxygen gas, and optical sensings using four kinds of ionic liquids, 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf]), 1-Butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPYR][NTf2]) and 1-butyl-3-(4-phenylazobenzyl)imidazolium bis(trifluoromethanesulfonyl)amide ([Azo][NTf2]) for optical sensing. The sensitivity of each ionic liquid to humidity and oxygen differed depending on the ionic liquid. For each type of stimuli, the sensing can be optimized by choosing the proper ionic liquid. In addition, using [Azo][NTf2], we demonstrate optical sensing and memory in this study. < Transparent and Breathable Ion Gel-based Sensors using CNT> highly transparent, ultra-flexible, and gas-permeable polymer thin-film sensors using ion gels as the sensing material, which demonstrated the capacity for selective detections, were proposed. Particularly, simultaneous and independent sensing of temperature and humidity was demonstrated in this study. The sensors were fabricated using a simple spray coating method on a thin silicone rubber film (around 25 µm thickness). Owing to their thin-film shape, they showed more than 80% visible light transmittance and a higher gas permeability of 58.7 g/m2 h than the human transepidermal water loss. Simultaneous and independent detection of temperature and humidity was achieved with a high sensitivity of 15.9%/°C and 2.5%/percentage of relative humidity, respectively, using two types of gels with ionic liquids. These results suggest that the easily modifiable nature of ionic liquids contribute to the development of stretchable electronics.
APA, Harvard, Vancouver, ISO, and other styles
49

Dämmer, Gabriel, Hartmut Bauer, Rüdiger Neumann, and Zoltan Major. "Design, additive manufacturing and component testing of pneumatic rotary vane actuators for lightweight robots." Rapid Prototyping Journal 28, no. 11 (May 13, 2022): 20–32. http://dx.doi.org/10.1108/rpj-03-2021-0052.

Full text
Abstract:
Purpose This study aims to investigate the suitability of a multi-step prototyping strategy for producing pneumatic rotary vane actuators (RVAs) for the development of lightweight robots and actuation systems. Design/methodology/approach RVAs typically have cast aluminum housings and injection-molded seals that consist of hard thermoplastic cores and soft elastomeric overmolds. Using a combination of additive manufacturing (AM), computer numerical control (CNC) machining and elastomer molding, a conventionally manufactured standard RVA was replicated. The standard housing design was modified, and polymeric replicas were obtained by selective laser sintering (SLS) or PolyJet (PJ) printing and subsequent CNC milling. Using laser-sintered molds, actuator seals were replicated by overmolding laser-sintered polyamide cores with silicone (SIL) and polyurethane (PU) elastomers. The replica RVAs were subjected to a series of leakage, friction and durability experiments. Findings The AM-based prototyping strategy described is suitable for producing functional and reliable RVAs for research and product development. In a representative durability experiment, the RVAs in this study endured between 40,000 and 1,000,000 load cycles. Frictional torques were around 0.5 Nm, which is 10% of the theoretical torque at 6 bar and comparable to that of the standard RVA. Models and parameters are provided for describing the velocity-dependent frictional torque. Leakage experiments at 10,000 load cycles and 6 bar differential pressure showed that PJ housings exhibit lower leakage values (6.8 L/min) than laser-sintered housings (15.2 L/min), and PU seals exhibit lower values (8.0 l/min) than SIL seals (14.0 L/min). Combining PU seals with PJ housings led to an initial leakage of 0.4 L/min, which increased to only 1.2 L/min after 10,000 load cycles. Overall, the PU material used was more difficult to process but also more abrasion- and tear-resistant than the SIL elastomer. Research limitations/implications More work is needed to understand individual cause–effect relationships between specific design features and system behavior. Originality/value To date, pneumatic RVAs have been manufactured by large-scale production technologies. The absence of suitable prototyping strategies has limited the available range to fixed sizes and has thus complicated the use of RVAs in research and product development. This paper proves that functional pneumatic RVAs can be produced by using more accessible manufacturing technologies and provides the tools for prototyping of application-specific RVAs.
APA, Harvard, Vancouver, ISO, and other styles
50

Ambaye, Getachew, Enkhsaikhan Boldsaikhan, and Krishna Krishnan. "Soft Robot Design, Manufacturing, and Operation Challenges: A Review." Journal of Manufacturing and Materials Processing 8, no. 2 (April 16, 2024): 79. http://dx.doi.org/10.3390/jmmp8020079.

Full text
Abstract:
Advancements in smart manufacturing have embraced the adoption of soft robots for improved productivity, flexibility, and automation as well as safety in smart factories. Hence, soft robotics is seeing a significant surge in popularity by garnering considerable attention from researchers and practitioners. Bionic soft robots, which are composed of compliant materials like silicones, offer compelling solutions to manipulating delicate objects, operating in unstructured environments, and facilitating safe human–robot interactions. However, despite their numerous advantages, there are some fundamental challenges to overcome, which particularly concern motion precision and stiffness compliance in performing physical tasks that involve external forces. In this regard, enhancing the operation performance of soft robots necessitates intricate, complex structural designs, compliant multifunctional materials, and proper manufacturing methods. The objective of this literature review is to chronicle a comprehensive overview of soft robot design, manufacturing, and operation challenges in conjunction with recent advancements and future research directions for addressing these technical challenges.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography