Academic literature on the topic 'Silicone soft robots'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Silicone soft robots.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Silicone soft robots"
Lin, Hao, Yihui Chen, and Wei Tang. "Soft Electrohydraulic Bending Actuators for Untethered Underwater Robots." Actuators 13, no. 6 (June 8, 2024): 214. http://dx.doi.org/10.3390/act13060214.
Full textWu, Huaqing, Yutong Han, Xinyu Chen, Rong Lu, Erxing Zhuang, Huaping Wu, Xiaodi Jiang, Xiaojun Tan, and Bo Cao. "Design, Fabrication, and Characterization of a Novel Crawling Pneumatic Soft Robot." Automation 6, no. 1 (February 12, 2025): 7. https://doi.org/10.3390/automation6010007.
Full textSun, Hao, Bin Cheng, Ning Yang Wang, and Xiao Ping Chen. "A Preliminary Study of the HPN Robot." Applied Mechanics and Materials 575 (June 2014): 726–30. http://dx.doi.org/10.4028/www.scientific.net/amm.575.726.
Full textXu, Ruomeng, and Qingsong Xu. "Design of a Bio-Inspired Untethered Soft Octopodal Robot Driven by Magnetic Field." Biomimetics 8, no. 3 (June 22, 2023): 269. http://dx.doi.org/10.3390/biomimetics8030269.
Full textJyothi, Mrs N. Krishna. "Plucking Flowers using Soft Robot." International Journal for Research in Applied Science and Engineering Technology 11, no. 11 (November 30, 2023): 575–79. http://dx.doi.org/10.22214/ijraset.2023.56490.
Full textRibuan, Mohamed Najib, Shuichi Wakimoto, Koichi Suzumori, and Takefumi Kanda. "Omnidirectional Soft Robot Platform with Flexible Actuators for Medical Assistive Device." International Journal of Automation Technology 10, no. 4 (July 5, 2016): 494–502. http://dx.doi.org/10.20965/ijat.2016.p0494.
Full textGarcía-Samartín, Jorge Francisco, Adrián Rieker, and Antonio Barrientos. "Design, Manufacturing, and Open-Loop Control of a Soft Pneumatic Arm." Actuators 13, no. 1 (January 17, 2024): 36. http://dx.doi.org/10.3390/act13010036.
Full textWang, Jie, Haoyu Zhou, Yong Gao, Yupeng Xie, Jing Zhang, Yaocheng Hu, Dengwang Wang, et al. "The Characterization of Silicone-Tungsten-Based Composites as Flexible Gamma-Ray Shields." Materials 14, no. 20 (October 11, 2021): 5970. http://dx.doi.org/10.3390/ma14205970.
Full textLi, Junfeng, Songyu Chen, and Minjie Sun. "Design and fabrication of a crawling robot based on a soft actuator." Smart Materials and Structures 30, no. 12 (November 9, 2021): 125018. http://dx.doi.org/10.1088/1361-665x/ac2e1b.
Full textSui, Xin, Mingzhu Lai, Jian Qi, Zhiyuan Yang, Ning Zhao, Jie Zhao, Hegao Cai, and Yanhe Zhu. "A Fluid-Driven Loop-Type Modular Soft Robot with Integrated Locomotion and Manipulation Capability." Biomimetics 8, no. 5 (August 26, 2023): 390. http://dx.doi.org/10.3390/biomimetics8050390.
Full textDissertations / Theses on the topic "Silicone soft robots"
Kraehn, Baptiste. "Approche intégrée matériau-procédé appliquée à la conception de doigts souples pour la manipulation dextre." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD042.
Full textThis thesis proposes an integrated approach to the design of pneumatic silicone fingers for dexterous manipulation. Based on a comparative approach between experimentation and numerical prediction, the identification of silicone behavioral models allows the prediction of pneumatic finger behavior. The design is then guided by simulation with the aim of reducing the finger's dependence on the Mullins effect. The chosen manufacturing method, low-pressure injection molding, allows a robust overmolding process for the rigid reinforcements and the base of the finger. The finger and tooling are designed to enable production of the complete assembly in a single injection step
Mosser, Loïc. "Contribution à la conception et la fabrication de robots souples pneumatiques." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD009.
Full textThis thesis covers the design of pneumatic soft robots, which move thanks to deformation using pneumatic chambers. We contribute to the design of a robot from the formulation of the need to the manufacturing of the robot. We address the problems associated with the design and manufacture of these robots. For design, we propose a genetic algorithm accelerated by the use of an AI model enabling rapid estimation of the behavior of new geometries and the search for solutions. For manufacturing, we propose an instrumented silicone additive manufacturing platform enabling the acquisition of point clouds on each produced layer. Indicators are then proposed to monitor ongoing production and the integrity of soft robots, and these indicators are evaluated experimentally
Santos, João Guilherme Alves dos. "Bio-inspired robotic gripper with hydrogel-silicone soft skin and 3d printed endoskeleton." Master's thesis, 2017. http://hdl.handle.net/10316/82840.
Full textNeste projeto, desenvolve-se um dedo inovador e inspirado biologicamente, com fisiologia semelhante à de um dedo humano. O dedo "soft" é feito com um núcleo impresso em 3D para substituir o endoesqueleto dos dedos humanos, com uma pele elástica de silicone para substituir a camada epidérmica elástica e resiliente e um enchimento de hidrogel para substituir a camada dérmica. No dedo humano, a camada dérmica é mais macia do que a camada epidérmica e contém uma quantidade considerável de água, portanto, deve ser protegida pela camada epidérmica, que é mais resistente. Esta não só protege a camada subjacente do desgaste mecânico, mas também fornece uma barreira contra a perda de água. Por outro lado, a camada dérmica, ao ser mais suave, ajuda numa melhor adaptação local da pele para agarrar os objectos eficientemente. A camada epidérmica de silicone destina-se a ser elástica, maleável e protege o hidrogel de maneira que este não perca água ao longo do tempo. O enchimento de hidrogel do dedo é feito de poliacrilato de sódio e água destilada; o material utilizado como silicone é Ecoflex 00-30 e o endoesqueleto do dedo é feito de acrilonitrilo butadina estireno (ABS).Também foi desenvolvido um protótipo de baixo custo de uma pinça sub-atuada integrando três destes dedos. Tem um mecanismo baseado nos "push base toys" e foi inteiramente impresso numa impressora "fusion deposition modelling" (FDM) com material ácido poliláctico (PLA). Um único motor acciona o sistema puxando para cima e para baixo os tendões que estão integrados nos dedos, forçando-os abrir ou fechar, com o propósito de agarrar ou soltar objetos.Os dedos foram primeiramente testados individualmente. A força necessária para a flexão total dos dedos foi medida e comparada com uma versão anterior do dedo que contém apenas a camada epidérmica sem a camada dérmica de hidrogel. Os resultados mostram uma melhora na redução da força necessária para a flexão. Também a pinça integrada com a nova versão dos dedos foi desenvolvida e testada para agarrar vários objectos incluindo frutas macias.No final da dissertação, alguns ensaios de \textit{pick and place} são analisados e é concluído que foi conseguido um dedo "soft" óptimo que pode ser usado em pinças e próteses. Apesar do seu excelente desempenho, o preço geral dos materias usados para a pinça robótica desenvolvida nesta dissertação é de 15 Euros, incluindo o actuador. Também é apresentado trabalho futuro tanto para a pinça como para o dedo "soft".
On this project, an innovative and bio-inspired finger is developed, resembling the physiology of a biological human finger. The soft finger is made of a 3D-printed core to substitute the fingers’ endoskeleton, a silicon elastomer skin to substitute the elastic and resilient epidermal layer and a hydrogel filling to substitute the dermal layer. The dermal layer in human finger is softer than the epidermal layer and contains a considerable amount of water, and therefore should be protected by the more resilient epidermal layer, that not only protects the underlying layer from mechanical wear, but it also provides a barrier against losing the water. On the other hand, the softer dermal layer helps in better local adaptation of the skin to objects for efficient grasping. The silicone epidermal layer is intended to be elastic, malleable and protects the hydrogel from losing water over the time. The hydrogel filling of the finger is made from sodium polyacrylate (SPA) and distilled water; the material used as the silicone is Ecoflex 00-30 and the finger core is made of acrylonitrile butadine styrene (ABS).A low-cost prototype of an under-actuated gripper was also developed integrating three of these fingers. It has a mechanism based on the push base toys and it was fully printed on a fusion deposition modelling (FDM) printed with polylactic acid material (PLA). A single motor actuates the system by pulling up and down the tendons that are integrated in the fingers, making them open or close, in order to grip or drop objects.Fingers were tested first individually.The required force for full flexion of the fingers were measured and compared to a previous version of the finger that contains only the epidermal layer without containing the hydrogel dermal layer. Results show an improvement in reduction of the required force for flexion. Also the integrated gripper with the new version of the fingers were developed and tested for grasping several objects including soft fruits.At the end of the dissertation, some gripping tests are analysed and concluding that was achieved an optimal soft finger that can be used in grippers and prosthesis. Despite its excellent performance, the overall bill of materials of the full gripper developed in this dissertation is 15 Euros, including the actuator. Also future work is presented both for the gripper and the soft finger.
Book chapters on the topic "Silicone soft robots"
Dawood, Abu Bakar, Hareesh Godaba, and Kaspar Althoefer. "Silicone Based Capacitive E-Skin Sensor for Soft Surgical Robots." In Towards Autonomous Robotic Systems, 62–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63486-5_8.
Full textShiva, Ali, Agostino Stilli, Yohan Noh, Angela Faragasso, Iris De Falco, Giada Gerboni, Matteo Cianchetti, Arianna Menciassi, Kaspar Althoefer, and Helge A. Wurdemann. "Antagonistic Actuation Principle for a Silicone-based Soft Manipulator." In Soft and Stiffness-controllable Robotics Solutions for Minimally Invasive Surgery, 65–78. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339588-5.
Full textWang, Si-Yuan Rylan. "Soft Pneumatic Robotic Architectural System: Prefabricated Inflatable Module-Based Cybernetic Adaptive Space Model Manipulated Through Human-System Interaction." In Computational Design and Robotic Fabrication, 453–65. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8637-6_39.
Full textGil, Antonio J., Rogelio Ortigosa, Jesus Martínez-Frutos, and Nathan Ellmer. "In-silico Design and Computational Modelling of Electroactive Polymer Based Soft Robotics." In Towards Autonomous Robotic Systems, 81–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15908-4_7.
Full textEsser, Falk, Friederike Krüger, Tom Masselter, and Thomas Speck. "Development and Characterization of a Novel Biomimetic Peristaltic Pumping System with Flexible Silicone-Based Soft Robotic Ring Actuators." In Biomimetic and Biohybrid Systems, 157–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95972-6_17.
Full textEsser, Falk, Friederike Krüger, Tom Masselter, and Thomas Speck. "Characterization of Biomimetic Peristaltic Pumping System Based on Flexible Silicone Soft Robotic Actuators as an Alternative for Technical Pumps." In Biomimetic and Biohybrid Systems, 101–13. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24741-6_9.
Full textİlman, Mehmet Mert, and Hamza Taş. "A Soft Robotic Gripper Material Study." In Design and Control Advances in Robotics, 60–73. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-5381-0.ch004.
Full textRanjbar, Sadegh, Mohammad Lakhi, Mahdi Bodaghi, Morteza Sayah Irani, and Ali Zolfagharian. "Silicone elastomer soft robots via 4D printing." In Smart Materials in Additive Manufacturing Volume 3, 167–201. Elsevier, 2024. http://dx.doi.org/10.1016/b978-0-443-13673-3.00007-9.
Full textLiu, Yibo, Huaping Xiao, and Shuhai Liu. "Dexterous Soft Robotic Hand with Active Palm Structure." In Advances in Transdisciplinary Engineering. IOS Press, 2024. https://doi.org/10.3233/atde241252.
Full textNatarajan, Elango, Muhammad Rusydi Muhammad Razif, AAM Faudzi, and Palanikumar K. "Evaluation of a Suitable Material for Soft Actuator Through Experiments and FE Simulations." In Research Anthology on Cross-Disciplinary Designs and Applications of Automation, 339–53. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-3694-3.ch018.
Full textConference papers on the topic "Silicone soft robots"
Xiao, Fei, Zhuoheng Wei, Hao Wang, Jisen Li, and Jian Zhu. "Embedded 3D Printing of Silicone for Soft Actuator with Stiffness Gradient and Programmable Workspace." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 10913–18. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10801545.
Full textBaysa, Matthew, Noah Turoski, Manilyn Cabrera, and Yen-Lin Han. "“EXTENSOR” SOFT ROBOT FOR CLENCHED FIST REHABILITATION AFTER STROKE." In 2023 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/dmd2023-4176.
Full textWeigand, Felix, Anh Minh Nguyen, Jan Wolff, and Arthur Seibel. "Toward Industrial Silicone 3D Printing of Soft Robots." In 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft). IEEE, 2021. http://dx.doi.org/10.1109/robosoft51838.2021.9479196.
Full textRajendran, Sunil Kumar, and Feitian Zhang. "Learning Based Speed Control of Soft Robotic Fish." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-8977.
Full textHarris, Hannah, Adia Radecka, Raefa Malik, Roberto Alonso Pineda Guzman, Jeffrey Santoso, Alyssa Bradshaw, Megan McCain, Mariana Kersh, and Holly Golecki. "Development and Characterization of Biostable Hydrogel Robotic Actuators for Implantable Devices: Tendon Actuated Gelatin." In 2022 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/dmd2022-1049.
Full textPai, Nikhil, Andrea Contreras Esquen, Coskun Tekes, Amir Ali Amiri Moghadam, and Ayse Tekes. "Design and Development of a Fish-Like, Soft Biomimetic Robot." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94635.
Full textYi Sun, Yun Seong Song, and Jamie Paik. "Characterization of silicone rubber based soft pneumatic actuators." In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013). IEEE, 2013. http://dx.doi.org/10.1109/iros.2013.6696995.
Full textKunze, Julian, Giovanni Soleti, Daniel Bruch, Gianluca Rizzello, and Paul Motzki. "Design and Demonstration of a 3D Soft-Robotics Module Based on Rolled Dielectric Elastomer Actuators (RDEAs)." In ASME 2024 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/smasis2024-139481.
Full textZheng, G., O. Goury, M. Thieffry, A. Kruszewski, and C. Duriez. "Controllability pre-verification of silicone soft robots based on finite-element method." In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. http://dx.doi.org/10.1109/icra.2019.8794370.
Full textYirmibesoglu, Osman Dogan, John Morrow, Steph Walker, Walker Gosrich, Reece Canizares, Hansung Kim, Uranbileg Daalkhaijav, Chloe Fleming, Callie Branyan, and Yigit Menguc. "Direct 3D printing of silicone elastomer soft robots and their performance comparison with molded counterparts." In 2018 IEEE International Conference on Soft Robotics (RoboSoft). IEEE, 2018. http://dx.doi.org/10.1109/robosoft.2018.8404935.
Full textReports on the topic "Silicone soft robots"
Diaz Armas, Nathalia, Shilpa Thakur, Jinde Zhang, Geet Bhandari, Sevil Turkoglu, Drupad Kadiyala Bhavani, Pratap M. Rao, Cagdas D. Onal, and Joey Mead. Braided Composite System with Haptic Feedback for Teleoperation. Universidad de los Andes, December 2024. https://doi.org/10.51573/andes.pps39.gs.pc.3.
Full text