Academic literature on the topic 'Silicon photonics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Silicon photonics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Silicon photonics"

1

Li, Chenlei, Dajian Liu, and Daoxin Dai. "Multimode silicon photonics." Nanophotonics 8, no. 2 (November 23, 2018): 227–47. http://dx.doi.org/10.1515/nanoph-2018-0161.

Full text
Abstract:
AbstractMultimode silicon photonics is attracting more and more attention because the introduction of higher-order modes makes it possible to increase the channel number for data transmission in mode-division-multiplexed (MDM) systems as well as improve the flexibility of device designs. On the other hand, the design of multimode silicon photonic devices becomes very different compared with the traditional case with the fundamental mode only. Since not only the fundamental mode but also the higher-order modes are involved, one of the most important things for multimode silicon photonics is the realization of effective mode manipulation, which is not difficult, fortunately because the mode dispersion in multimode silicon optical waveguide is very strong. Great progresses have been achieved on multimode silicon photonics in the past years. In this paper, a review of the recent progresses of the representative multimode silicon photonic devices and circuits is given. The first part reviews multimode silicon photonics for MDM systems, including on-chip multichannel mode (de)multiplexers, multimode waveguide bends, multimode waveguide crossings, reconfigurable multimode silicon photonic integrated circuits, multimode chip-fiber couplers, etc. In the second part, we give a discussion about the higher-order mode-assisted silicon photonic devices, including on-chip polarization-handling devices with higher-order modes, add-drop optical filters based on multimode Bragg gratings, and some emerging applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Jiang, Chaoyue Liu, Haitao Chen, Jingshu Guo, Ming Zhang, and Daoxin Dai. "Hybrid silicon photonic devices with two-dimensional materials." Nanophotonics 9, no. 8 (May 14, 2020): 2295–314. http://dx.doi.org/10.1515/nanoph-2020-0093.

Full text
Abstract:
AbstractSilicon photonics is becoming more and more attractive in the applications of optical interconnections, optical computing, and optical sensing. Although various silicon photonic devices have been developed rapidly, it is still not easy to realize active photonic devices and circuits with silicon alone due to the intrinsic limitations of silicon. In recent years, two-dimensional (2D) materials have attracted extensive attentions due to their unique properties in electronics and photonics. 2D materials can be easily transferred onto silicon and thus provide a promising approach for realizing active photonic devices on silicon. In this paper, we give a review on recent progresses towards hybrid silicon photonics devices with 2D materials, including two parts. One is silicon-based photodetectors with 2D materials for the wavelength-bands from ultraviolet (UV) to mid-infrared (MIR). The other is silicon photonic switches/modulators with 2D materials, including high-speed electro-optical modulators, high-efficiency thermal-optical switches and low-threshold all-optical modulators, etc. These hybrid silicon photonic devices with 2D materials devices provide an alternative way for the realization of multifunctional silicon photonic integrated circuits in the future.
APA, Harvard, Vancouver, ISO, and other styles
3

Xie, Jingya, Wangcheng Ye, Linjie Zhou, Xuguang Guo, Xiaofei Zang, Lin Chen, and Yiming Zhu. "A Review on Terahertz Technologies Accelerated by Silicon Photonics." Nanomaterials 11, no. 7 (June 23, 2021): 1646. http://dx.doi.org/10.3390/nano11071646.

Full text
Abstract:
In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.
APA, Harvard, Vancouver, ISO, and other styles
4

Matsuda, Nobuyuki, and Hiroki Takesue. "Generation and manipulation of entangled photons on silicon chips." Nanophotonics 5, no. 3 (August 1, 2016): 440–55. http://dx.doi.org/10.1515/nanoph-2015-0148.

Full text
Abstract:
AbstractIntegrated quantum photonics is now seen as one of the promising approaches to realize scalable quantum information systems. With optical waveguides based on silicon photonics technologies, we can realize quantum optical circuits with a higher degree of integration than with silica waveguides. In addition, thanks to the large nonlinearity observed in silicon nanophotonic waveguides, we can implement active components such as entangled photon sources on a chip. In this paper, we report recent progress in integrated quantum photonic circuits based on silicon photonics. We review our work on correlated and entangled photon-pair sources on silicon chips, using nanoscale silicon waveguides and silicon photonic crystal waveguides. We also describe an on-chip quantum buffer realized using the slow-light effect in a silicon photonic crystal waveguide. As an approach to combine the merits of different waveguide platforms, a hybrid quantum circuit that integrates a silicon-based photon-pair source and a silica-based arrayed waveguide grating is also presented.
APA, Harvard, Vancouver, ISO, and other styles
5

Lin, Hongtao, Zhengqian Luo, Tian Gu, Lionel C. Kimerling, Kazumi Wada, Anu Agarwal, and Juejun Hu. "Mid-infrared integrated photonics on silicon: a perspective." Nanophotonics 7, no. 2 (December 4, 2017): 393–420. http://dx.doi.org/10.1515/nanoph-2017-0085.

Full text
Abstract:
AbstractThe emergence of silicon photonics over the past two decades has established silicon as a preferred substrate platform for photonic integration. While most silicon-based photonic components have so far been realized in the near-infrared (near-IR) telecommunication bands, the mid-infrared (mid-IR, 2–20-μm wavelength) band presents a significant growth opportunity for integrated photonics. In this review, we offer our perspective on the burgeoning field of mid-IR integrated photonics on silicon. A comprehensive survey on the state-of-the-art of key photonic devices such as waveguides, light sources, modulators, and detectors is presented. Furthermore, on-chip spectroscopic chemical sensing is quantitatively analyzed as an example of mid-IR photonic system integration based on these basic building blocks, and the constituent component choices are discussed and contrasted in the context of system performance and integration technologies.
APA, Harvard, Vancouver, ISO, and other styles
6

Yuan, Yuan, Bassem Tossoun, Zhihong Huang, Xiaoge Zeng, Geza Kurczveil, Marco Fiorentino, Di Liang, and Raymond G. Beausoleil. "Avalanche photodiodes on silicon photonics." Journal of Semiconductors 43, no. 2 (February 1, 2022): 021301. http://dx.doi.org/10.1088/1674-4926/43/2/021301.

Full text
Abstract:
Abstract Silicon photonics technology has drawn significant interest due to its potential for compact and high-performance photonic integrated circuits. The Ge- or III–V material-based avalanche photodiodes integrated on silicon photonics provide ideal high sensitivity optical receivers for telecommunication wavelengths. Herein, the last advances of monolithic and heterogeneous avalanche photodiodes on silicon are reviewed, including different device structures and semiconductor systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Dong, Po, Young-Kai Chen, Guang-Hua Duan, and David T. Neilson. "Silicon photonic devices and integrated circuits." Nanophotonics 3, no. 4-5 (August 1, 2014): 215–28. http://dx.doi.org/10.1515/nanoph-2013-0023.

Full text
Abstract:
AbstractSilicon photonic devices and integrated circuits have undergone rapid and significant progresses during the last decade, transitioning from research topics in universities to product development in corporations. Silicon photonics is anticipated to be a disruptive optical technology for data communications, with applications such as intra-chip interconnects, short-reach communications in datacenters and supercomputers, and long-haul optical transmissions. Bell Labs, as the research organization of Alcatel-Lucent, a network system vendor, has an optimal position to identify the full potential of silicon photonics both in the applications and in its technical merits. Additionally it has demonstrated novel and improved high-performance optical devices, and implemented multi-function photonic integrated circuits to fulfill various communication applications. In this paper, we review our silicon photonic programs and main achievements during recent years. For devices, we review high-performance single-drive push-pull silicon Mach-Zehnder modulators, hybrid silicon/III-V lasers and silicon nitride-assisted polarization rotators. For photonic circuits, we review silicon/silicon nitride integration platforms to implement wavelength-division multiplexing receivers and transmitters. In addition, we show silicon photonic circuits are well suited for dual-polarization optical coherent transmitters and receivers, geared for advanced modulation formats. We also discuss various applications in the field of communication which may benefit from implementation in silicon photonics.
APA, Harvard, Vancouver, ISO, and other styles
8

Hsu, Chung-Yu, Gow-Zin Yiu, and You-Chia Chang. "Free-Space Applications of Silicon Photonics: A Review." Micromachines 13, no. 7 (June 24, 2022): 990. http://dx.doi.org/10.3390/mi13070990.

Full text
Abstract:
Silicon photonics has recently expanded its applications to delivering free-space emissions for detecting or manipulating external objects. The most notable example is the silicon optical phased array, which can steer a free-space beam to achieve a chip-scale solid-state LiDAR. Other examples include free-space optical communication, quantum photonics, imaging systems, and optogenetic probes. In contrast to the conventional optical system consisting of bulk optics, silicon photonics miniaturizes an optical system into a photonic chip with many functional waveguiding components. By leveraging the mature and monolithic CMOS process, silicon photonics enables high-volume production, scalability, reconfigurability, and parallelism. In this paper, we review the recent advances in beam steering technologies based on silicon photonics, including optical phased arrays, focal plane arrays, and dispersive grating diffraction. Various beam-shaping technologies for generating collimated, focused, Bessel, and vortex beams are also discussed. We conclude with an outlook of the promises and challenges for the free-space applications of silicon photonics.
APA, Harvard, Vancouver, ISO, and other styles
9

Yan, Siqi, Jeremy Adcock, and Yunhong Ding. "Graphene on Silicon Photonics: Light Modulation and Detection for Cutting-Edge Communication Technologies." Applied Sciences 12, no. 1 (December 29, 2021): 313. http://dx.doi.org/10.3390/app12010313.

Full text
Abstract:
Graphene—a two-dimensional allotrope of carbon in a single-layer honeycomb lattice nanostructure—has several distinctive optoelectronic properties that are highly desirable in advanced optical communication systems. Meanwhile, silicon photonics is a promising solution for the next-generation integrated photonics, owing to its low cost, low propagation loss and compatibility with CMOS fabrication processes. Unfortunately, silicon’s photodetection responsivity and operation bandwidth are intrinsically limited by its material characteristics. Graphene, with its extraordinary optoelectronic properties has been widely applied in silicon photonics to break this performance bottleneck, with significant progress reported. In this review, we focus on the application of graphene in high-performance silicon photonic devices, including modulators and photodetectors. Moreover, we explore the trend of development and discuss the future challenges of silicon-graphene hybrid photonic devices.
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Bo, Yuhao Huang, Yuetong Fang, Zhongrui Wang, Shaoliang Yu, and Renjing Xu. "Recent Progress of Neuromorphic Computing Based on Silicon Photonics: Electronic–Photonic Co-Design, Device, and Architecture." Photonics 9, no. 10 (September 27, 2022): 698. http://dx.doi.org/10.3390/photonics9100698.

Full text
Abstract:
The rapid development of neural networks has led to tremendous applications in image segmentation, speech recognition, and medical image diagnosis, etc. Among various hardware implementations of neural networks, silicon photonics is considered one of the most promising approaches due to its CMOS compatibility, accessible integration platforms, mature fabrication techniques, and abundant optical components. In addition, neuromorphic computing based on silicon photonics can provide massively parallel processing and high-speed operations with low power consumption, thus enabling further exploration of neural networks. Here, we focused on the development of neuromorphic computing based on silicon photonics, introducing this field from the perspective of electronic–photonic co-design and presenting the architecture and algorithm theory. Finally, we discussed the prospects and challenges of neuromorphic silicon photonics.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Silicon photonics"

1

Zheng, Xin. "Graded photonic crystal for silicon photonics." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST063.

Full text
Abstract:
Les cristaux photoniques à gradient (CPG) permettent une ingénierie de leur indice effectif, ce qui offre de nouveaux degrés de liberté pour la conception de dispositifs photoniques. Ils s’appréhendent par l’optique à gradient d’indice (GRIN optics), qui décrit des milieux inhomogènes dans lesquels la lumière ne se propage pas rectilignement. Il est ainsi possible d’envisager tout profil d’indice. Les CPG sont donc particulièrement attractifs pour la miniaturisation des composants optiques, notamment en photonique sur Silicium. Ils sont fondés sur la variation d’un paramètre de la maille élémentaire du cristal photonique (CP); ici, c’est le facteur de remplissage qui varie afin que l’indice effectif du CPG réalise le profil d’indice souhaité. Le but de cette thèse est d’explorer le potentiel des CPG en concevant des dispositifs à gradient d’indice sur la "plateforme" Silicium sur isolant (SOI) aux longueurs d’onde pour les télécommunications. C’est la chaine complète qui va de la conception à la caractérisation du dispositif, en passant par la simulation et la fabrication, qui est mise en œuvre. Nous nous sommes principalement concentrés sur deux instruments typiques de l’optique à gradient d’indice : la lentille de Mikaelian et le Half Maxwell Fish Eye (HMFE). Dans cette thèse, nous proposons une nouvelle méthode d’approximation de l’indice effectif adaptée à la "plateforme" SOI, que nous avons validée en concevant une lentille de Mikaelian (à profil d’indice sécante hyperbolique). Pour de tels dispositifs, il faut en effet tenir compte de deux indices effectifs : celui du mode guidé dans la couche de Silicium et celui du CP. Dans cette méthode, l’indice effectif du CP est d’abord calculé pour remplacer l’indice de la couche du mode guidé ; puis l’indice effectif de cette couche est calculé. Les résultats de simulation obtenus au moyen d’un logiciel commercial (méthode FDTD) montrent que la lentille ainsi conçue satisfait les prévisions analytiques, contrairement à ce que donnent les méthodes couramment utilisées. Nous l’avons alors appliquée au HMFE. Les dispositifs ont ensuite été fabriqués en salle blanche par lithographie par faisceau d’électrons (EBL) et par gravure plasma (ICP). Les différents CPG fabriqués consistent en des trous d’air répartis périodiquement dans la couche de Silicium, dont le diamètre minimal est d’environ 40 nm. Puis, ils ont été caractérisés en deux temps, notamment par microscopie en champ proche (SNOM). L’épaisseur de ces dispositifs est de quelques longueurs d’onde (3 ou 5 λ_0 environ), tandis la largeur de leur tâche focale est proche de la limite de diffraction (0.5 λ_0 environ). Ils fonctionnent sur une plage de longueurs d’onde de 150 nm environ. Les résultats de la lentille de Mikaelian ont été utilisés pour développer un convertisseur de taille de mode (taper) effectif sur quelques longueurs d’onde. Il est dix fois plus court qu’un convertisseur classique. Dans cette thèse, nous montrons aussi comment il est possible d’interpréter la propagation de l’onde EM dans ces composants à gradient d’indice sur "plateforme" SOI au moyen du principe de l’interféromètre multimode. En se propageant, les différents modes accumulent une différence de phase, qui se traduit par un battement qui modifie la distribution du champ EM, conduisant à la focalisation. La longueur caractéristique de ce battement est égale à la distance focale. Tous ces dispositifs sont étudiés pour s’intégrer dans des circuits de photonique intégrée
Gradient photonic crystals (GPhCs) enable the engineering of their effective index, opening up new degrees of freedom in photonic device design. They can be understood through gradient index optics (GRIN optics), which describe inhomogeneous media in which light does not propagate along straight paths. This makes it possible to consider any index profile. This makes GPhCs particularly attractive for the miniaturization of optical components, especially in silicon photonics. They are based on the variation of a parameter of the photonic crystal elemental cell (PhC); here, the filling factor is varied so that the effective index of the GPhC achieves the desired index profile. The aim of this thesis is to explore the potential of GPhCs by designing graded-index devices on the Silicon-On-Insulator (SOI) "platform" at telecom wavelengths. The complete chain from design to device characterization, including simulation and manufacturing, is implemented. We focused on two typical gradient index optics instruments: the Mikaelian lens and the Half Maxwell Fish Eye (HMFE). In this thesis, we propose a new effective index approximation method for the SOI "platform", which we have validated by designing a Mikaelian lens (with a hyperbolic secant index profile). For such devices, two effective indices need to be taken into account: that of the guided mode in the Silicon layer and that of the PhC. In this method, the effective index of the PhC is first calculated to replace the index of the guided mode layer; then the effective index of this layer is calculated. Simulation results obtained using commercial software (FDTD method) show that the lens designed in this way satisfies the analytical predictions, contrary to the results obtained with commonly used methods. We then applied it to HMFE.The devices were then fabricated in the cleanroom by electron beam lithography (EBL) and plasma etching (ICP). The individual GPhCs consisted of periodically distributed air holes in the Silicon layer, with a minimum diameter of around 40 nm. They were then characterized in two stages, notably by near-field microscopy (SNOM). These devices are only a few wavelengths thick (approx. 3 or 5 λ_0), while their focal spot width is close to the diffraction limit (approx. 0.5 λ_0). They operate over a wavelength range of around 150 nm. The Mikaelian lens results have been used to develop a mode size converter (taper), which is effective over a few wavelengths. It is ten times shorter than a conventional converter. In this thesis, we also show how it is possible to interpret EM wave propagation in these graded-index components on the SOI platforms using the multimode interferometer principle. As they propagate, the different modes accumulate a phase difference, resulting in a mode beat that modifies the EM field distribution, leading to focusing. The characteristic length of this mode beat is equal to the focal length. All these devices are studied for integration into integrated photonics circuits
APA, Harvard, Vancouver, ISO, and other styles
2

Shankar, Raji. "Mid-Infrared Photonics in Silicon." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10988.

Full text
Abstract:
The mid-infrared wavelength region (2-20 µm) is of great utility for a number of applications, including chemical bond spectroscopy, trace gas sensing, and medical diagnostics. Despite this wealth of applications, the on-chip mid-IR photonics platform needed to access them is relatively undeveloped. Silicon is an attractive material of choice for the mid-IR, as it exhibits low loss through much of the mid-IR. Using silicon allows us to take advantage of well-developed fabrication techniques and CMOS compatibility, making the realization of on-chip integrated mid-IR devices more realistic. The mid-IR wavelengths also afford the opportunity to exploit Si's high third-order optical nonlinearity for nonlinear frequency generation applications. In this work, we present a Si-based platform for mid-IR photonics, with a special focus on micro-resonators for strong on-chip light confinement in the 4-5 μm range. Additionally, we develop experimental optical characterization techniques to overcome the inherent difficulties of working in this wavelength regime. First, we demonstrate the design, fabrication, and characterization of photonic crystal cavities in a silicon membrane platform, operational at 4.4 μm (Chapter 2). By transferring the technique known as resonant scattering to the mid-IR, we measure quality (Q) factors of up to 13,600 in these photonic crystal cavities. We also develop a technique known as scanning resonant scattering microscopy to image our cavity modes and optimize alignment to our devices. Next, we demonstrate the electro-optic tuning of these mid-IR Si photonic crystal cavities using gated graphene (Chapter 3). We demonstrate a tuning of about 4 nm, and demonstrate the principle of on-chip mid-IR modulation using these devices. We then investigate the phenomenon of optical bistability seen in our photonic crystal cavities (Chapter 4). We discover that our bistability is thermal in origin and use post-processing techniques to mitigate bistability and increase Q-factors. We then demonstrate the design, fabrication, and characterization grating-coupled ring resonators in a silicon-on-sapphire (SOS) platform at 4.4 μm, achieving intrinsic Q-factors as high as 278,000 in these devices (Chapter 5). Finally, we provide a quantitative analysis of the potential of our SOS devices for nonlinear frequency generation and describe ongoing experiments in this regard (Chapter 6).
Engineering and Applied Sciences
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Weifeng. "Silicon Photonics and Its Applications in Microwave Photonics." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36197.

Full text
Abstract:
Thanks to its compatibility with the current CMOS technology and its potential of seamless integration with electronics, silicon photonics has been attracting an ever-increasing interest in recent years from both the academia and industry. By applying silicon photonic technology in microwave photonics, on-chip integration of microwave photonic systems could be implemented with improved performance including a much smaller size, better stability and lower power consumption. This thesis focuses on developing silicon-based photonic integrated circuits for microwave photonic applications. Two types of silicon-based on-chip devices, waveguide Bragg gratings and optical micro-cavity resonators, are designed, developed, and characterized, and the use of the developed devices in microwave photonic applications is studied. After an introduction to silicon photonics and microwave photonics in Chapter 1 and an overview of microwave photonic signal generation and processing in Chpater2, in Chapter 3 a silicon-based on-chip phase-shifted waveguide Bragg grating (PS-WBG) is designed, fabricated and characterized, and its use for the implementation of a photonic temporal differentiator is experimentally demonstrated. To have a waveguide grating that is wavelength tunable, in Chapter 4 a tunable waveguide grating is proposed by incorporating a PN junction across the waveguide grating, to use the free-carrier plasma dispersion effect in silicon to achieve wavelength tuning. The use of a pair of wavelength-tunable waveguide gratings to form a wavelength-tunable Fabry-Perot resonator for microwave photonic signal processing is studied. Thanks to its electrical tunability, a high-speed electro-optic modulator, a tunable fractional-order photonic temporal differentiator and a tunable optical delay line are experimentally demonstrated. To increase the bandwidth of a waveguide grating, in Chapter 5 a linearly chirped waveguide Bragg grating (LC-WBG) is designed, fabricated and evaluated. By incorporating two LC-WBGs in two arms of a Mach-Zehnder interferometer (MZI) structure, an on-chip optical spectral shaper is produced, which is used in a photonic microwave waveform generation system based on spectral-shaping and wavelength-to-time (SS-WTT) mapping for linearly chirped microwave waveform (LCMW) generation. To enable the LC-WBG to be electrically tuned, in Chapter 6 a lateral PN junction is introduced in the grating and thus an electrically tunable LC-WBG is realized. By incorporating two tunable LC-WBGs in a Michelson interferometer structure, an electrically tunable optical spectral shaper is made. By applying the fabricated spectral shaper in an SS-WTT mapping system, a continuously tunable LCMW is experimentally generated. Compared with a waveguide Bragg grating device, an on-chip optical micro-cavity resonator usually has a much smaller dimension, which is of help to increase the integration density and reduce the power consumption. Different on-chip optical micro-cavity resonators are studied in this thesis. In Chapter 7, an on-chip symmetric MZI incorporating multiple cascaded microring resonators is proposed. By controlling the radii of the rings, the MZI could be designed to have a spectral response with a linearly-varying free spectral range (FSR), which could be used in photonic generation of an LCMW, and to have a multi-channel spectral response with identical channel spacing, which could be used in the implementation of an independently tunable multi-channel fractional-order temporal differentiator. To further reduce the footprint of an optical micro-cavity resonator, in Chapter 8 an ultra-compact microdisk resonator (MDR) with a single-mode operation and an ultra-high Q-factor is proposed, fabricated and evaluated, and its use for the implementation of a microwave photonic filter and an optical delay line is experimentally demonstrated. To enable the MDR to be electrically tunable, in Chapter 9 an electrically tunable MDR is realized by incorporating a lateral PN junction in the disk. The use of the fabricated MDR in microwave photonic applications such as a high-speed electro-optic modulator, a tunable photonic temporal differentiator and a tunable optical delay line is experimentally demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
4

Walters, Robert Joseph Atwater Harry Albert. "Silicon nanocrystals for silicon photonics /." Diss., Pasadena, Calif. : California Institute of Technology, 2007. http://resolver.caltech.edu/CaltechETD:etd-06042007-160130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Wenjian. "Microwave Photonics and Sensing based on Silicon Photonics." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23482.

Full text
Abstract:
Chip scale photonic integrated circuits can provide important new functions in communications, signal processing and sensing. Recent research on microwave photonics (MWPs) and integrated optical sensors using the silicon photonic devices has opened up new opportunities for signal processing and sensing applications. MWPs brings together the world of microwave engineering and optoelectronics, which provides solutions for processing high frequency microwave signals. It has attracted significant interest in many different areas including communications, sensors, radar systems and defence applications. The use of photonic integrated circuit enhances functionalities and flexibilities as well as enabling a reduction of size and weight for MWP applications. The high integratablity of the photonic circuit not only boosts the filtering, time delay and phase shifting functionalities, but also enables the sensing applications in the nano-scale range. Integrated sensors are under high demand in many environmental chemical and biomedical applications. The mass fabricated integrated sensor provides opportunities for multi-functional sensor array with minimized volume. The research work presented in this thesis aims to investigate silicon photonics applications in MWP signal processing and different sensing circumstances. Firstly, the MWP filter based on the SOI microring resonator with phase compensation method is demonstrated. In addition, instantaneous frequency measurement based on frequency to time mapping is presented. Then, a novel integrated optical sensor system based on SOI add drop microring resonator structure is presented. The MWP techniques for high performance sensing application is explored. Lastly, to address the multi-functionality of silicon photonics based sensor, an application of integrated ultrasound optical sensor is demonstrated. It is expected the work provided in this thesis can assist in the emergence of real-world silicon photonic applications. (1992 out of 2000 characters)
APA, Harvard, Vancouver, ISO, and other styles
6

Savchyn, Oleksandr. "Silicon-sensitized erbium excitation in silicon-rich silica for integrated photonics." Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4642.

Full text
Abstract:
It is widely accepted that the continued increase of processor performance requires at least partial replacement of electronic interconnects with their photonic counterparts. The implementation of optical interconnects requires the realization of a silicon-based light source, which is challenging task due to the low emission efficiency of silicon. One of the main approaches to address this challenge is the use of doping of silicon based matrices with optical centers, including erbium ions. Erbium ions incorporated in various hosts assume the trivalent state (Er[super]3+) and demonstrate a transition at 1.54 micrometer], coinciding with optical transmission windows in both silicon and silica. Due to the low absorption cross-section and discrete energy levels of the Er[super]3+ ion, indirect excitation is necessary. In late 90s it was demonstrated that the incorporation of excess silicon in erbium-doped silica results in strong erbium sensitization, leading to an increase of the effective absorption cross-section by orders of magnitude. The sensitization was considered to occur via silicon nanocrystals that formed at high annealing temperatures. While a large increase of the absorption cross-section was demonstrated, the incorporation of Si nanocrystals was found to result in a low concentration of excited erbium, as well as silicon related free-carrier absorption. The focus of this dissertation is the investigation of the nature of the sensitization mechanism of erbium in silicon-rich silica. The results presented in the dissertation demonstrate that erbium in silicon-rich silica is predominantly excited by silicon-excess-related luminescence centers, as opposed to the commonly considered silicon nanocrystals. This is a remarkable conclusion that changes the view on the exact origin of erbium sensitization, and that resolves several technical challenges that exist for nanocrystal-based sensitization.; The work shows that in order to sensitize erbium ions in silicon-rich silica there is no need for the presence of silicon nanocrystals, and consequently lower fabrication temperatures can be used. More importantly, the results strongly suggest that higher gain values can be acquired in samples annealed at lower temperature (without silicon nanocrystals) as compared to samples annealed at high temperatures (with silicon nanocrystals). In addition, the maximum gain is predicted to be relatively independent of excitation wavelength, significantly relaxing the requirements on the pump source. Based on the experimental results it is predicted that relatively stable performance of erbium-doped silicon-rich silica is possible up to typical processor operating temperatures of ~ 80 - 90[degrees]C making it a viable material for on-chip devices. The results suggest that low temperature annealed erbium-doped silicon-rich silica is a preferable material for on-chip photonic devices as compared with its high temperature annealed counterpart.; The work shows that the density of indirectly excited erbium ions is significantly larger in samples without silicon nanocrystals (annealed at T[less than]1000[degrees]C) as opposed to samples with silicon nanocrystals (annealed at T[greater than]1000[degrees]C). The density of indirectly excited erbium ions, defining the maximum achievable gain, was demonstrated to be approximately excitation wavelength independent, while the effective erbium absorption cross-section was shown to significantly depend on the excitation wavelength. The excitation mechanism of erbium by luminescence centers was shown to be fast (less than] 30 ns) and capable of erbium sensitization to different energy levels. This multilevel nature of erbium excitation was demonstrated to result in two different mechanisms of the excitation of the first excited state of erbium: fast (less than]30 ns) direct excitation by the luminescence centers, and slow (greater than]2.3 microseconds]) excitation due to the relaxation of erbium ions excited into higher energy levels to the first excited state. Based on photoluminescence studies conducted in the temperature range 15-300K it was shown that the relaxation efficiency of erbium from the second excited state to the first excited state (responsible for the slow excitation mechanism) is temperature independent and approaches unity. The relative stability of the optical properties demonstrated in the temperature range 20-200[degrees]C, implies that relatively stable optical gain can be achieved under realistic on-chip operating conditions. The optimum Si excess concentration corresponding to the highest density of sensitized Er[super]3+ ions is shown to be relatively insensitive to the presence of Si nanocrystals and is ~ 14.5 at.% and ~ 11.5 at.% for samples without and with Si nanocrystals respectively. The presented results and conclusions have significant implications for silicon photonics and the industrial application of Er-doped SiO[sub]2. The work shows that in order to sensitize erbium ions in silicon-rich silica there is no need for the presence of silicon nanocrystals, and consequently lower fabrication temperatures can be used. More importantly, the results strongly suggest that higher gain values can be acquired in samples annealed at lower temperature (without silicon nanocrystals) as compared to samples annealed at high temperatures (with silicon nanocrystals). In addition, the maximum gain is predicted to be relatively independent of excitation wavelength, significantly relaxing the requirements on the pump source. Based on the experimental results it is predicted that relatively stable performance of erbium-doped silicon rich silica is possible up to typical processor operating temperatures of ~ 80 - 90[degrees]C making it a viable material for on-chip devices. The results suggest that low temperature annealed erbium doped silicon-rich silica is a preferable material for on-chip photonic devices as compared with its high temperature annealed counterpart.
ID: 029094291; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2010.; Includes bibliographical references.
Ph.D.
Doctorate
Optics and Photonics
APA, Harvard, Vancouver, ISO, and other styles
7

Dumas, Derek C. S. "Germanium on silicon photonics." Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/5882/.

Full text
Abstract:
Silicon photonics technologies have the potential to overcome the bandwidth limitations inherent in electrical interconnect technology. Modulation technology which is efficient both in terms of size and energy is required if silicon photonics are to replace electronics for interconnect communications. Silicon germanium technologies have the potential to not only improve the performance of current semiconductor devices but to also extend the reach of semiconductor technology into new areas such as development of a room temperature THz laser. A novel process that allows easy fabrication of Ohmic contacts to moderately doped n-type Germanium has been developed. This process has the potential to allow the realization of new devices which have been previously hampered by non-Ohmic contacts or dopant segregation problems. This work reported in this thesis also includes the design and fabrication of Ge/SiGe QCSE devices. Thin barrier QCSE designs have been put forward as a potential way to produce a more energy efficient modulator. Simulations of the devices show that a design with 16 nm Ge QWs and 8 nm SiGe barriers can provide effective modulation covering the entire optical communications C band with less than 3 V DC offset and achieve a contrast ratio across the band of over 3 dB. It was also shown that despite the thin barriers the wavefunctions remain well confined to the QWs suggesting that even thinner barriers are possible. MQW structures with thin barriers were grown and photodiodes fabricated from them. While the wafers did not have barriers as thin as designed they were thinner than devices previously demonstrated. From photocurrent measurements it was shown that these MQW structures were able to effectively modulate light near the 1550 nm wavelength with better performance than devices found in the literature.
APA, Harvard, Vancouver, ISO, and other styles
8

Staines, Owain Kenneth. "Nonlinear photonics in silicon-oninsulator photonic wires and their arrays." Thesis, University of Bath, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604648.

Full text
Abstract:
We have performed a theoretical study into silicon-on-insulator photonic waveguide arrays. Such waveguides are capable of high levels of light confinement which reinforces the already strong nonlinear response of silicon, making systems involving the waveguidcs ideal for the study of non-linear effects. This study is focussed on two nonlinear processes in relation to the waveguide arrays: optical soli tans and modulational instability, which are often related effects themselves. Optical solitons are pulses localised ill Due or more spatial and/or temporal dimensions which propagate through media -in a. robust, self-reinforcing manner. They require a balance between nonlinearity, diffraction and dispersion. Modulational instability is related to wave-mixing processes whereby photons of a certain frequency arc converted to photons of different frequencies, depending on phase matching and conservation laws. The instability causes the growth of spectral sidebands about a pump pulse, and is often found to occur during soliton propagation. In this thesis a study of the propagation of light within arrays of waveguides is presented, wherein conditions are tuned to promote soliton formation and an emphasis is placed on investigating discrete spatiotemporal solitons. Advantages and disadvantages of employing silicon waveguides for soliton formation are noted with suggestions given to enable minimising of the latter. It is shown that silicon-on-insulator waveguides can provide an excellent medium for supporting discrete spatiotemporal solitons, and where applicable theoretical results have been related to experimental ones performed in tandem . Similar arrays to used to study modulational instability. It is shown that, through exploitation of the supermodes supported by a waveguide array, different degrees of instability, quantified by an amount of 'gain', are possible within the same array. Depending on the initial excitation conditions it is possible for a pulse to experience either large or insignificant amounts of the gain.
APA, Harvard, Vancouver, ISO, and other styles
9

Sánchez, Diana Luis David. "High performance photonic devices for switching applications in silicon photonics." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/77150.

Full text
Abstract:
El silicio es la plataforma más prometedora para la integración fotónica, asegurando la compatibilidad con los procesos de fabricación CMOS y la producción en masa de dispositivos a bajo coste. Durante las últimas décadas, la tecnología fotónica basada en la plataforma de silicio ha mostrado un gran crecimiento, desarrollando diferentes tipos de dispositivos ópticos de alto rendimiento. Una de las posibilidades para continuar mejorando las prestaciones de los dispositivos fotónicos es mediante la combinación con otras tecnologías como la plasmónica o con nuevos materiales con propiedades excepcionales y compatibilidad CMOS. Las tecnologías híbridas pueden superar las limitaciones de la tecnología de silicio, dando lugar a nuevos dispositivos capaces de superar las prestaciones de sus homólogos electrónicos. La tecnología híbrida dióxido de vanadio/ silicio permite el desarrollo de dispositivos de altas prestaciones, con gran ancho de banda, mayor velocidad de operación y mayor eficiencia energética con dimensiones de la escala de la longitud de onda. El objetivo principal de esta tesis ha sido la propuesta y desarrollo de dispositivos fotónicos de altas prestaciones para aplicaciones de conmutación. En este contexto, diferentes estructuras basadas en silicio, tecnología plasmónica y las propiedades sintonizables del dióxido de vanadio han sido investigadas para controlar la polarización de la luz y para desarrollar otras funcionalidades electro-ópticas como la modulación.
Silicon is the most promising platform for photonic integration, ensuring CMOS fabrication compatibility and mass production of cost-effective devices. During the last decades, photonic technology based on the Silicon on Insulator (SOI) platform has shown a great evolution, developing different sorts of high performance optical devices. One way to continue improving the performance of photonic optical devices is the combination of the silicon platform with another technologies like plasmonics or CMOS compatible materials with unique properties. Hybrid technologies can overcome the current limits of the silicon technology and develop new devices exceeding the performance metrics of its counterparts electronic devices. The vanadium dioxide/silicon hybrid technology allows the development of new high-performance devices with broadband performance, faster operating speed and energy efficient optical response with wavelength-scale device dimensions. The main goal of this thesis has been the proposal and development of high performance photonic devices for switching applications. In this context, different structures, based on silicon, plasmonics and the tunable properties of vanadium dioxide, have been investigated to control the polarization of light and for enabling other electro-optical functionalities, like optical modulation.
El silici és la plataforma més prometedora per a la integració fotònica, assegurant la compatibilitat amb els processos de fabricació CMOS i la producció en massa de dispositius a baix cost. Durant les últimes dècades, la tecnologia fotònica basada en la plataforma de silici ha mostrat un gran creixement, desenvolupant diferents tipus de dispositius òptics d'alt rendiment. Una de les possibilitats per a continuar millorant el rendiment dels dispositius fotònics és per mitjà de la combinació amb altres tecnologies com la plasmònica o amb nous materials amb propietats excepcionals i compatibilitat CMOS. Les tecnologies híbrides poden superar les limitacions de la tecnologia de silici, donant lloc a nous dispositius capaços de superar el rendiment dels seus homòlegs electrònics. La tecnologia híbrida diòxid de vanadi/silici permet el desenvolupament de dispositius d'alt rendiment, amb gran ample de banda, major velocitat d'operació i major eficiència energètica en l'escala de la longitud d'ona. L'objectiu principal d'esta tesi ha sigut la proposta i desenvolupament de dispositius fotònics d'alt rendiment per a aplicacions de commutació. En este context, diferents estructures basades en silici, tecnologia plasmònica i les propietats sintonitzables del diòxid de vanadi han sigut investigades per a controlar la polarització de la llum i per a desenvolupar altres funcionalitats electró-òptiques com la modulació.
Sánchez Diana, LD. (2016). High performance photonic devices for switching applications in silicon photonics [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/77150
TESIS
APA, Harvard, Vancouver, ISO, and other styles
10

Leung, David. "Characterisation of silicon photonics devices." Thesis, City University London, 2013. http://openaccess.city.ac.uk/2135/.

Full text
Abstract:
Silicon based integrated circuits has been dominating the electronics technology industry in the last few decades. As the telecommunications and the computing industry slowly converges together, the need for a material to build photonics integrated circuits (PIC) that can be cost-effective and be produced in mass market has become very important. This thesis describes and outlines the characteristics of high index contrast waveguides as a building blocks that can be designed, fabricated and employed on devices in silicon photonics. Initially in this work, a fully vectorial H-field based finite element method has been used to obtain the modal characteristics of high index contrast bent waveguide to get a better understanding of the curved section. Through the beam propagation method, the propagation losses and the spot-size along the propagation distance are obtained when a mode from the straight guide is launched into a bent guide. It is also learnt that mode beating exists at the junction of a straight-to-bent waveguide, in which higher order modes will also be generated. It will be shown in this work that power do exchange between the two polarization states, therefore the polarization conversion, the power losses and the bending losses will be investigated. It will also shown in here that by applying lateral offsets with coupled waveguides of unequal widths, the insertion loss can be reduced. Secondly, for a high index contrast waveguide such as the silicon strip waveguide with a nanoscale cross-section, modes in such waveguide are not purely TE or TM but hybrid in nature, with all the six components of their E and H-fields being present. Therefore a detail analysis of the modal field profiles along with the Poynting vector profile will be shown. The effects of waveguide's width and height on the effective indices, the hybridness, the modal effective area and the power confinement in the core or cladding has been studied. Furthermore the modal birefringence of such strip waveguide will be shown. It will be presented that for a strip waveguide with height of 260 nm, single mode exists in the region of the width being 200 nm to 400 nm and that the modal effective is at its minimum when width is around 320 nm for both polarization states. Thirdly, a compact polarization rotator with an asymmetric waveguide structure design, suitable for fabrication that does not require a slanted side wall or curved waveguide is considered in this work. It will be shown in here that due to the hybrid nature of the asymmetric waveguide design, maximum polarization rotation (from TE to TM) will be achieve by enhancing the non-dominant field profile of both polarized fundamental mode. As the modal hybridness and the propagation constants of both polarized modes will be obtained, the half-beat length, polarization conversion and polarization cross-talk will be calculated by using the FEM and the least squares residual boundary method (LSBR). It is learnt that a compact single stage polarization rotator with a device length of 48 μm with more than 99% of polarization conversion is achieved in this work. Finally, a study of vertical and horizontal slot waveguide will be shown. Based on silicon strip waveguide, a detail modal characteristics of E and H-fields along with the Poynting vectors are presented. It will be shown that for slot waveguide, high power confinement and power density will be achieved in the slot area. It will be presented that by optimising the waveguide and slot dimension, the performance of the power confinement and power density in the slot region can be improved.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Silicon photonics"

1

Reed, Graham T., and Andrew P. Knights. Silicon Photonics. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470014180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Deen, M. Jamal, and P. K. Basu. Silicon Photonics. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119945161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reed, Graham T., ed. Silicon Photonics. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470994535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lockwood, David J., and Lorenzo Pavesi, eds. Silicon Photonics IV. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68222-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pavesi, Lorenzo, and David J. Lockwood, eds. Silicon Photonics III. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-10503-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lockwood, David J., and Lorenzo Pavesi, eds. Silicon Photonics II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10506-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

P, Knights Andrew, ed. Silicon photonics: An introduction. Chichester: John Wiley, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Basu, P. K. (Prasanta Kumar), ed. Silicon photonics: Fundamentals and devices. Chichester, West Sussex, UK: Wiley, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mishra, Anurag, Anirban Basu, and Vipin Tyagi, eds. Silicon Photonics & High Performance Computing. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7656-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmed, Jameel, Mohammed Yakoob Siyal, Freeha Adeel, and Ashiq Hussain. Optical Signal Processing by Silicon Photonics. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4560-11-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Silicon photonics"

1

Bogaerts, Wim. "Silicon Photonics." In Photonics, 1–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119011750.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fathpour, Sasan. "Silicon photonics." In Handbook of Optoelectronics, 759–84. Second edition. | Boca Raton : Taylor & Francis, CRC Press,: CRC Press, 2017. http://dx.doi.org/10.1201/9781315157009-22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bergman, Keren, Luca P. Carloni, Aleksandr Biberman, Johnnie Chan, and Gilbert Hendry. "Silicon Photonics." In Integrated Circuits and Systems, 27–78. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9335-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pavesi, Lorenzo. "Silicon Photonics." In Springer Proceedings in Physics, 7–10. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2367-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bonneau, Damien, Joshua W. Silverstone, and Mark G. Thompson. "Silicon Quantum Photonics." In Topics in Applied Physics, 41–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-10503-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Jong-Moo. "Athermal Silicon Photonics." In Topics in Applied Physics, 83–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-10503-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsang, Hon Ki, Xia Chen, Zhenzhou Cheng, Wen Zhou, and Yeyu Tong. "Subwavelength Silicon Photonics." In Topics in Applied Physics, 285–321. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68222-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zanetto, Francesco. "Low-Noise Mixed-Signal Electronics for Closed-Loop Control of Complex Photonic Circuits." In Special Topics in Information Technology, 55–64. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85918-3_5.

Full text
Abstract:
AbstractAn increasing research effort is being carried out to profit from the advantages of photonics not only in long-range telecommunications but also at short distances, to implement board-to-board or chip-to-chip interconnections. In this context, Silicon Photonics emerged as a promising technology, allowing to integrate optical devices in a small silicon chip. However, the integration density made possible by Silicon Photonics revealed the difficulty of operating complex optical architectures in an open-loop way, due to their high sensitivity to fabrication parameters and temperature variations. In this chapter, a low-noise mixed-signal electronic platform implementing feedback control of complex optical architectures is presented. The system exploits the ContactLess Integrated Photonic Probe, a non-invasive detector that senses light in silicon waveguides by measuring their electrical conductance. The CLIPP readout resolution has been maximized thanks to the design of a low-noise multichannel ASIC, achieving an accuracy better than −35 dBm in light monitoring. The feedback loop to stabilize the behaviour of photonic circuits is then closed in the digital domain by a custom mixed-signal electronic platform. Experimental demonstrations of optical communications at high data-rate confirm the effectiveness of the proposed approach.
APA, Harvard, Vancouver, ISO, and other styles
9

Anopchenko, Aleksei, Nicola Daldosso, Romain Guider, Daniel Navarro-Urrios, Alessandro Pitanti, Rita Spano, Zhizhong Yuan, and Lorenzo Pavesi. "Photonics Application of Silicon Nanocrystals." In Silicon Nanocrystals, 445–85. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629954.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hameed, Mohamed Farhat O., A. Samy Saadeldin, Essam M. A. Elkaramany, and S. S. A. Obayya. "Introduction to Silicon Photonics." In Computational Photonic Sensors, 73–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76556-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Silicon photonics"

1

Bian, Yusheng, Takako Hirokawa, Won Suk Lee, Sujith Chandran, Ken Giewont, Abdelsalam Aboketaf, Qidi Liu, et al. "300-mm monolithic CMOS silicon photonics foundry technology [Invited]." In CLEO: Applications and Technology, ATu3H.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.atu3h.1.

Full text
Abstract:
This paper reviews recent advancements in GlobalFoundries (GF) FotonixTM technology: a 300-mm monolithic CMOS silicon photonics (SiPh) foundry platform. The discussion encompasses photonic and CMOS device libraries, advanced packaging, PDK compact models, reliability, and system-level demonstrations.
APA, Harvard, Vancouver, ISO, and other styles
2

Lipson, Michal, Sasikanth Manipatruni, Kyle Preston, and Carl Poitras. "Photonics on a Silicon Chip." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62383.

Full text
Abstract:
Photonics on a silicon chip could enable a platform for monolithic integration of optics and microelectronics for applications of optical interconnects in which high data streams are required in a small footprint. In this talk I will review the challenges and achievement in the field of silicon photonics. Using highly confined photonic structures one can enhance the electro-optical and non-linearities properties of Silicon and enable ultra-compact and low power photonic components with very low loss. We have recently demonstrated several active components including GHz electro-optic low power switches and modulators, all-optical amplifiers and wavelength converters on silicon.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhai, Tingting, Binbin Wang, Kuan-Ting Wu, Jinbong Seok, Sera Kim, Wei-Yen Woon, Remi Vincent, Heejun Yang, and Rafael Salas-Montiel. "Subwavelength plasmonic-enhanced graphene-hBN-graphene silicon modulator." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.iw4b.1.

Full text
Abstract:
We demonstrate a high-performance subwavelength scale plasmonic enhanced graphene/hexagonal boron nitride/graphene-based silicon electro-optic modulator, enabling low energy consumption for applications in communications, nonlinear photonics, and photonic neuromorphic networks.
APA, Harvard, Vancouver, ISO, and other styles
4

Radulovic, M., B. D. J. Sayers, S. G. Currie, D. A. Quintero Dominguez, and J. W. Silverstone. "DC Kerr modulators in silicon for low-temperature applications in the mid-infrared." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/iprsn.2023.itu1a.4.

Full text
Abstract:
We iteratively design and implement silicon photonic modulators based on the DC Kerr effect in the 2 µm band for cryogenic environments and compare their performance and consider their application to quantum photonics.
APA, Harvard, Vancouver, ISO, and other styles
5

Leuthold, Juerg, Bojun Cheng, Ueli Koch, Jasmin Smajic, Till Zellweger, Alexandros Emboras, Mathieu Luisier, Fangqing Xie, and Thomas Schimmel. "Atomic-Scale Memristive Plasmonics." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.iw4b.5.

Full text
Abstract:
Plasmonics is a powerful tool to miniaturize photonics. In this review, we introduce memristive plasmonics as a technique to shrink photonic devices to the atomic scale. We show atomic-scale plasmonic switches, detectors and emitters.
APA, Harvard, Vancouver, ISO, and other styles
6

Wong, Chee Wei, Xiaodong Yang, James F. McMillan, and Chad A. Husko. "Photonic crystals and silicon photonics." In Integrated Optoelectronic Devices 2006, edited by Louay A. Eldada and El-Hang Lee. SPIE, 2006. http://dx.doi.org/10.1117/12.652641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Toshihiko Baba. "Photonic crystals and silicon photonics." In 2008 International Nano-Optoelectronics Workshop. IEEE, 2008. http://dx.doi.org/10.1109/inow.2008.4634438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anguita, M. Correa, F. H. B. Somhorst, R. van der Meer, R. Schadow, H. J. Snijders, M. de Goede, B. Kassenberg, et al. "Pure-state certification by undoing Hamiltonian evolution leading to local thermalization." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.jm2d.3.

Full text
Abstract:
In a quantum-photonic experiment with an integrated quantum photonics network, we observe a quantum state locally evolve towards a thermal state. By undoing the evolution with the inverse network, we recover the input pure state.
APA, Harvard, Vancouver, ISO, and other styles
9

Rosenberg, Jessie. "Silicon Photonics for AI Computing and Communication." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.fw5a.1.

Full text
Abstract:
We will present recent developments in silicon photonics for AI workloads. Photonic analog compute systems accelerate matrix multiplication operations, while highly scaled photonic interconnects improve memory bandwidth and enable larger and more flexible networks.
APA, Harvard, Vancouver, ISO, and other styles
10

Ito, Hiroyuki, Yuma Kusunoki, Daichi Akiyama, Ryo Tetsuya, Hiroshi Abe, and Toshihiko Baba. "Enhanced light emission from a Si photonics beam steering device consisting of asymmetric photonic crystal waveguide." In Silicon Photonics XIV, edited by Graham T. Reed and Andrew P. Knights. SPIE, 2019. http://dx.doi.org/10.1117/12.2508297.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Silicon photonics"

1

Clem, Paul Gilbert, Weng Wah Dr Chow, .), Ganapathi Subramanian Subramania, James Grant Fleming, Joel Robert Wendt, and Ihab Fathy El-Kady. 3D Active photonic crystal devices for integrated photonics and silicon photonics. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/882052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lentine, Anthony. Silicon Photonics for Government Applications. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1488463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sun, Greg, and Richard Soref. The Longwave Silicon Chip - Integrated Plasma-Photonics in Group IV And III-V Semiconductors. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada590105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stojanovic, Vladimir, and Krste Asanovic. Analysis and Design of Manycore Processor-to-DRAM Opto-Electrical Networks with Integrated Silicon Photonics. Fort Belvoir, VA: Defense Technical Information Center, December 2009. http://dx.doi.org/10.21236/ada511353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gui, Ping. FInal Technical Repot of the Project: Design and Implementation of Low-Power 10Gb/s/channel Laser/Silicon Photonics Modulator Drivers with SEU Tolerance for HL-LHC. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1374431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Russell, S. D., W. B. Dubbelday, R. L. Shimabukuro, and P. R. De La Houssaye. Photonic Silicon Device Physics. Fort Belvoir, VA: Defense Technical Information Center, July 1995. http://dx.doi.org/10.21236/ada298789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

LIN, SHAWN-YU, JAMES G. FLEMING, and SUNGKWUN K. LYO. Silicon Three-Dimensional Photonic Crystal and its Applications. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/791892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Adibi, Ali. PECASE: All-Optical Photonic Integrated Circuits in Silicon. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada559908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Huffaker, Diana L. Nanopillar Photonic Crystal Lasers for Tb/s Transceivers on Silicon. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ad1003357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ptasinski, Joanna N. Absorption-induced Optical Tuning of Silicon Photonic Structures Clad with Nematic Liquid Crystals. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada577212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography