Journal articles on the topic 'Silicon photonic sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Silicon photonic sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mohebbi, M. "Refractive index sensing of gases based on a one-dimensional photonic crystal nanocavity." Journal of Sensors and Sensor Systems 4, no. 1 (June 4, 2015): 209–15. http://dx.doi.org/10.5194/jsss-4-209-2015.
Full textPuumala, Lauren S., Samantha M. Grist, Jennifer M. Morales, Justin R. Bickford, Lukas Chrostowski, Sudip Shekhar, and Karen C. Cheung. "Biofunctionalization of Multiplexed Silicon Photonic Biosensors." Biosensors 13, no. 1 (December 29, 2022): 53. http://dx.doi.org/10.3390/bios13010053.
Full textSidorov A. I. and Vidimina Yu. O. "Temperature sensor on base of pne-dimensional photonic crystal with defect." Optics and Spectroscopy 130, no. 9 (2022): 1185. http://dx.doi.org/10.21883/eos.2022.09.54840.3355-22.
Full textDhavamani, Vigneshwar, Srijani Chakraborty, S. Ramya, and Somesh Nandi. "Design and Simulation of Waveguide Bragg Grating based Temperature Sensor in COMSOL." Journal of Physics: Conference Series 2161, no. 1 (January 1, 2022): 012047. http://dx.doi.org/10.1088/1742-6596/2161/1/012047.
Full textKazanskiy, Nikolay L., Svetlana N. Khonina, and Muhammad A. Butt. "Advancement in Silicon Integrated Photonics Technologies for Sensing Applications in Near-Infrared and Mid-Infrared Region: A Review." Photonics 9, no. 5 (May 11, 2022): 331. http://dx.doi.org/10.3390/photonics9050331.
Full textDensmore, A., D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben. "Sensitive Label-Free Biomolecular Detection Using Thin Silicon Waveguides." Advances in Optical Technologies 2008 (June 16, 2008): 1–9. http://dx.doi.org/10.1155/2008/725967.
Full textNAGATSUMA, TADAO, KATSUYUKI MACHIDA, HIROMU ISHII, NABIL SAHRI, MITSURU SHINAGAWA, HAKARU KYURAGI, and JUNZO YAMADA. "INNOVATIVE INTEGRATION BASED ON SILICON-CORE TECHNOLOGIES FOR SENSOR AND COMMUNICATIONS APPLICATIONS." International Journal of High Speed Electronics and Systems 10, no. 01 (March 2000): 205–15. http://dx.doi.org/10.1142/s0129156400000258.
Full textKumar, Abhishek, Manoj Gupta, Prakash Pitchappa, Yi Ji Tan, Nan Wang, and Ranjan Singh. "Topological sensor on a silicon chip." Applied Physics Letters 121, no. 1 (July 4, 2022): 011101. http://dx.doi.org/10.1063/5.0097129.
Full textGilewski, Marian. "The ripple-curry amplifier in photonic applications." Photonics Letters of Poland 14, no. 4 (December 31, 2022): 86–88. http://dx.doi.org/10.4302/plp.v14i4.1187.
Full textChristofi, Aristi, Georgia Margariti, Alexandros Salapatas, George Papageorgiou, Panagiotis Zervas, Pythagoras Karampiperis, Antonis Koukourikos, et al. "Determining the Nutrient Content of Hydroponically-Cultivated Microgreens with Immersible Silicon Photonic Sensors: A Preliminary Feasibility Study." Sensors 23, no. 13 (June 26, 2023): 5937. http://dx.doi.org/10.3390/s23135937.
Full textPacholski, Claudia. "Photonic Crystal Sensors Based on Porous Silicon." Sensors 13, no. 4 (April 9, 2013): 4694–713. http://dx.doi.org/10.3390/s130404694.
Full textChin, Lip Ket, Yuzhi Shi, and Ai-Qun Liu. "Optical Forces in Silicon Nanophotonics and Optomechanical Systems: Science and Applications." Advanced Devices & Instrumentation 2020 (October 26, 2020): 1–14. http://dx.doi.org/10.34133/2020/1964015.
Full textСидоров, А. И., and Ю. О. Видимина. "Датчик температуры на основе одномерного фотонного кристалла с дефектом." Оптика и спектроскопия 130, no. 9 (2022): 1464. http://dx.doi.org/10.21883/os.2022.09.53310.3355-22.
Full textLuan, Enxiao, Hossam Shoman, Daniel Ratner, Karen Cheung, and Lukas Chrostowski. "Silicon Photonic Biosensors Using Label-Free Detection." Sensors 18, no. 10 (October 18, 2018): 3519. http://dx.doi.org/10.3390/s18103519.
Full textGhasemi, Farshid, Maysamreza Chamanzar, Ali A. Eftekhar, and Ali Adibi. "An efficient technique for the reduction of wavelength noise in resonance-based integrated photonic sensors." Analyst 139, no. 22 (2014): 5901–10. http://dx.doi.org/10.1039/c4an01292e.
Full textGhoshal, S. K., and H. S. Tewari. "Photonic applications of Silicon nanostructures." Material Science Research India 7, no. 2 (February 8, 2010): 381–88. http://dx.doi.org/10.13005/msri/070207.
Full textJang, Seunghyun, Jihoon Kim, Youngdae Koh, Young Chun Ko, Hee-Gweon Woo, and Honglae Sohn. "Multi-Encoded Rugate Porous Silicon as Nerve Agents Sensors." Journal of Nanoscience and Nanotechnology 7, no. 11 (November 1, 2007): 4049–52. http://dx.doi.org/10.1166/jnn.2007.096.
Full textZhang, Zeyu, Boqiang Shen, Minh A. Tran, Woonghee Lee, Kaustubh Asawa, Glenn Kim, Yang Shen, et al. "Photonic integration platform for rubidium sensors and beyond." Optica 10, no. 6 (June 9, 2023): 752. http://dx.doi.org/10.1364/optica.494716.
Full textPark, Bryan, Il Woong Jung, J. Provine, Antonio Gellineau, Joe Landry, Roger T. Howe, and Olav Solgaard. "Double-Layer Silicon Photonic Crystal Fiber-Tip Temperature Sensors." IEEE Photonics Technology Letters 26, no. 9 (May 1, 2014): 900–903. http://dx.doi.org/10.1109/lpt.2014.2309345.
Full textWu, Xuan, Catherine Jan, and Olav Solgaard. "Single-Crystal Silicon Photonic-Crystal Fiber-Tip Pressure Sensors." Journal of Microelectromechanical Systems 24, no. 4 (August 2015): 968–75. http://dx.doi.org/10.1109/jmems.2014.2360859.
Full textLerma Arce, Cristina, Daan Witters, Robert Puers, Jeroen Lammertyn, and Peter Bienstman. "Silicon photonic sensors incorporated in a digital microfluidic system." Analytical and Bioanalytical Chemistry 404, no. 10 (August 29, 2012): 2887–94. http://dx.doi.org/10.1007/s00216-012-6319-6.
Full textConsani, Cristina, Thomas Söllradl, Christian Ranacher, Andreas Tortschanoff, Lukas Rauter, Gerald Pühringer, Thomas Grille, Peter Irsigler, and Bernhard Jakoby. "Sensitivity Comparison of Integrated Mid-Infrared Silicon-Based Photonic Detectors." Proceedings 2, no. 13 (November 30, 2018): 796. http://dx.doi.org/10.3390/proceedings2130796.
Full textRemis, Andres, Laura Monge-Bartolomé, Guilhem Boissier, Mounir Waguaf, Jean-Baptiste Rodriguez, Laurent Cerutti, and Eric Tournié. "Effect of dislocations on the performance of GaSb-based diode lasers grown on silicon." Journal of Applied Physics 133, no. 9 (March 7, 2023): 093103. http://dx.doi.org/10.1063/5.0135606.
Full textLeuermann, Jonas, Adrián Fernández-Gavela, Antonia Torres-Cubillo, Sergio Postigo, Alejandro Sánchez-Postigo, Laura M. Lechuga, Robert Halir, and Íñigo Molina-Fernández. "Optimizing the Limit of Detection of Waveguide-Based Interferometric Biosensor Devices." Sensors 19, no. 17 (August 23, 2019): 3671. http://dx.doi.org/10.3390/s19173671.
Full textArnfinnsdottir, Nina Bjørk, Cole A. Chapman, Ryan C. Bailey, Astrid Aksnes, and Bjørn Torger Stokke. "Impact of Silanization Parameters and Antibody Immobilization Strategy on Binding Capacity of Photonic Ring Resonators." Sensors 20, no. 11 (June 2, 2020): 3163. http://dx.doi.org/10.3390/s20113163.
Full textButt, Muhammad Ali, and Nikolai Lvovich Kazansky. "SOI Suspended membrane waveguide at 3.39 µm for gas sensing application." Photonics Letters of Poland 12, no. 2 (July 1, 2020): 67. http://dx.doi.org/10.4302/plp.v12i2.1034.
Full textBiswas, Priyanka, Chen Zhang, Yudong Chen, Zhonghe Liu, Seyedmohsen Vaziri, Weidong Zhou, and Yuze Sun. "A Portable Micro-Gas Chromatography with Integrated Photonic Crystal Slab Sensors on Chip." Biosensors 11, no. 9 (September 9, 2021): 326. http://dx.doi.org/10.3390/bios11090326.
Full textGriol, Amadeu, Sergio Peransi, Manuel Rodrigo, Juan Hurtado, Laurent Bellieres, Teodora Ivanova, David Zurita, et al. "Design and Development of Photonic Biosensors for Swine Viral Diseases Detection." Sensors 19, no. 18 (September 15, 2019): 3985. http://dx.doi.org/10.3390/s19183985.
Full textMai, Trong Thi, Fu-Li Hsiao, Chengkuo Lee, Wenfeng Xiang, Chii-Chang Chen, and W. K. Choi. "Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors." Sensors and Actuators A: Physical 165, no. 1 (January 2011): 16–25. http://dx.doi.org/10.1016/j.sna.2010.01.006.
Full textQasim, Mehdi, Jinan B. Al-Dabbagh, Ahmed N. Abdalla, M. M. Yusoff, and Gurumurthy Hegde. "Radial Basis Function Neural Network Model for Optimizing Thermal Annealing Process Operating Condition." Nano Hybrids 4 (May 2013): 21–31. http://dx.doi.org/10.4028/www.scientific.net/nh.4.21.
Full textEl Shamy, Raghi S., Mohamed A. Swillam, and Xun Li. "Optimization of Silicon Nitride Waveguide Platform for On-Chip Virus Detection." Sensors 22, no. 3 (February 2, 2022): 1152. http://dx.doi.org/10.3390/s22031152.
Full textKazanskiy, Nikolay L., Svetlana N. Khonina, and Muhammad A. Butt. "A Review of Photonic Sensors Based on Ring Resonator Structures: Three Widely Used Platforms and Implications of Sensing Applications." Micromachines 14, no. 5 (May 20, 2023): 1080. http://dx.doi.org/10.3390/mi14051080.
Full textPuumala, Lauren S., Samantha M. Grist, Kithmin Wickremasinghe, Mohammed A. Al-Qadasi, Sheri Jahan Chowdhury, Yifei Liu, Matthew Mitchell, Lukas Chrostowski, Sudip Shekhar, and Karen C. Cheung. "An Optimization Framework for Silicon Photonic Evanescent-Field Biosensors Using Sub-Wavelength Gratings." Biosensors 12, no. 10 (October 8, 2022): 840. http://dx.doi.org/10.3390/bios12100840.
Full textThara, R. Lakshmi, P. Aruna Priya, and Chittaranjan Nayak. "Enhanced Temperature Sensing Based on the Randomness in the Multilayered 1D Photonic Crystals." Journal of Physics: Conference Series 2357, no. 1 (October 1, 2022): 012020. http://dx.doi.org/10.1088/1742-6596/2357/1/012020.
Full textZhang, Xiaosheng, Kyungmok Kwon, Johannes Henriksson, Jianheng Luo, and Ming C. Wu. "A large-scale microelectromechanical-systems-based silicon photonics LiDAR." Nature 603, no. 7900 (March 9, 2022): 253–58. http://dx.doi.org/10.1038/s41586-022-04415-8.
Full textWehrspohn, Ralf B., Stefan Schweizer, Torsten Geppert, and Armin Lambrecht. "Deep Trench Etching in Macroporous Silicon - Application to Photonic Crystal Gas Sensors." ECS Transactions 16, no. 3 (December 18, 2019): 61–67. http://dx.doi.org/10.1149/1.2982542.
Full textSweetman, Martin J., and Nicolas H. Voelcker. "Chemically patterned porous silicon photonic crystals towards internally referenced organic vapour sensors." RSC Advances 2, no. 11 (2012): 4620. http://dx.doi.org/10.1039/c2ra20232h.
Full textMahesh, Pulimi, Chittaranjan Nayak, and Damodar Panigrahy. "Impact of truncation on absorption spectra in graphene-based random photonic crystal." Emerging Materials Research 12, no. 2 (June 1, 2023): 1–9. http://dx.doi.org/10.1680/jemmr.22.00087.
Full textButt, Muhammad Ali, and Ryszard Piramidowicz. "Standard slot waveguide and double hybrid plasmonic waveguide configurations for enhanced evanescent field absorption methane gas sensing." Photonics Letters of Poland 14, no. 1 (March 31, 2022): 10. http://dx.doi.org/10.4302/plp.v14i1.1121.
Full textMoś, Joanna Ewa, Karol Antoni Stasiewicz, and Leszek Roman Jaroszewicz. "Liquid crystal cell with a tapered optical fiber as an active element to optical applications." Photonics Letters of Poland 11, no. 1 (April 3, 2019): 13. http://dx.doi.org/10.4302/plp.v11i1.879.
Full textEisermann, René, Stephan Krenek, Georg Winzer, and Steffen Rudtsch. "Photonic contact thermometry using silicon ring resonators and tuneable laser-based spectroscopy." tm - Technisches Messen 88, no. 10 (September 4, 2021): 640–54. http://dx.doi.org/10.1515/teme-2021-0054.
Full textMarin, Yisbel E., Tiziano Nannipieri, Claudio J. Oton, and Fabrizio Di Pasquale. "Integrated FBG Sensors Interrogation Using Active Phase Demodulation on a Silicon Photonic Platform." Journal of Lightwave Technology 35, no. 16 (August 15, 2017): 3374–79. http://dx.doi.org/10.1109/jlt.2016.2598395.
Full textLiu, Zhonghe, Yudong Chen, Xiaochen Ge, and Weidong Zhou. "Photonic crystal nanobeam cavities with lateral fins." Nanophotonics 10, no. 15 (September 29, 2021): 3889–94. http://dx.doi.org/10.1515/nanoph-2021-0361.
Full textChung, Haejun, Junjeong Park, and Svetlana V. Boriskina. "Inverse-designed waveguide-based biosensor for high-sensitivity, single-frequency detection of biomolecules." Nanophotonics 11, no. 7 (March 1, 2022): 1427–42. http://dx.doi.org/10.1515/nanoph-2022-0012.
Full textAngelopoulou, Michailia, Sotirios Kakabakos, and Panagiota Petrou. "Label-Free Biosensors Based onto Monolithically Integrated onto Silicon Optical Transducers." Chemosensors 6, no. 4 (November 12, 2018): 52. http://dx.doi.org/10.3390/chemosensors6040052.
Full textMehaney, Ahmed, Mazen M. Abadla, and Hussein A. Elsayed. "1D porous silicon photonic crystals comprising Tamm/Fano resonance as high performing optical sensors." Journal of Molecular Liquids 322 (January 2021): 114978. http://dx.doi.org/10.1016/j.molliq.2020.114978.
Full textRuminski, Anne M., Giuseppe Barillaro, Charles Chaffin, and Michael J. Sailor. "Internally Referenced Remote Sensors for HF and Cl2 Using Reactive Porous Silicon Photonic Crystals." Advanced Functional Materials 21, no. 8 (March 11, 2011): 1511–25. http://dx.doi.org/10.1002/adfm.201002037.
Full textStruk, Przemysław. "Analysis of ridges and grooves shape in grating coupler for optimization of integrated optics sensor structures." Photonics Letters of Poland 14, no. 3 (September 30, 2022): 43. http://dx.doi.org/10.4302/plp.v14i3.1151.
Full textHoang, Thi Hong Cam, Thanh Binh Pham, Thuy Van Nguyen, Van Dai Pham, Huy Bui, Van Hoi Pham, Elena Duran, et al. "Hybrid Integrated Nanophotonic Silicon-based Structures." Communications in Physics 29, no. 4 (December 16, 2019): 481. http://dx.doi.org/10.15625/0868-3166/29/4/13855.
Full textLenshin, Alexander S., Konstantin A. Barkov, Natalya G. Skopintseva, Boris L. Agapov, and Evelina P. Domashevskaya. "Влияние режимов электрохимического травления при одностадийном и двухстадийном формировании пористого кремния на степень окисления его поверхностных слоев в естественных условиях." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no. 4 (December 19, 2019): 534–43. http://dx.doi.org/10.17308/kcmf.2019.21/2364.
Full text