To see the other types of publications on this topic, follow the link: Silicon solar cells.

Dissertations / Theses on the topic 'Silicon solar cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Silicon solar cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Søiland, Anne Karin. "Silicon for Solar Cells." Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-565.

Full text
Abstract:
<p>This thesis work consists of two parts, each with a different motivation. Part II is the main part and was partly conducted in industry, at ScanWafer ASA’s plant no.2 in Glomfjord.</p><p>The large growth in the Photo Voltaic industry necessitates a dedicated feedstock for this industry, a socalled Solar Grade (SoG) feedstock, since the currently used feedstock rejects from the electronic industry can not cover the demand. Part I of this work was motivated by this urge for a SoG- feedstock. It was a cooperation with the Sintef Materials and Chemistry group, where the aim was to study the kin
APA, Harvard, Vancouver, ISO, and other styles
2

Tarabsheh, Anas al. "Amorphous silicon based solar cells." kostenfrei, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-29491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Al, Tarabsheh Anas. "Amorphous silicon based solar cells." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-29491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bett, Alexander Jürgen [Verfasser], and Stefan [Akademischer Betreuer] Glunz. "Perovskite silicon tandem solar cells : : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells." Freiburg : Universität, 2020. http://d-nb.info/1214179703/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schultz, Oliver. "High-efficiency multicrystalline silicon solar cells." München Verl. Dr. Hut, 2005. http://deposit.d-nb.de/cgi-bin/dokserv?idn=977880567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Echeverria, Molina Maria Ines. "Crack Analysis in Silicon Solar Cells." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4311.

Full text
Abstract:
Solar cell business has been very critical and challenging since more efficient and low costs materials are required to decrease the costs and to increase the production yield for the amount of electrical energy converted from the Sun's energy. The silicon-based solar cell has proven to be the most efficient and cost-effective photovoltaic industrial device. However, the production cost of the solar cell increases due to the presence of cracks (internal as well as external) in the silicon wafer. The cracks of the wafer are monitored while fabricating the solar cell but the present monitoring t
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Dai-Yin. "Texturization of multicrystalline silicon solar cells." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/64615.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 103-111).<br>A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create a honeycomb texture. Two distinct approaches for surface texturization were studied. The first approach was photo-defined etching. For this approach, the research focus was t
APA, Harvard, Vancouver, ISO, and other styles
8

Osorio, Ruy Sebastian Bonilla. "Surface passivation for silicon solar cells." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:46ebd390-8c47-4e4b-8c26-e843e8c12cc4.

Full text
Abstract:
Passivation of silicon surfaces remains a critical factor in achieving high conversion efficiency in solar cells, particularly in future generations of rear contact cells -the best performing cell geometry to date. In this thesis, passivation is characterised as either intrinsic or extrinsic, depending on the origin of the chemical and field effect passivation components in dielectric layers. Extrinsic passivation, obtained after film deposition or growth, has been shown to improve significantly the passivation quality of dielectric films. Record passivation has been achieved leading to surfac
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, Mingxuan. "Silicon nanowires for hybrid solar cells." Ecole centrale de Marseille, 2013. http://tel.archives-ouvertes.fr/docs/00/94/57/87/PDF/The_manuscript-4.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Forster, Maxime. "Compensation engineering for silicon solar cells." Phd thesis, INSA de Lyon, 2012. http://hdl.handle.net/1885/156020.

Full text
Abstract:
This thesis focuses on the effects of dopant compensation on the electrical properties of crystalline silicon relevant to the operation of solar cells. We show that the control of the net dopant density, which is essential to the fabrication of high-efficiency solar cells, is very challenging in ingots crystallized with silicon feedstock containing both boron and phosphorus such as upgraded metallurgical-grade silicon. This is because of the strong segregation of phosphorus which induces large net dopant density variations along directionally solidified silicon crystals. To overcome this issue
APA, Harvard, Vancouver, ISO, and other styles
11

Forster, Maxime. "Compensation engineering for silicon solar cells." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00876318.

Full text
Abstract:
This thesis focuses on the effects of dopant compensation on the electrical properties of crystalline silicon relevant to the operation of solar cells. We show that the control of the net dopant density, which is essential to the fabrication of high-efficiency solar cells, is very challenging in ingots crystallized with silicon feedstock containing both boron and phosphorus such as upgraded metallurgical-grade silicon. This is because of the strong segregation of phosphorus which induces large net dopant density variations along directionally solidified silicon crystals. To overcome this issue
APA, Harvard, Vancouver, ISO, and other styles
12

McCann, Michelle Jane, and michelle mccann@uni-konstanz de. "Aspects of Silicon Solar Cells: Thin-Film Cells and LPCVD Silicon Nitride." The Australian National University. Faculty of Engineering and Information Technology, 2002. http://thesis.anu.edu.au./public/adt-ANU20040903.100315.

Full text
Abstract:
This thesis discusses the growth of thin-film silicon layers suitable for solar cells using liquid phase epitaxy and the behaviour of oxide LPCVD silicon nitride stacks on silicon in a high temperature ambient.¶ The work on thin film cells is focussed on the characteristics of layers grown using liquid phase epitaxy. The morphology resulting from different seeding patterns, the transfer of dislocations to the epitaxial layer and the lifetime of layers grown using oxide compared with carbonised photoresist barrier layers are discussed. The second half of this work discusses boron doping of epit
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, Wan Lam Florence Photovoltaics &amp Renewable Energy Engineering Faculty of Engineering UNSW. "PECVD silicon nitride for n-type silicon solar cells." Publisher:University of New South Wales. Photovoltaics & Renewable Energy Engineering, 2008. http://handle.unsw.edu.au/1959.4/41277.

Full text
Abstract:
The cost of crystalline silicon solar cells must be reduced in order for photovoltaics to be widely accepted as an economically viable means of electricity generation and be used on a larger scale across the world. There are several ways to achieve cost reduction, such as using thinner silicon substrates, lowering the thermal budget of the processes, and improving the efficiency of solar cells. This thesis examines the use of plasma enhanced chemical vapour deposited silicon nitride to address the criteria of cost reduction for n-type crystalline silicon solar cells. It focuses on the surface
APA, Harvard, Vancouver, ISO, and other styles
14

Slade, Alexander Mason Electrical Engineering UNSW. "Boron tribromide sourced boron diffusions for silicon solar cells." Awarded by:University of New South Wales. Electrical Engineering, 2005. http://handle.unsw.edu.au/1959.4/21850.

Full text
Abstract:
This thesis undertakes the development, characterization and optimization of boron diffusion for silicon solar cells. Heavy diffusions (sheet resistance < 40 Ohm/square) to form a back surface field, and light diffusions (sheet resistance > 100 Ohm/square) to form oxide-passivated emitters were developed. Test structures and solar cells were fabricated to assess uniformity, lifetime and recombination effects due to the light and heavy boron diffusions. It was found that the growth of a thin ~200 ??, thermal oxide, during stabilization ??? immediately prior to the boron diffusion - was requir
APA, Harvard, Vancouver, ISO, and other styles
15

Kaminski, Piotr M. "Remote plasma sputtering for silicon solar cells." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13058.

Full text
Abstract:
The global energy market is continuously changing due to changes in demand and fuel availability. Amongst the technologies considered as capable of fulfilling these future energy requirements, Photovoltaics (PV) are one of the most promising. Currently the majority of the PV market is fulfilled by crystalline Silicon (c-Si) solar cell technology, the so called 1st generation PV. Although c-Si technology is well established there is still a lot to be done to fully exploit its potential. The cost of the devices, and their efficiencies, must be improved to allow PV to become the energy source of
APA, Harvard, Vancouver, ISO, and other styles
16

Madhavan, Atul. "Alternative designs for nanocrystalline silicon solar cells." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3403005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Nordmark, Heidi. "Microstructure studies of silicon for solar cells." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-5384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Reuter, Michael [Verfasser]. "Thin Crystalline Silicon Solar Cells / Michael Reuter." München : Verlag Dr. Hut, 2011. http://d-nb.info/1012432041/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Inns, Daniel Photovoltaics &amp Renewable Energy Engineering Faculty of Engineering UNSW. "ALICIA polycrystalline silicon thin-film solar cells." Publisher:University of New South Wales. Photovoltaics & Renewable Energy Engineering, 2007. http://handle.unsw.edu.au/1959.4/43600.

Full text
Abstract:
Thin-film silicon photovoltaics are seen as a good possibility for reducing the cost of solar electricity. The focus of this thesis is the ALICIA cell, a thin-film polycrystalline silicon solar cell made on a glass superstrate. The name ALICIA comes from the fabrication steps - ALuminium Induced Crystallisation, Ion Assisted deposition. The concept is to form a high-quality crystalline silicon layer on glass by Aluminium Induced Crystallisation (AIC). This is then the template from which to epitaxially grow the solar cell structure by Ion Assisted Deposition (IAD). IAD allows high-rate si
APA, Harvard, Vancouver, ISO, and other styles
20

Stüwe, David [Verfasser], and Jan G. [Akademischer Betreuer] Korvink. "Inkjet processes for crystalline silicon solar cells." Freiburg : Universität, 2015. http://d-nb.info/1122646984/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Shariff, A. "Computer simulation of amorphous silicon solar cells." Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638814.

Full text
Abstract:
A detailed numerical model of the electronic properties of hydrogenated amorphous silicon has been developed and shown to be a useful tool for the analysis of the performance and optimization of the design of solar cells. The method of simulation involves solving Poissons's equation, and the electron and hole continuity equations, in conjunction with the transport equations for the electrons and holes. From the solutions of these equations we obtained the electrostatic potential, the electron and hole concentrations and the current densities. A set of realistic material parameters has been use
APA, Harvard, Vancouver, ISO, and other styles
22

Tsuda, Shinya. "TOWARDS HIGH EFFICIENCY AMORPHOUS SILICON SOLAR CELLS." Kyoto University, 1988. http://hdl.handle.net/2433/162221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Davidson, Lauren Michel. "Strategies for high efficiency silicon solar cells." Thesis, University of Iowa, 2017. https://ir.uiowa.edu/etd/5452.

Full text
Abstract:
The fabrication of low cost, high efficiency solar cells is imperative in competing with existing energy technologies. Many research groups have explored using III-V materials and thin-film technologies to create high efficiency cells; however, the materials and manufacturing processes are very costly as compared to monocrystalline silicon (Si) solar cells. Since commercial Si solar cells typically have efficiencies in the range of 17-19%, techniques such as surface texturing, depositing a surface-passivating film, and creating multi-junction Si cells are used to improve the efficiency without
APA, Harvard, Vancouver, ISO, and other styles
24

Cai, Li. "Improved understanding and control of the properties of PECVD silicon nitride and its applications in multicrystalline silicon solar cells." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/15468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Schumacher, Jürgen Otto. "Numerical simulation of silicon solar cells with novel cell structures." [S.l. : s.n.], 2000. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9170598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lu, Meijun. "Silicon heterojunction solar cell and crystallization of amorphous silicon." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 295 p, 2009. http://proquest.umi.com/pqdweb?did=1654494651&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Brody, Jed. "Doping dependence of surface and bulk passivation of multicrystalline silicon solar cells." Diss., Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04082004-180041/unrestricted/brody%5Fjed%5F200312%5Fphd.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jain, Nikhil. "Design of III-V Multijunction Solar Cells on Silicon Substrate." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/33048.

Full text
Abstract:
With looming energy crisis across the globe, achieving high efficiency and low cost solar cells have long been the key objective for photovoltaic researchers. III-V compound semiconductor based multijunction solar cells have been the dominant choice for space power due to their superior performance compared to any other existing solar cell technologies. In spite of unmatched performance of III-V solar cells, Si cells have dominated the terrestrial market due to their lower cost. Most of the current III-V solar cells are grown on Ge or GaAs substrates, which are not only smaller in diameter, bu
APA, Harvard, Vancouver, ISO, and other styles
29

Yao, Guoxiao Centre for Photovoltaic Engineering UNSW. "High efficiency metal stencil printed silicon solar cells." Awarded by:University of New South Wales. Centre for Photovoltaic Engineering, 2005. http://handle.unsw.edu.au/1959.4/23062.

Full text
Abstract:
This thesis work demonstrates the feasibility to fabricate high-efficiency crystalline silicon solar cells by using metal stencil printing technique to replace screen printing or electroless plating techniques for implementing crystalline silicon solar cell front metallization. The developed laser-cut stainless steel stencils successfully challenge two of the cell performance limitations associated with commercial screen printing technology: the wide and non-uniform front gridline fingers and low height-to-width aspect ratio of the fingers. These limitations lower the short circuit current den
APA, Harvard, Vancouver, ISO, and other styles
30

Ghosh, Kunal. "Modeling of amorphous silicon/crystalline silicon heterojunction by commercial simulator." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 48 p, 2009. http://proquest.umi.com/pqdweb?did=1654493871&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kang, Moon Hee. "Development of high-efficiency silicon solar cells and modeling the impact of system parameters on levelized cost of electricity." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47647.

Full text
Abstract:
The objective of this thesis is to develop low-cost high-efficiency crystalline silicon solar cells which are at the right intersection of cost and performance to make photovoltaics (PV) affordable. The goal was addressed by improving the optical and electrical performance of silicon solar cells through process optimization, device modeling, clever cell design, fundamental understanding, and minimization of loss mechanisms. To define the right intersection of cost and performance, analytical models to assess the premium or value associated with efficiency, temperature coefficient, balance of s
APA, Harvard, Vancouver, ISO, and other styles
32

Demircioglu, Olgu. "Optimization Of Metalization In Crystalline Silicon Solar Cells." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614584/index.pdf.

Full text
Abstract:
iv ABSTRACT OPTIMIZATION OF METALIZATION IN CRYSTALLINE SILICON SOLAR CELLS Demircioglu, Olgu M. Sc. Department of Micro and Nanotechnology Supervisor : Prof. Dr. Rasit Turan Co-Supervisor : Assist. Prof. Dr. H. Emrah &Uuml<br>nalan August 2012, 103 pages Production steps of crystalline silicon solar cells include several physical and chemical processes like etching, doping, annealing, nitride coating, metallization and firing of the metal contacts. Among these processes, the metallization plays a crucial role in the energy c
APA, Harvard, Vancouver, ISO, and other styles
33

Macdonald, Daniel Harold, and daniel@faceng anu edu au. "Recombination and Trapping in Multicrystalline Silicon Solar Cells." The Australian National University. Faculty of Engineering and Information Technology, 2001. http://thesis.anu.edu.au./public/adt-ANU20011218.134830.

Full text
Abstract:
In broad terms, this thesis is concerned with the measurement and interpretation of carrier lifetimes in multicrystalline silicon. An understanding of these lifetimes in turn leads to a clearer picture of the limiting mechanisms in solar cells made with this promising material, and points to possible paths for improvement. The work falls into three broad categories: gettering, trapping and recombination. A further section discusses a powerful new technique for characterising impurities in semiconductors in general, and provides an example of its application. Gettering of recombination centres
APA, Harvard, Vancouver, ISO, and other styles
34

Song, Yang Photovoltaics &amp Renewable Energy Engineering Faculty of Engineering UNSW. "Dielectric thin film applications for silicon solar cells." Publisher:University of New South Wales. Photovoltaics & Renewable Energy Engineering, 2009. http://handle.unsw.edu.au/1959.4/44486.

Full text
Abstract:
Dielectric thin films have a long history in silicon photovoltaics. Due to the specific physical properties, they can function as passivation layer in solar cells. Also, they can be used as antireflection coating layers on top of the devices. They can improve the back surface reflectance if proper dielectric layers combination is used. What??s more, they can protect areas by masking during chemical etching, diffusion, metallization among the whole fabrication process. Crystalline silicon solar cell can be passivated by two ways: one is to deposit dielectric thin films to saturate the dangling
APA, Harvard, Vancouver, ISO, and other styles
35

Liang, Jianjun. "Device physics of hydrogenated amorphous silicon solar cells." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2006. http://proquest.umi.com/login?COPT=REJTPTU0NWQmSU5UPTAmVkVSPTI=&clientId=3739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jamshidi, Gohari Ebrahim. "Buried screen-printed contacts for silicon solar cells." Thesis, Högskolan Dalarna, Energi och miljöteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:du-13593.

Full text
Abstract:
A Simple way to improve solar cell efficiency is to enhance the absorption of light and reduce the shading losses. One of the main objectives for the photovoltaic roadmap is the reduction of metalized area on the front side of solar cell by fin lines. Industrial solar cell production uses screen-printing of metal pastes with a limit in line width of 70-80 μm. This paper will show a combination of the technique of laser grooved buried contact (LGBC) and Screen-printing is able to improve in fine lines and higher aspect ratio. Laser grooving is a technique to bury the contact into the surface of
APA, Harvard, Vancouver, ISO, and other styles
37

Heß, Uwe [Verfasser]. "Investigations of RGS Silicon Solar Cells / Uwe Heß." München : Verlag Dr. Hut, 2013. http://d-nb.info/1037286839/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shih, Jeanne-Louise. "Zinc oxide-silicon heterojunction solar cells by sputtering." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112583.

Full text
Abstract:
Heterojunctions of n-ZnO/p-Si solar cells were fabricated by RF sputtering ZnO:Al onto boron-doped (100) silicon (Si) substrates. Zinc Oxide (ZnO) films were also deposited onto soda lime glass for electrical measurements. Sheet resistance measurements were performed with a four-point-probe on the glass samples. Values for samples evacuated for 14 hours prior to deposition increased from 7.9 to 10.17 and 11.5 O/&squ; for 40 W, 120 and 160 W in RF power respectively. In contrast, those evacuated for 2 hours started with a higher value of 22.5 O/&squ;, and decreased down to 7.6 and 5.8 O/&squ;.
APA, Harvard, Vancouver, ISO, and other styles
39

Tucher, Nico [Verfasser], Claas [Verfasser] Müller, and Stefan [Verfasser] Glunz. "Analysis of photonic structures for silicon solar cells." Freiburg : Universität, 2016. http://d-nb.info/1136567186/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Thomas, Trevor. "The computer modelling of amorphous silicon solar cells." Thesis, Cardiff University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Thompson, Robin Forster. "Doping effects in hydrogenated amorphous silicon solar cells." Thesis, Heriot-Watt University, 1985. http://hdl.handle.net/10399/1624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mahanama, G. D. K. "Low temperature processing of crystalline silicon solar cells." Thesis, London South Bank University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tahhan, Abdulla. "Energy performance enhancement of crystalline silicon solar cells." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/14503.

Full text
Abstract:
The work in this thesis examines the effects of the application of oxide coatings on the performance of the single crystalline silicon photovoltaic solar cells. A variety of potential oxide materials for solar cells performance enhancement are investigated. These films are silicon oxide, titanium oxide and rare earth ion-doped gadolinium oxysulfide phosphor. This study compares the electrical characteristics, optical properties and surface chemical composition of mono-crystalline silicon cells before and after coating. The first study investigates the potential for using single and double laye
APA, Harvard, Vancouver, ISO, and other styles
44

Ball, Jeremy. "The growth of silicon nanowires for solar cells." Thesis, London South Bank University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.587543.

Full text
Abstract:
At present silicon wafer technologies dominate the market place with cost driven by the technological requirement for optically thick and electronically pure silicon. A solution to the high cost of wafer based panels is a thin film approach where micron thick layers of silicon replace the ~250 micron thick silicon wafers. Thin film silicon has gone to market in the form of amorphous and microcrystalline Si where performance is an issue as well as stability due to the hydrogenated amorphous Si structure. This project involves the growth of three dimensional wire structures based on crystalline
APA, Harvard, Vancouver, ISO, and other styles
45

Quinn, Thomas Edward. "Growth and crystallisation of silicon for solar cells." Thesis, London South Bank University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.570870.

Full text
Abstract:
Polycrystalline silicon seed layer formation by aluminium-induced crystallisation (AIC) for solar cell applications was investigated. Precursor amorphous and microcrystalline silicon layers were deposited on SiO2 substrates using electron-cyclotron resonance plasma-enhanced chemical vapour deposition (ECR PECVD) and RF sputter deposition followed by thermal evaporation or RF sputter deposition of aluminium layers. Samples were then thermally annealed leading to layer exchange and crystallisation of the silicon layer. Selected samples were used as seed layers for ECR PECVD epitaxial thickening.
APA, Harvard, Vancouver, ISO, and other styles
46

Schuster, Christian. "Diffractive optics for thin-film silicon solar cells." Thesis, University of York, 2015. http://etheses.whiterose.ac.uk/9083/.

Full text
Abstract:
Thin-film silicon solar cells have the potential to convert sunlight into electricity at high efficiency, low cost and without generating pollutants. However, they need to become more competitive with conventional energy technologies by increasing their efficiency. One of the key efficiency limitations of using thin silicon absorber materials relates to the optical loss of low-energy photons, because the absorption coefficient of silicon decreases strongly for these low-energy photons in the red and near-infrared, such that the absorption length becomes longer than the absorber layer thickness
APA, Harvard, Vancouver, ISO, and other styles
47

Schube, Jörg [Verfasser], and Stefan [Akademischer Betreuer] Glunz. "Metallization of silicon solar cells with passivating contacts." Freiburg : Universität, 2020. http://d-nb.info/1225294142/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zanuccoli, Mauro <1974&gt. "Advanced Numerical Simulation of Silicon-Based Solar Cells." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4566/1/Zanuccoli_Mauro_tesi.pdf.

Full text
Abstract:
Photovoltaic (PV) conversion is the direct production of electrical energy from sun without involving the emission of polluting substances. In order to be competitive with other energy sources, cost of the PV technology must be reduced ensuring adequate conversion efficiencies. These goals have motivated the interest of researchers in investigating advanced designs of crystalline silicon solar (c-Si) cells. Since lowering the cost of PV devices involves the reduction of the volume of semiconductor, an effective light trapping strategy aimed at increasing the photon absorption is requ
APA, Harvard, Vancouver, ISO, and other styles
49

Zanuccoli, Mauro <1974&gt. "Advanced Numerical Simulation of Silicon-Based Solar Cells." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4566/.

Full text
Abstract:
Photovoltaic (PV) conversion is the direct production of electrical energy from sun without involving the emission of polluting substances. In order to be competitive with other energy sources, cost of the PV technology must be reduced ensuring adequate conversion efficiencies. These goals have motivated the interest of researchers in investigating advanced designs of crystalline silicon solar (c-Si) cells. Since lowering the cost of PV devices involves the reduction of the volume of semiconductor, an effective light trapping strategy aimed at increasing the photon absorption is requ
APA, Harvard, Vancouver, ISO, and other styles
50

Levitsky, I. A. "Carbon Nanotubes - Si Hybrid Solar Cells." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35493.

Full text
Abstract:
This short review describes recent results in the field of carbon nanotube (CNT) – Si hybrid photovolta-ics (PV) focusing on advantages of semiconducting carbon nanotubes over other organic materials used in organic- Si composite photosensing materials. Possible mechanisms of charge phogeneration at CNT- Si in-terface and chargte transport are discussed. Perspectives and future trends in research of this novel class of PV nanohybrids are presented as well. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35493
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!