Dissertations / Theses on the topic 'Silicon photonic sensors'

To see the other types of publications on this topic, follow the link: Silicon photonic sensors.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 27 dissertations / theses for your research on the topic 'Silicon photonic sensors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Noh, Jong Wook. "In-Plane, All-Photonic Transduction Method for Silicon Photonic Microcantilever Array Sensors." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/1965.

Full text
Abstract:
We have invented an in-plane all-photonic transduction method for photonic microcantilever arrays that is scalable to large arrays for sensing applications in both bio- and nanotechnology. Our photonic transduction method utilizes a microcantilever forming a single mode rib waveguide and a differential splitter consisting of an asymmetric multimode waveguide and a Y-branch waveguide splitter. The differential splitter's outputs are used to form a differential signal that has a monotonic response to microcantilever deflection. A differential splitter using an amorphous silicon strip-loaded multimode rib waveguide is designed and fabricated to demonstrate the feasibility of the in-plane photonic transduction method. Our initial implementation shows that the sensitivity of the device is 0.135×10^-3 nm^-1 which is comparable to that of other readout methods currently employed for static-deflection based sensors. Through further analysis of the optical characteristics of the differential splitter, a new asymmetric double-step multimode rib waveguide has been devised for the differential splitter. The new differential splitter not only improves sensitivity and reduces size, but also eliminates several fabrication issues. Furthermore, photonic microcantilever arrays are integrated with the differential splitters and a waveguide splitter network in order to demonstrate scalability. We have achieved a measured sensitivity of 0.32×10^-3 nm^-1, which is 2.4 times greater than our initial result while the waveguide length is 6 times shorter. Analytical examination of the relationship between sensitivity and structure of the asymmetric double-step rib waveguide shows a way to further improve performance of the photonic microcantilever sensor. We have demonstrated experimentally that greater sensitivity is achieved when increasing the step height of the double-step rib waveguide. Moreover, the improved sensitivity of the photonic microcantilever system, 0.77×10^-3 nm^-1, is close to the best reported sensitivities of other transduction methods (~10^-3 nm^-1).
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Wenjian. "Microwave Photonics and Sensing based on Silicon Photonics." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23482.

Full text
Abstract:
Chip scale photonic integrated circuits can provide important new functions in communications, signal processing and sensing. Recent research on microwave photonics (MWPs) and integrated optical sensors using the silicon photonic devices has opened up new opportunities for signal processing and sensing applications. MWPs brings together the world of microwave engineering and optoelectronics, which provides solutions for processing high frequency microwave signals. It has attracted significant interest in many different areas including communications, sensors, radar systems and defence applications. The use of photonic integrated circuit enhances functionalities and flexibilities as well as enabling a reduction of size and weight for MWP applications. The high integratablity of the photonic circuit not only boosts the filtering, time delay and phase shifting functionalities, but also enables the sensing applications in the nano-scale range. Integrated sensors are under high demand in many environmental chemical and biomedical applications. The mass fabricated integrated sensor provides opportunities for multi-functional sensor array with minimized volume. The research work presented in this thesis aims to investigate silicon photonics applications in MWP signal processing and different sensing circumstances. Firstly, the MWP filter based on the SOI microring resonator with phase compensation method is demonstrated. In addition, instantaneous frequency measurement based on frequency to time mapping is presented. Then, a novel integrated optical sensor system based on SOI add drop microring resonator structure is presented. The MWP techniques for high performance sensing application is explored. Lastly, to address the multi-functionality of silicon photonics based sensor, an application of integrated ultrasound optical sensor is demonstrated. It is expected the work provided in this thesis can assist in the emergence of real-world silicon photonic applications. (1992 out of 2000 characters)
APA, Harvard, Vancouver, ISO, and other styles
3

Vargas, German R. "Silicon Photonic Device for Wavelength Sensing and Monitoring." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/734.

Full text
Abstract:
Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. The main device is a micro-ring resonator filter of 10 $\mu m$ of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 x 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.
APA, Harvard, Vancouver, ISO, and other styles
4

Koshkinbayeva, Ainur. "New photonic architectures for mid-infrared gaz sensors integrated on silicon." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI019.

Full text
Abstract:
Les travaux portent sur les multiplexeurs optiques fonctionnant à mi-IR pour la source à large bande dans l'application de détection de gaz. Deux configurations ont été étudiées: réseau de guides d'onde (AWG) et réseau concave planaire (PCG). Premièrement, le principe du fonctionnement a été compris afin de développer une solution analytique pour le champ de sortie en utilisant une approximation gaussienne du champ et de l'optique de Fourier. Ensuite, un outil de simulation semi-analytique de la réponse spectrale pour les deux configurations de multiplexeur a été développé dans MATLAB. La distribution normale des erreurs de phase a été introduite dans le modèle semi-analytique AWG, ce qui nous a permis d'étudier la corrélation entre l'écart-type des erreurs de phase et le niveau de diaphonie de la réponse spectrale AWG. AWG à 5,65 μm a été fabriqué à partir de la technologie SiGe / Si à l'aide de l'outil MATLAB pour le calcul des paramètres de conception et de l'outil P.Labeye pour le calcul de la géométrie AWG. Les dispositifs avec des paramètres légèrement variables ont été caractérisés: AWG1 avec guides d'ondes de 4,6 μm et MMI de 9 μm; AWG2 avec guides d'ondes de 4,6 μm et MMI de 11 μm; AWG3 avec guides d'ondes de 4,8 μm et MMI de 9 μm. Des mesures des dispositifs sur la puce 36 (centre de la plaquette) et sur la puce 32 (côté de la plaquette) ont été effectuées et analysées. Les mesures de température de AWG2 et AWG3 (puce 32 et puce 36) aux points cinq points de température ont montré une dépendance linéaire du déplacement spectral avec la température qui a une bonne corrélation avec les prédictions de simulation
The work focuses on optical multiplexers operating in mid-IR for broadband source in gas sensing application. Two configurations were studies – arrayed waveguide grating (AWG) and planar concave grating (PCG). First, principle of operation was understood in order to develop analytical solution for output field using Gaussian approximation of the field and Fourier Optics. Then, semi-analytical simulation tool of the spectral response for both multiplexer configurations was developed in MATLAB. Normal distribution of phase errors was introduced to semi-analytical AWG model, which allowed us to study the correlation between standard deviation of phase errors and the level of crosstalk of AWG spectral response. AWG at 5.65 µm was fabricated based on SiGe/Si technology using the MATLAB tool for design parameters calculation and P.Labeye’s tool for AWG geometry calculation. Devices with slightly varying parameters were characterized: AWG1 with 4.6 µm waveguides and 9µm MMI; AWG2 with 4.6 µm waveguides and 11µm MMI; AWG3 with 4.8 µm waveguides and 9µm MMI. Measurements of devices on chip 36 (center of the wafer) and chip 32 (side of the wafer) were performed and analyzed. Temperature measurements of AWG2 and AWG3 (chip 32 and chip 36) at points five temperature points showed linear dependence of spectral shift with the temperature which has a good correlation with simulation predictions
APA, Harvard, Vancouver, ISO, and other styles
5

Caroselli, Raffaele. "Development of high sensitivity photonic sensing structures based on porous silicon substrates." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/107318.

Full text
Abstract:
La salud y el bienestar siempre han sido el centro de atención de muchas instituciones de investigación y empresas de todo el mundo. Esto llevó a la tecnología a desarrollarse en los campos químico, biológico, médico y clínico con el objetivo de proporcionar una mejor protección al ser humano. Como consecuencia, ha surgido una competición entre el tiempo necesario para que la enfermedad progrese y el tiempo necesario para que el hombre trate dicha enfermedad. Para ganar esta competición, es necesario actuar con anticipación, cuando la enfermedad aún no está demasiado desarrollada. Esto es posible realizando una detección precoz de la enfermedad. El logro de este objetivo allana el camino para el desarrollo de dispositivos ópticos de biosensado capaces de detectar la presencia de ciertas moléculas en concentraciones extremadamente bajas. Entre ellos, las estructuras integradas fotónicas están teniendo un gran éxito debido a su considerablemente alta sensibilidad. Sin embargo, el mecanismo de detección de estas estructuras se basa en la interacción entre la onda evanescente, que se propaga a lo largo de la superficie de la estructura, y el analito a detectar. De esta forma, no todo el campo que se propaga en la estructura fotónica se usa con fines de detección, sino solo una pequeña cantidad de éste. Esto representa una limitación crucial de los sensores basados en fotónica integrada. El objetivo de esta tesis doctoral es superar esta limitación y desarrollar estructuras fotónicas de sensado más sensibles que sean capaces de detectar las concentraciones más bajas posibles. Con este objetivo, nos centramos en el estudio del silicio poroso como plataforma para el desarrollo de estructuras ópticas con sensibilidades extremadamente altas gracias a que la interacción de sensado se realiza directamente dentro de la propia estructura, lo que permite explotar todo el campo que se propaga.
Health and well-being have always been the center of attention of many research institutions and companies around the world. This led the technology to develop in the chemical, biological, medical and clinical fields with the aim to provide a better protection to the human being. As a consequence, a competition is born between the time necessary to the disease to progress and the time necessary to man to treat such disease. In order to win this competition, it is necessary to act with anticipation, when disease is not too developed yet. This is possible by performing an early-detection. The achievement of this goal paves the way for the development of optical biosensing devices able to detect the presence of certain molecules at extremely low concentrations. Among them, photonic integrated structures are finding a great success due to their considerably high sensitivity. However, the sensing mechanism of these structures is based on the interaction between the evanescent wave, propagating along the structure surface, and the target analyte to detect. In this way, not all the field propagating in the photonic structure is used for sensing purposes, but rather only a small amount of it. This represents a crucial limitation of the integrated photonics based sensors. The aim of this PhD Thesis is to overcome this limitation and to develop more sensitive photonic sensing structures able to detect the lowest concentration possible. To this aim, we focused on the study of porous silicon as platform for the development of optical structures with extremely high sensitivities thanks to the fact that the sensing interaction takes place directly inside the structure itself, allowing to exploit all the field propagating in the structure.
La salut i el benestar sempre han sigut el centre d'atenció de moltes institucions de recerca i empreses de tot el món. Açò va portar a la tecnologia a desenvolupar-se en els camps químic, biològic, mèdic i clínic amb l'objectiu de proporcionar una millor protecció a l'ésser humà. Com a conseqüència, ha sorgit una competició entre el temps necessari per que la malaltia progresse i el temps necessari per que l'home tracte aquesta malaltia. Per a guanyar aquesta competició, és necessari actuar amb anticipació, quan la malaltia encara no està massa desenvolupada. Açò és possible realitzant una detecció precoç de la malaltia. L'assoliment d'aquest objectiu facilita el camí per al desenvolupament de dispositius òptics de biosensat capaços de detectar la presència de certes molècules en concentracions extremadament baixes. Entre ells, les estructures fotòniques integrades estan tenint un gran èxit a causa de la seua considerablement alta sensibilitat. No obstant açò, el mecanisme de detecció d'aquestes estructures es basa en la interacció entre l'ona evanescent, que es propaga al llarg de la superfície de l'estructura, i l'analit a detectar. D'aquesta forma, no tot el camp que es propaga en l'estructura fotònica s'usa amb finalitats de detecció, sinó solament una xicoteta quantitat d'aquest. Açò representa una limitació crucial dels sensors basats en fotònica integrada. L'objectiu d'aquesta tesi doctoral és superar aquesta limitació i desenvolupar estructures fotòniques de sensat més sensibles que siguen capaces de detectar les concentracions més baixes possibles. Amb aquest objectiu, ens centrem en l'estudi del silici porós com a plataforma per al desenvolupament d'estructures òptiques amb sensibilitats extremadament altes gràcies a que la interacció de sensat es realitza directament dins de la pròpia estructura, el que permet explotar tot el camp que es propaga.
Caroselli, R. (2018). Development of high sensitivity photonic sensing structures based on porous silicon substrates [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107318
TESIS
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Qiankun. "SiGe photonic integrated circuits for mid-infrared sensing applications." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS166/document.

Full text
Abstract:
La spectroscopie dans le moyen-infrarouge est une méthode universelle pour identifier les substances chimiques et biologiques, car la plupart des molécules ont leurs résonances de vibration et de rotation dans cette plage de longueurs d'onde. Les systèmes moyen infrarouge disponibles dans le commerce reposent sur des équipements volumineux et coûteux, tandis que de nombreux efforts sont maintenant consacrés à la réduction de leur taille et leur intégration sur circuits intégrés. L’utilisation de la technologie silicium pour la réalisation de circuits photoniques dans le moyen-infrarouge présente de nombreux avantages: fabrication fiable, à grand volume, et réalisation de circuits photoniques à hautes performances, compacts, légers et à faible consommation énergétique. Ces avantages sont particulièrement intéressant pour les systèmes de détection spectroscopique moyen infrarouge, qui besoin d'être portable et à faible coût. Parmi les différents matériaux disponibles en photonique silicium, les alliages silicium-germanium (SiGe) à forte concentration en Ge sont particulièrement intéressants en raison de la grande fenêtre de transparence du Ge, pouvant atteindre 15 µm. Dans ce contexte, l'objectif de cette thèse est d'étudier une nouvelle plate-forme SiGe à forte concentration en Ge, pour la démonstration de circuits photoniques moyen infra rouge. Cette nouvelle plate-forme devrait bénéficier d'une large gamme de transparence en longueurs d'onde de transparence et de la possibilité d’ajuster les propriétés des guides optiques (indice effectif, dispersion,…). Au cours de cette thèse, différentes plates-formes basées sur différents profils graduels du guide d’onde ont été étudiées. Tout d'abord, il a été démontré qu’il était possible d’obtenir des guides présentant de faibles pertes optiques inférieures à 3 dB/cm dans une large plage de longueurs d'onde, de 5,5 à 8,5 µm. Une preuve de concept de détection de molécules, basée sur l'absorption de la partie évanescent du mode optique a ensuite été démontrée. Ensuite, les composants formant les briques de base classiques de la photonique intégrée ont été étudiés. Les premières cavités intégrées ont été réalisées à 8 µm. Deux configurations ont été étudiées : des cavité Fabry-Perot utilisant des miroirs de Bragg intégrés dans les guides d’onde et des résonateurs en anneau. Un spectromètre à transformée de Fourier fonctionnant sur une large bande spectrale, et pour les deux polarisations de la lumière a également été démontré. Tous ces résultats reposent sur la conception des matériaux et des composants, la fabrication en salle blanche et la caractérisation expérimentale. Ce travail a été effectué dans le cadre du projet européen INsPIRE en collaboration avec le Pr. Giovanni Isella de Politecnico Di Milano
Mid-infrared (mid-IR) spectroscopy is a nearly universal way to identify chemical and biological substances, as most of the molecules have their vibrational and rotational resonances in the mid-IR wavelength range. Commercially available mid-IR systems are based on bulky and expensive equipment, while lots of efforts are now devoted to the reduction of their size down to chip-scale dimensions. The use of silicon photonics for the demonstration of mid-IR photonic circuits will benefit from reliable and high-volume fabrication to offer high performance, low cost, compact, lightweight and power consumption photonic circuits, which is particularly interesting for mid-IR spectroscopic sensing systems that need to be portable and low cost. Among the different materials available in silicon photonics, Germanium (Ge) and Silicon-Germanium (SiGe) alloys with a high Ge concentration are particularly interesting because of the wide transparency window of Ge up to 15 µm. In this context, the objective of this thesis is to investigate a new Ge-rich graded SiGe platform for mid-IR photonic circuits. Such new plateform was expected to benefit from a wide transparency wavelength range and a high versatility in terms of optical engineering (effective index, dispersion, …). During this thesis, different waveguides platforms based on different graded profiles have been investigated. First it has been shown that waveguides with low optical losses of less than 3 dB/cm can be obtained in a wide wavelength range, from 5.5 to 8.5 µm. A proof of concept of sensing based on the absorption of the evanescent component of the optical mode has then been demonstrated. Finally, elementary building blocs have been investigated. The first Bragg mirror-based Fabry Perot cavities and racetrack resonators have been demonstrated around 8 µm wavelength. A broadband dual-polarization MIR integrated spatial heterodyne Fourier-Transform spectrometer has also been obtained. All these results rely on material and device design, clean-room fabrication and experimental characterization. This work was done in the Framework of EU project INsPIRE in collaboration with Pr. Giovanni Isella from Politecnico Di Milano
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Li. "Hybrid Silicon and Lithium Niobate Integrated Photonics." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429660021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schröder, Tim. "Integrated photonic systems for single photon generation and quantum applications." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16723.

Full text
Abstract:
Im Rahmen der vorliegenden Dissertation wurden neuartige integrierte Einzelphotonenquellen (EPQ) und ihre Anwendung für die Quanteninformationsverarbeitung entwickelt und untersucht. Die Erzeugung von Einzelphotonen basiert auf einzelnen Defektzentren in nanometergroßen Diamantkristallen mit einzigartigen optischen Eigenschaften: Stabilität bei Zimmertemperatur ohne optisches Blinken. Diamantkristalle mit Größen bis unter 20nm wurden mit neuartigen „pick-and-place“ Techniken (z.B. mit einem Atomkraftmikroskop) in komplexe photonische Strukturen integriert. Zwei unterschiedliche Ansätze für die Realisierung der neuartigen EPQ wurden verfolgt. Beim ersten werden fluoreszierende Diamantkristalle in nano- und mikrometergroße Faser-basierte oder resonante Strukturen in einem „bottom-up“ Ansatz integriert, dadurch werden zusätzliche optische Komponenten überflüssig und das Gesamtsystem ultra-stabil und wartungsfrei. Der zweite Ansatz beruht auf einem Festkörperimmersionsmikroskop (FIM). Seine Festkörperimmersionslinse wirkt wie eine dielektrische Antenne für die Emission der Defektzentren. Es ermöglicht die höchsten bisher erreichten Photonenzählraten von Stickstoff-Fehlstellen von bis zu 2.4Mcts/s und Einsammeleffizienzen von bis zu 4.2%. Durch Anwendung des FIM bei cryogenen Temperaturen wurden neuartige Anwendungen und fundamentale Untersuchungen möglich, weil Photonenraten signifikant erhöht wurden. Die Bestimmung der spektralen Diffusionszeit eines einzelnen Defektzentrums (2.2µs) gab neue Erkenntnisse über die Ursachen von spektraler Diffusion. Spektrale Diffusion ist eine limitierende Eigenschaft für die Realisierung von Quanteninformationsanwendungen. Das Tisch-basierte FIM wurde außerdem als kompakte mobile EPQ mit Ausmaßen von nur 7x19x23cm^3 realisiert. Es wurde für ein Quantenkryptographie-Experiment implementiert, zum ersten Mal mit Siliziumdefektzentren. Des Weiteren wurde ein neues Konzept für die Erzeugung von infraroten EPQ entwickelt und realisiert.
The presented thesis covers the development and investigation of novel integrated single photon (SP) sources and their application for quantum information schemes. SP generation was based on single defect centers in diamond nanocrystals. Such defect centers offer unique optical properties as they are room temperature stable, non-blinking, and do not photo-bleach over time. The fluorescent nanocrystals are mechanically stable, their size down to 20nm enabled the development of novel nano-manipulation pick-and-place techniques, e.g., with an atomic force microscope, for integration into photonic structures. Two different approaches were pursued to realize novel SP sources. First, fluorescent diamond nanocrystals were integrated into nano- and micrometer scaled fiber devices and resonators, making them ultra-stable and maintenance free. Secondly, a solid immersion microscope (SIM) was developed. Its solid immersion lens acts as a dielectric antenna for the emission of defect centers, enabling the highest photon rates of up to 2.4Mcts/s and collection efficiencies of up to 4.2% from nitrogen vacancy defect centers achieved to date. Implementation of the SIM at cryogenic temperatures enabled novel applications and fundamental investigations due to increased photon rates. The determination of the spectral diffusion time of a single nitrogen vacancy defect center (2.2µs) gave new insights about the mechanisms causing spectral diffusion. Spectral diffusion is a limiting property for quantum information applications. The table-top SIM was integrated into a compact mobile SP system with dimension of only 7x19x23cm^3 while still maintaining record-high stable SP rates. This makes it interesting for various SP applications. First, a quantum key distribution scheme based on the BB84 protocol was implemented, for the first time also with silicon vacancy defect centers. Secondly, a conceptually novel scheme for the generation of infrared SPs was introduced and realized.
APA, Harvard, Vancouver, ISO, and other styles
9

Shnaiderman, Rami [Verfasser], Vasilis [Akademischer Betreuer] Ntziachristos, Vasilis [Gutachter] Ntziachristos, and Bernhard [Gutachter] Wolfrum. "Silicon photonics sensors of ultrasound for optoacoustic imaging / Rami Shnaiderman ; Gutachter: Vasilis Ntziachristos, Bernhard Wolfrum ; Betreuer: Vasilis Ntziachristos." München : Universitätsbibliothek der TU München, 2021. http://d-nb.info/1238374034/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Frem, Leonardo A. "Hall Effect Modeling in FEM Simulators and Comparison to Experimental Results in Silicon and Printed Sensors." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1618.

Full text
Abstract:
Finite element method simulation models for thin-film semiconductor-based Hall sensors were developed using secondary data in order to understand their behavior under strong magnetic fields. Given a device geometry and charge carrier density and mobility, the models accurately calculated sensor resistance, Hall voltage under a normally-incident constant magnetic field, and expected offset from a population of Hall devices. The model was successfully matched against data from integrated chip Hall sensors from St. Jude Medical. Additionally, the feasibility of creating Hall effect devices with common carbon ink was explored experimentally. The material properties obtained from testing these ink-based devices through the Van der Pauw method were added to the simulation model to analyze validity of the collected data.
APA, Harvard, Vancouver, ISO, and other styles
11

Micó, Cabanes Gloria. "Integrated Spectroscopic Sensor fabricated in a novel Si3N4 platform." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/159381.

Full text
Abstract:
[ES] Esta tesis se ha centrado en el modelado, diseño y demostración experimental de un sensor espectroscópico integrado basado en un AWG (del inglés Arrayed Waveguide Grating). El dispositivo ha sido diseñado y fabricado en una nueva plataforma de nitruro de silico (Si3N4) en oxido de silico (SiO2) desarrollada en España. El trabajo realizado en esta tesis se puede dividir en dos secciones principalmente. En la primera parte, se describe el panorama general de las plataformas de Si3N4 existentes y su estado del arte, junto con la descripción de los procesos de fabricación y caracterización de nuestra plataforma de Si3N4 con 300 nm de altura en la capa de guiado. En la segunda parte, se presenta el dispositivo bautizado como Integrated Optical Spectroscopic Sensor (IOSS). El IOSS consiste en un AWG cuyo conjunto de guías de onda está dividido en dos subgupos diseñados para replicar los canales del AWG. Las guías de uno de los subgrupos contienen ventanas de sensado, que están definidas por secciones en las que el núcleo de las guías está al descubierto y, por tanto, en contacto con el medio que las rodea. De esta manera, el sensado se lleva a cabo mediante la interacción del campo evanescente con la muestra depositada. Las guías del segundo subconjunto permanecen inalteradas. Por lo tanto, el dispositivo proporciona al mismo tiempo los espectros de sensado y de referencia. El modelo matemático del IOSS, su procedimiento de diseño y la prueba de concepto del sensor configurado para espectroscopía de absorción se describen en esta tesis.
[CAT] La present tesi s'ha centrat en el modelatge, disseny i demostració experimental d'un sensor espectroscòpic integrat basat en un AWG (de l'anglès Arrayed Waveguide Grating). El dispositiu ha sigut dissenyat i fabricat en una nova plataforma de nitrur de silici (Si3N4) en òxid de silici (SiO2) desenvolupada a Espanya. El treball realitzat en aquesta tesi es pot dividir en dues seccions principalment. En la primera part, es descriu el panorama general de les plataformes de Si3N4 existents i el seu estat de l'art, juntament amb la descripció dels processos de fabricació i caracterització de la nostra plataforma de Si3N4 amb 300 nm d'altura en la capa de guiat. En la segona part, es presenta el dispositiu batejat com Integrated Optical Spectroscopic Sensor (IOSS). El IOSS consisteix en un AWG en el que el seu conjunt de guies d'ona està dividit en dos subgrups dissenyats per a replicar els canals del AWG. Les guies d'un dels subgrups conté finestres de detecció, que estan definides per seccions en les quals el nucli de les guies d'ona està al descobert i en contacte amb el mitjà que li envolta. D'aquesta manera, la detecció es duu a terme mitjançant la interacció del camp evanescent amb la mostra depositada. Les guies del segon subconjunt romanen inalterades. Per tant, el dispositiu proporciona al mateix temps els espectres de detecció de referència. El model matemàtic del IOSS, el seu procediment de disseny i la prova de concepte del sensor configurat per a espectroscopia d'absorció es descriuen en aquesta tesi.
[EN] This thesis is focused on the model, design and experimental demonstration of an integrated spectroscopic sensor based on a modified Arrayed Waveguide Grating (AWG). The device has been designed and fabricated in a new silicon nitride (Si3N4) on silicon oxide (SiO2) platform developed in Spain. The work performed for this thesis can be then divided into two main sections. In the first part, an overview of the existing Si3N4 platforms and their state of art is described, alongside the report on the fabrication and characterization of our 300 nm guiding film height Si3N4 platform. On the second part, the device named Integrated Optical Spectroscopic Sensor (IOSS) is presented. The IOSS consists of an AWG which arrayed waveguides are divided into two sub-sets engineered to replicate the AWG channels. The waveguides of one of the sub-sets contain sensing windows, defined as waveguides sections which core is in contact with the surrounding media. Thus, the sensing is performed through evanescent field interaction with the sample deposited. The waveguides from the second sub-set remain isolated. Therefore, the device provides both sensing and reference spectra. The IOSS mathematical model, design procedure and proof of concept configured for absorption spectroscopy are reported in this thesis.
Micó Cabanes, G. (2020). Integrated Spectroscopic Sensor fabricated in a novel Si3N4 platform [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159381
TESIS
APA, Harvard, Vancouver, ISO, and other styles
12

Liu, Huanhuan. "A novel optical bio-chemical sensor based on hybrid nanostructures of Bowtie nanoantennas and Fabry-Perot Interferometer." Phd thesis, Ecole Centrale de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-01064196.

Full text
Abstract:
Nowadays, the increasing concern for environmental analysis and food quality control, as well as medical needs such as fast diagnosis in case of emergency events, leads to a growing need for new generations of chemical and biological sensors. These devices should have high sensitivity and reliability, perform specific detection of molecules and enable multiple parallel sensing, while being cheap, portable, fast and easy to use. Thus, a general trend tends towards bio-chemical sensors which are on-chip integrated, label-free, and compatible with standard micro-technologies. Photonic dielectric devices based on porous silicon and metallic nanostructures based on plasmon resonances are good candidates to fulfill the above requirements. Porous silicon is a biocompatible material, with a huge specific surface providing a sensitivity enhancement by several orders of magnitude compared to bulk materials; furthermore, its refractive index and thickness can be easily tuned, enabling for the realization of a large variety of photonic designs. Metallic nanostructures provide high confinement and strong field enhancement in sub-wavelength regions, leading to high sensitivities; combined with fluorescence or other sensing mechanisms such as Raman or IR spectroscopy, they have already demonstrated increased sensing potential. The realization of a hybrid device combining both elements would be highly interesting, since it could yield the advantages of both elements, and the photonic structure could shape the plasmonic resonance to develop ultrasensitive devices with narrow resonance linewidth and increased sensing depth. In this context, we realized and studied a novel hybrid photonic / plasmonic device exploiting the coupling between the surface plasmon resonance of a bowtie nano - antenna (NAs) array and the photonic modes of porous silicon (PSi) interferometer. We designed and fabricated a NAs array with resonance wavelength ~ 1.3μm on a homogeneous PSi interferometer. A thin spacing silica layer with controllable density protects the pores of PSi layer and provides a smooth surface for the fabrication of NAs. The coupling mechanisms of two elements - NA array and interferometer, are studied with 2 models, which are interferometer approach and resonator approach. The interferometer approach is focused on studying the influence of NAs array as a homogeneous layer on the fringes shift of the interferometer. For resonator approach, the coupled mode theory is applied. With these models, strong coupling between both elements are discovered: splitting. In the case of viii smaller environment variation, the hybrid device gains 5-10 fold sensitivity enhancement vs. 2 elements alone. The controllable SiO2 layer allows us to sense the index variation within PSi interferometer. This opens a route towards double parallel sensing. The development of the theoretical models under different environment is ongoing, which is expected to utilize the strong coupling for the sensing. A further investigation of the sensing potential of the hybrid device would be expected. And the 2 elements constituting the hybrid structure - the interferometer and the NA array - could be modified in order to enlarge the study to a wider family of devices with greater properties and performances. This work was performed within the framework of the program "Groups of Five Ecoles Centrales" between China Scholarship Council (CSC) and Lyon Institute of Nanotechnologies (INL, CNRS UMR 5270). The project has been supported by the Nanolyon technology platform at INL.
APA, Harvard, Vancouver, ISO, and other styles
13

Calvo, Michele. "Study and manufacturing of biosensors based on plasmonic effects and built on silicon." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI055.

Full text
Abstract:
Le contexte de ce projet de doctorat celui des biocapteurs. Le but final est d’avoir un dispositif portable, composé par une partie jetable, capable de détecter des concentrations très faibles d’un analyte spécifique, à bon marché et compacte, que les médecins peuvent utiliser dans l’hôpital où chez les patients, sans avoir besoin d’un laboratoire entier. Les analytes peuvent être plusieurs (à partir de l’ADN pour la détection de maladies génétiques où des cellules cancéreuses pour la détection précoce du cancer). Cet objectif est possible seulement avec un transducteur qui arrive à convertir efficacement la présence biologique de l’analyte en information électrique. Le transducteur est dans le domaine de la photonique. On combine deux types de guides d’onde, un de type "ridge" diélectrique et un autre métallique, pour en créer un hybride qu’associe les faibles pertes d’une à la sensibilité de l’autre. L’élément innovant est la géométrie de ce guide hybride (Hybrid Plasmonic WaveGuide). Ce memoire explore l'étude theorique, les simulaiton, la fabbrication en salle blanche et la characterization des dispositifs hybride plasmoniques
Lab-on-a-chip (or LOC) devices scale down the laboratory processes for detecting illnesses and monitoring sick patients without the need of medical laboratories. These criteria are made possible with a transducer that can convert the biological presence of the target molecule into electrical information. Since the early 2000s, integrated photonics have offered a possible solution for a transducer compatible with LOC needs. In particular, silicon micro-ring resonators represent a compact and sensitive choice to use as a transducer in LOC devices. In agreement with the requirements of LOC devices, the objective of this project is to design and assess the performance of a compact photonic biosensor. The system will be based on integrated photonic transduction. The requirements are that it is compatible with an industrial fabrication platform and fluidic systems, with a sensitivity equal to or higher than the state-of-the-art and simple to functionalize in order to localize the target molecules in the sensitive regions of the sensor. This project details the design, fabrication, and characterization of such a biosensor. In particular, the photonic biosensor is a ring resonators with a Hybrid Plasmonic Waveguide (HPWG) cross-section that fulfills the LOC requirements
APA, Harvard, Vancouver, ISO, and other styles
14

Norlin, Börje. "Characterisation and application of photon counting X-ray detector systems." Doctoral thesis, Mittuniversitetet, Institutionen för informationsteknologi och medier, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-38.

Full text
Abstract:
This thesis concerns the development and characterisation of X-ray imaging systems based on single photon processing. “Colour” X-ray imaging opens up new perspectives within the fields of medical X-ray diagnosis and also in industrial X-ray quality control. The difference in absorption for different “colours” can be used to discern materials in the object. For instance, this information might be used to identify diseases such as brittle-bone disease. The “colour” of the X-rays can be identified if the detector system can process each X-ray photon individually. Such a detector system is called a “single photon processing” system or, less precise, a “photon counting system”. With modern technology it is possible to construct photon counting detector systems that can resolve details to a level of approximately 50 µm. However with such small pixels a problem will occur. In a semiconductor detector each absorbed X-ray photon creates a cloud of charge which contributes to the image. For high photon energies the size of the charge cloud is comparable to 50 µm and might be distributed between several pixels in the image. Charge sharing is a key problem since, not only is the resolution degenerated, but it also destroys the “colour” information in the image. This thesis presents characterisation and simulations to provide a detailed understanding of the physical processes concerning charge sharing in detectors from the MEDIPIX collaboration. Charge summing schemes utilising pixel to pixel communications are proposed. Charge sharing can also be suppressed by introducing 3D-detector structures. In the next generation of the MEDIPIX system, Medipix3, charge summing will be implemented. This system, equipped with a 3D-silicon detector, or a thin planar high-Z detector of good quality, has the potential to become a commercial product for medical imaging. This would be beneficial to the public health within the entire European Union.
Denna avhandling berör utveckling och karaktärisering av fotonräknande röntgensystem. ”Färgröntgen” öppnar nya perspektiv för medicinsk röntgendiagnostik och även för materialröntgen inom industrin. Skillnaden i absorption av olika ”färger” kan användas för att särskilja olika material i ett objekt. Färginformationen kan till exempel användas i sjukvården för att identifiera benskörhet. Färgen på röntgenfotonen kan identifieras om detektorsystemet kan detektera varje foton individuellt. Sådana detektorsystem kallas ”fotonräknande” system. Med modern teknik är det möjligt att konstruera fotonräknande detektorsystem som kan urskilja detaljer ner till en upplösning på circa 50 µm. Med så små pixlar kommer ett problem att uppstå. I en halvledardetektor ger varje absorberad foton upphov till ett laddningsmoln som bidrar till den erhållna bilden. För höga fotonenergier är storleken på laddningsmolnet jämförbar med 50 µm och molnet kan därför fördelas över flera pixlar i bilden. Laddningsdelning är ett centralt problem delvis på grund av att bildens upplösning försämras, men framför allt för att färginformationen i bilden förstörs. Denna avhandling presenterar karaktärisering och simulering för att ge en mer detaljerad förståelse för fysikaliska processer som bidrar till laddningsdelning i detektorer från MEDIPIX-projekter. Designstrategier för summering av laddning genom kommunikation från pixel till pixel föreslås. Laddningsdelning kan också begränsas genom att introducera detektorkonstruktioner i 3D-struktur. I nästa generation av MEDIPIX-systemet, Medipix3, kommer summering av laddning att vara implementerat. Detta system, utrustat med en 3D-detektor i kisel, eller en tunn plan detektor av högabsorberande material med god kvalitet, har potentialen att kunna kommersialiseras för medicinska röntgensystem. Detta skulle bidra till bättre folkhälsa inom hela Europeiska Unionen.
APA, Harvard, Vancouver, ISO, and other styles
15

Sartiano, Demetrio. "Design of optical fiber sensors and interrogation schemes." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/161357.

Full text
Abstract:
[ES] Las fibras ópticas son dispositivos muy utilizados en el campo de las telecomunicaciones desde su descubrimiento. En las últimas décadas, las fibras ópticas comenzaron a utilizarse como sensores fotónicos. Los primeros trabajos se centraron en la medición de unas dimensiones físicas en un punto específico. Posteriormente, surgió la posibilidad de medir las propiedades de la fibra óptica en diferentes puntos a lo largo de la fibra. Este tipo de sensores se definen como sensores distribuidos. Los componentes optoelectrónicos fueron desarrollados e investigados para telecomunicaciones. Los avances en las telecomunicaciones hicieron posible el desarrollo de sistemas de interrogación para sensores de fibra óptica, creciendo en paralelo con los avances de las telecomunicaciones. Se desarrollaron sistemas de interrogación de fibra óptica que permiten el uso de una única fibra óptica monomodo estándar como sensor que puede monitorear decenas de miles de puntos de detección al mismo tiempo. Los métodos que extraen la información de detección de la señal reflejada en la fibra óptica son los más empleados debido a la facilidad de acceso al sensor y la flexibilidad de estos sistemas. Los más estudiados son la reflectometría en dominios de tiempo y frecuencia. La reflectometría óptica en el dominio del tiempo (OTDR) fue la primera técnica utilizada para detectar la posición de los fallos en las redes de comunica-ción de fibra óptica. El OTDR sensible a la fase hizo posible detectar la elongación y la temperatura en una posición específica. Paralelamente, los gratings de Bragg (FBG) se convirtieron en los dispositivos más utilizados para implementar sensores en fibra óptica discretos. Se desarrollaron técnicas de multiplexación para realizar la detección en múltiples puntos utilizando FGBs. La reflectometría realizada interrogando arrays de FBG débiles demuestra que mejora el rendimiento del sistema en comparación al uso de una fibra monomodo. Los sistemas de interrogatorio actuales tienen algunos inconvenientes. Algunos de ellos son velocidad de interrogatorio limitada, grandes dimensiones y alto costo. En esta tesis doctoral se desarrollaron nuevos sistemas de interrogación y sensores de fibra óptica para superar algunos de estos inconvenientes. Los sensores de fibra óptica de plástico demuestran ser una plataforma innovadora para desarrollar nuevos sensores y sistemas de interrogación de bajo costo y fáciles de implementar para fibras de plástico comerciales. Se investigó la reflectometría en el dominio del tiempo y las técnicas fotónicas de microondas para la interrogación de una matriz de rejillas débiles que permitieron simplificar el sistema de interrogación para la detección de temperatura y vibración.
[CA] Les fibres òptiques són dispositius molt utilitzats en el camp de les telecomunica-cions des del seu descobriment. En les últimes dècades, les fibres òptiques van començar a utilitzar-se com a sensors fotònics. Els primers treballs es van centrar en el mesurament d'unes dimensions físiques en un punt específic. Posteriorment, va sorgir la possibilitat de mesurar les propietats de la fibra òptica en diferents punts al llarg de la fibra. Aquest tipus de sensors es defineixen com a sensors distribüits. Els components optoelectrònics van ser desenvolupats i investigats per a telecomunicacions. Els avanços en les telecomunicacions van fer possi-ble el desenvolupament de sistemes d'interrogació per a sensors de fibra òptica, creixent en paral·lel amb els avanços de les telecomunicacions. Es van desenvolupar sistemes d'interrogació de fibra òptica que permeten l'ús d'una única fibra òptica monomodo estàndard com a sensor que pot monitorar desenes de milers de punts de detecció al mateix temps. Els mètodes que extreuen la informació de detecció del senyal reflectit en la fibra òptica són els més utilitzats a causa de la facilitat d'accés al sensor i la flexibilitat d'aquests sistemes. Els més estudiats són la reflectometría en dominis de temps i freqüència. La reflectometría òptica en el domini del temps (OTDR) va ser la primera tècnica utilitzada per a detectar la posició de les fallades en les xarxes de comunicació de fibra òptica. El OTDR sensible a la fase va fer possible detectar l'elongació i la temperatura en una posició específica. Paral·lelament, els gratings de Bragg (FBG) es van convertir en els dispositius més utilitzats per a implementar sensors en fibra òptica discrets. Es van desenvolupar tècniques de multiplexació per a realitzar la detecció en múltiples punts utilitzant FGBs. La reflectometría realitzada interrogant arrays de FBG febles demostra que millora el rendiment del sistema en comparació a l'ús d'una fibra monomodo. Els sistemes d'interrogatori actuals tenen alguns inconvenients. Alguns d'ells són velocitat d'interrogatori limitada, voluminositat i alt cost. En aquesta tesi doctoral es van desenvolupar nous sistemes d'interrogació i sensors de fibra òptica per a superar alguns d'aquests inconvenients. Els sensors de fibra òptica de plàstic demostren ser una plataforma innovadora per a desenvolupar nous sensors i siste-mes d'interrogació de baix cost i fàcils d'implementar per a fibres de plàstic comercials. Es va investigar la reflectometría en el domini del temps i les tècniques fotòniques de microones per a la interrogació d'una matriu de reixetes febles que van permetre simplificar el sistema d'interrogació per a la detecció de temperatura i vibració.
[EN] Optical fibers are devices largely used in telecommunication field since their discovery. In the last decades, optical fibers started to be used as photonic sensors. The first works were focused on the measurement of physical dimensions to a specific point. Afterward, emerged the possibility to measure the optical fiber properties at different locations along the fiber. These kinds of sensors are defined as distributed sensors. The optoelectronic components were developed and investigated for telecommunications. The progress in telecommunication made possible the development of optical fiber sensors interrogation systems, growing in parallel with the advances of telecommunications. Optical fiber interrogation systems were developed to use a single standard monomode optical fiber as a sensor that can monitor tens of thousands of sensing points at the same time. The methods that extract the sensing information from the backscattered signal in the optical fiber are widely employed because of the easiness of access to the sensor element and the flexibility of these systems. The most studied are the reflectometry in time and frequency domains. The optical time domain reflectometry (OTDR) was the first technique used to detect the position of the failures in the optical fiber communication networks. Using phase sensitive OTDR it is possible to sense strain and temperature at a specific position. In parallel, fiber Bragg gratings (FBGs) became the most widely used devices to implement discrete optical fiber sensors. Multiplexing techniques were developed to perform multi points sensing using these gratings. The reflectometry performed interrogating weak FBGs arrays demonstrate to improve the performance of the system employing a single mode fiber. The interrogation systems nowadays have some drawbacks. Some of them are limited speed of interrogation, bulkiness, and high cost. New interrogation systems and optical fiber sensors were developed in this doctoral thesis to overcome some of these drawbacks. Plastic optical fiber sensors demonstrate to be an innovative platform to develop both new sensors and low cost, easy to implement interrogation systems for commercial plastic fibers. Reflectometry in time domain and microwave photonic techniques were investigated for the interrogation of weak gratings array allowed to simplify the interrogation system for the sensing of temperature and vibration.
I would like to greatly thank the European Union’s Horizon 2020 Research and Innovation Program that funded the research described in this thesis under the Marie Sklodowska-Curie Action Grant Agreement 722509.
Sartiano, D. (2021). Design of optical fiber sensors and interrogation schemes [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161357
TESIS
APA, Harvard, Vancouver, ISO, and other styles
16

Martín, Sánchez David. "Desarrollo de biosensores fotónicos basados en membranas de silicio poroso." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/125695.

Full text
Abstract:
[ES] El desarrollo de los biosensores está permitiendo llevar a cabo análisis bioquímicos cada vez más rápidos, de manera mucho más sencilla y utilizando una menor cantidad de muestra. Esto está dando lugar a aplicaciones en las que se monitorizan parámetros de manera continua y autónoma, aumentando la eficiencia y reduciendo los costes. El tema principal de esta Tesis ha sido el desarrollo y la evaluación de biosensores que se basan en técnicas de transducción óptica, fabricados en silicio poroso, un material nanoestructurado que puede llegar a alcanzar una gran sensibilidad. El trabajo ha consistido en el estudio de la fabricación y la caracterización de membranas de silicio poroso obtenidas a partir de substratos tipo p de baja resistividad. Para ello se ha desarrollado un modelo matemático realista que permite simular el comportamiento del transductor y calcular sus parámetros experimentales. Gracias a esto, se han estudiado propiedades del material como el efecto térmico, llevando a caracterizar el efecto termo-óptico del silicio poroso en el rango infrarrojo del espectro. Además, se ha analizado la infiltración de la muestra en el transductor con el objetivo de mejorar su funcionamiento. Por este motivo, se han examinado diferentes morfologías de poros y se ha implementado un flujo activo durante el sensado, en el cual la sustancia a analizar fluye a través de la membrana porosa, resolviendo problemas de rellenado del sensor y mezclado con otras sustancias.
[CAT] El desenvolupament dels biosensors està permetent realitzar anàlisis bioquímics cada vegada més ràpids, de manera molt més senzilla i utilitzant una menor quantitat de mostra. Això està donant lloc a aplicacions en les quals es monitoritzen paràmetres de manera contínua i autònoma, augmentant l'eficiència i reduint els costos. El tema principal d'aquesta Tesis ha sigut el desenvolupament i l'avaluació de biosensors basats en tècniques de transducció òptica, fabricats en silici porós, un material nanoestructurat que pot arribar a aconseguir una gran sensibilitat. El treball ha consistit en l'estudi de la fabricació i la caracterització de membranes de silici porós obtingudes a partir de substrats tipus p de baixa resistivitat. Per a fer-ho, s'ha desenvolupat un model matemàtic realista que permet simular el comportament del transductor i calcular els seus paràmetres experimentals. Gràcies a això, s'han estudiat propietats del material com l'efecte tèrmic, el que ha permés caracteritzar l'efecte termo-òptic del silici porós en el rang infraroig de l'espectre. A més, s'ha analitzat la infiltració de la mostra en el transductor amb l'objectiu de millorar el seu funcionament. Per aquest motiu, s'han examinat diferents morfologies de porus i s'ha implementat un flux actiu durant el sensat, en el qual la substància a analitzar fluïx a través de la membrana porosa, resolent problemes d'ompliment del sensor i mesclat amb altres substàncies.
[EN] The development of biosensors is leading to faster and simpler analyses of biochemical samples, using them in lower quantities. Over the last years, these advances have allowed the emergence of applications where parameters can be monitored continuously and autonomously, increasing the efficiency and reducing the costs. This Thesis has focused on the development and evaluation of biosensors based on optical transducers, which are fabricated with porous silicon, a nanostructured material that is able to reach a high sensitivity. In this work, the fabrication and characterization of porous silicon membranes using heavily doped p-type silicon wafers have been studied. A realistic mathematical model has been developed in order to simulate the transducer's behavior and calculate the experimental parameters. This has led to the study of physical properties such as the thermal effect, where we were able to characterize the thermo-optic coefficient in the near-infrared range. Moreover, the penetration of the sample into the structure has been analyzed. For this purpose, several pore morphologies were examined and an active flow has been implemented during the sensing experiments, where the substance of interest flows through the porous membrane, to solve problems such as the partial filling of the sensor or the mixture of different substances during the experiments.
Martín Sánchez, D. (2019). Desarrollo de biosensores fotónicos basados en membranas de silicio poroso [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/125695
TESIS
APA, Harvard, Vancouver, ISO, and other styles
17

Banniard, Louise. "Capteurs inertiels hautes performances à transduction optique sur silicium." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALT059.

Full text
Abstract:
De nombreux domaines requièrent des accéléromètres à très hautes performances, que ce soit pour des systèmes de navigation ou le marché de l'électronique ou encore dans le domaine de la recherche.Beaucoup de méthodes différentes ont été utilisées pour mesurer une accélération comme les accéléromètres capacitifs, piezorésitifs ou encore thermiques. Cependant la transduction optomécanique semble pouvoir apporter de nouveaux avantages en comparaison des méthodes traditionnelles. En effet, l'optomécanique permet de détecter des déplacements mécaniques extrêmement petits et donc d'obtenir des résolutions très importantes tout en gardant une bande passante intéressante. Les capteurs optomécaniques contrairement aux capteurs basés sur d'autres méthodes, peuvent être utilisés dans des environnements non protégés des ondes électromagnétiques.Dans le cadre de ce travail, nous présentons un accéléromètre optomécanique avec une cavité optique résonante à Whispering Gallery Modes pour détecter le mouvement d'une masse inertielle. Le mouvement de cette dernière modifie les conditions de résonance de la cavité ce qui conduit à une modulation de la puissance optique en sortie du capteur. Trois différents modèles d'accéléromètres optomécaniques seront détaillés ainsi que leur développement technologique. Nous présenterons également leurs caractérisations optiques et mécaniques.Finalement ces travaux de recherche permettent d'évaluer le potentiel d'une approche optomécanique pour la conception d'accéléromètres à hautes performances
High performance accelerometers are required in many different domains as sophisticated navigation control systems, research or consumer electronics.A variety of transduction mechanisms has been used to sense the acceleration: capacitive, piezoresistive, thermal... Optomechanical transduction is a promising avenue to realize accelerometers with extremely sensitive readout of mechanical motion with high bandwidth. This also has the advantage of being immune to electromagnetic interferences contrary to the traditional transduction methods.In this work, an optomechanical accelerometer is presented which employs Whispering Gallery Modes disk or ring resonator as displacement sensor. The motion of an inertial mass detunes the resonant cavity and thus modulates the optical power at the output of the sensor.The designs and technological developments of three optomechanical accelerometers are described. We present also the optical and mechanical sensor characterisations. The aim of the thesis is to evaluate the potential of an optomechanical approach for high performance accelerometers
APA, Harvard, Vancouver, ISO, and other styles
18

Marques, Gustavo Pires 1978. "Análise do potencial de calibração da força óptica através de dispositivos de microscopia de força atômica." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277492.

Full text
Abstract:
Orientador: Carlos Lenz Cesar
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-20T14:50:59Z (GMT). No. of bitstreams: 1 Marques_GustavoPires_M.pdf: 1771357 bytes, checksum: 8ee6919633e2615608f25b33bec98e96 (MD5) Previous issue date: 2005
Resumo: O microscópio de força atômica é uma ferramenta que possibilita a medida de forças precisamente localizadas com resoluções no tempo, espaço e força jamais vistas. No coração deste instrumento está um sensor a base de uma viga (cantilever) que é responsável pelas características fundamentais do AFM. O objetivo desta pesquisa foi usar a deflexão deste cantilever para obter uma calibração rápida e precisa da força da armadilha da pinça óptica, assim como testar e comparar com os método tradicionalmente utilizados para este propósito. Para isso, foi necessário analisar e entender o condicionamento de sinais utilizados no AFM. Foram estudados cantilever tradicionais, cujo sistema de detecção é baseado na deflexão de um feixe laser em conjunto com fotodetectores, bem como cantilevers piezoresistivos. Cantilevers piezoresistivos fornecem uma alternativa simples e conveniente aos cantilevers ópticos. A integração de um elemento sensorial dentro do cantilever elimina a necessidade de um laser externo e de um detector utilizados na maioria dos AFMs. Isto elimina a etapa delicada de alinhamento da laser ao cantilever e fotodetector que normalmente precede uma medida com AFM, uma simplificação que expande o potencial do AFM para o uso em meios adversos, como câmaras de ultra alto vácuo ou, como no caso específico das Pinças Ópticas, onde existem esferas em solução líquida e também restrições de dimensão
Abstract: The atomic force microscope (AFM) is a tool that enables the measurement of precisely localized forces with unprecedented resolution in time, space and force. At the heart of this instrument is a cantilever probe that sets the fundamental features of the AFM. The objective of this research has been using the deflection of this cantilever to get a fast and accurate calibration of optical tweezers trap force, as well as testing and comparing to the traditionally used methods of calibration for this purpose. For that it was necessary to resolve and understand the sensors signals conditioning used in the AFM. Traditional cantilevers, whose detection system is based on the deflection of a laser beam in addition with a photodetector, as well as piezoresistive cantilevers has been studied. Piezoresistive cantilevers provide a simple and convenient alternative to optically detected cantilevers. Integration of a sensing element into the cantilever eliminates the need for the external laser and detector used in most AFMs. This removes the delicate step of aligning the laser to the cantilever and photodetector which usually precedes an AFM measurement, a simplification which expands the potential of the AFM for use in difficult environments such as ultrahigh vacuum chambers or, as in Optical Tweezers specific case, where there are spheres into a liquid solution as well as dimensional constraints
Mestrado
Física
Mestre em Física
APA, Harvard, Vancouver, ISO, and other styles
19

Prashanth, R. "Versatile sensing platform using silicon photonic microring resonators." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5504.

Full text
Abstract:
Measurement of refractive indices of liquids and thin films can play an important role for chemical analysis in the fields of healthcare and biomedical research. There is a requirement of miniaturized refractive index sensor platforms that have high sensitivity, low detection limits and scalable for high throughput label free bio-sensing. Silicon photonic sensors are emerging as the key solution that can satisfy all of the aforementioned criteria. These optical sensing platforms can be fabricated on a silicon wafer using the same processes employed for manufacturing of CMOS integrated circuits, which provides the advantages of low cost and high volume production. However, the cost advantages of these miniaturized sensors are often negated by the requirement of expensive optical interrogation equipment such as a tunable laser and a spectrum analyzer. In our research work, we have demonstrated new sensor con figuration based on silicon photonic microring that is capable of low-cost refractive index sensing. We have also extended the microring resonator platform to measure thermo-optic coeffcients of liquids in small volumes. The first part of the thesis research focuses on the development of tunable cascaded Silicon microring resonators for refractive index shift sensing. This configuration uses two microring resonators in series cascade with one of the two rings probing the analyte liquid (called sensor) while the second microring functions as a spectral filter. By implementing thermo-optic tunability in the fi lter ring, one can track the shifts in the spectrum of the sensor. At the output, a single photodetector is used to capture variations in the intensity. This arrangement is used to translate spectral shifts of sensor microring, caused by analyte index variation, into equivalent changes in the position of intensity peak at the output of the cascade. In our experiments, we used a broadband source (1550 nm) for the input and a single photodetector for measuring optical intensity variation at the output port. For proof of concept studies, we emulated the analyte index shift on sensor microring using thermo-optic effect. The total detection range of the 1550 nm operating device was estimated to be about 0.0241 refractive index units (RIU), with a detection limit of 4:6 10􀀀5 RIU. In the second part of our research we focused on improvement of the detection limit of the tunable cascaded microring device. The precision with which shifts in the intensity peak is tracked was enhanced by the use of lock-in ampli fier assisted harmonic ratio detection. Speci cally, we compute the ratio of the second harmonic to the fundamental frequency of modulation signal provided to the filter ring microheater. Prior to performing experiments, we analyzed the method with theoretical models and simulations to understand the effect of variations in the modulation signals provided by lock-in amplifi er. Experimental results with the 1550 nm cascaded microring devices showed a substantial reduction (a factor of 1330) in the width of harmonic ratio peak compared to that of the unprocessed intensity curve. The detection limit of the device was improved to 8:6 10􀀀6 RIU, now limited only by the performance of electrical equipment providing power to microheaters. Lastly, we have demonstrated a method to measure thermo-optic coeffcient of small volume of liquids using silicon microring resonators. This effort can help in multiparameter analysis of bio fluids and also for correcting errors in refractive index measurements by silicon microrings. For this experiment, we measured the wavelength shifts of analyte covered mircoring resonators as a function of controlled increments in chip temperature. Using theoretical models and simulated parameters, we calculated the thermo-optic coeffcients of standard liquids and obtained a good match with values reported in literature. In summary, we have explored new methods of using silicon photonic microring resonators for reduced cost refractive index sensing and thermo-optic coeffcient measurements.
APA, Harvard, Vancouver, ISO, and other styles
20

(5930402), Justin C. Wirth. "Engineering Sensitivity: An Optical Optimization of Ring Resonator Arrays for Label-Free Whole Bacterial Sensing." Thesis, 2019.

Find full text
Abstract:

The quick, reliable, and sensitive detection of bacterial contamination is desired in areas such as counter bioterrorism, medicine, and food/water safety as pathogens such as E. coli can cause harmful effects with the presence of just a few cells. However, standard high sensitivity techniques require laboratories and trained technicians, requiring significant time and expense. More desirable would be a sensitive point-of-care device that could detect an array of pathogens without sample pre-treatment, or a continuous monitoring device operating without the need for frequent operator intervention.

Optical microring resonators in silicon photonic platforms are particularly promising as scalable, multiplexed refractive index sensors for an integrated biosensing array. However, no systematic effort has been made to optimize the sensitivity of microrings for the detection of relatively large discrete analytes such as bacteria, which differs from the commonly considered cases of fluid or molecular sensitivity. This work demonstrates the feasibility of using high finesse microrings to detect whole bacterial cells with single cell resolution over a full range of potential analyte-to-sensor binding scenarios. Sensitivity parameters describing the case of discrete analyte detection are derived and used to guide computational optimization of microrings and their constituent waveguides, after considering a range of parameters such as waveguide dimension, material, modal polarization, and ring radius. The sensitivity of the optimized 2.5 µm radius silicon TM O-band ring is experimentally demonstrated with photoresist cellular simulants. A multiplexed optimized ring array is then shown to detect E. Coli cells in an experimental proof of concept.

APA, Harvard, Vancouver, ISO, and other styles
21

Chatterjee, Avijit. "Silicon photodetector integrated silicon nitride-on-SOI platform for communication and sensor applications." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5250.

Full text
Abstract:
Driven by the exponential growth of data tra c, current infrastructure and standards are evolved to meeting the requirements. In long haul communication, 1550/1310 nm based singlemode ber technology is a commercially viable platform. For short-reach optical interconnects for rack-to-rack communication and within buildings, the matured 850 nm VCSEL based multimode ber (MMF) technology is an industry-standard. IEEE has recently proposed a 400 Gbps roadmap for data centers to scale up short-reach infrastructure. However, the current shortreach datacom infrastructure is not scalable to support a 400 Gbps data rate. Integration of all the functional components of an optical interconnect on a single platform can meet the requirement of a scalable, energy-e cient, and a ordable system. Additionally, CMOS compatibility can leverage electronic and photonic circuits' co-existence on a single platform and low-cost mass manufacturing. Integrating optical functionalities on a single-chip also o ers application in sensing as well. Due to the low absorption in water, the 850 nm wavelength window is also attractive for realizing Lab-on-a-chip biosensors. Integrated photonic circuits at 850 nm band can therefore be useful for a lab-on-a-chip biosensor platform as well. This thesis presents an integrated photonic platform comprising silicon nitride (SiN) waveguide, SiN surface grating coupler, silicon photodetector, and wavelength lters integrated monolithically on the SiN-on-SOI platform at 850 nm wavelength. Our primary focus is to overcome the limitation of lower responsivity and bandwidth of silicon photodetector. We extensively study various techniques to integrate silicon photodetector with passive SiN waveguides e ciently suitable for future short-reach datacom and lab-on-a-chip biosensors. In the rst part, we realize a single-mode SiN waveguide along with high-e ciency surface grating couplers. We have demonstrated a uniform and apodized grating coupler with a bottom Bragg re ector. Apodized gratings provide higher coupling e ciency than uniform gratings due to better mode pro le matching between Gaussian-shaped ber mode and the apodized grating eld pro le. Distributed Bragg re ector (DBR) reduces the optical loss due to high order di racted light directed towards the bottom substrate. SIN apodized grating coupler with DBR as the bottom re ector achieves the highest ever coupling e ciency of 2.19 dB/coupler and 3dB bandwidth of 40 nm at 876nm wavelength. In the second part, we demonstrate various architectures to integrate high-speed silicon photodetector with SiN waveguide. First, we demonstrate the integration of SiN waveguide with high-speed, lateral silicon pin photodetector. Compared to the silicon photodetector realized on bulk silicon, photodetector on an SOI has higher bandwidth due to the lower cross-section. We use silicon inverse taper to improve the coupling from SiN to silicon, which results in better responsivity of silicon photodetector. We have achieved the highest responsivity of 0.44 A/W and bandwidth of 15 GHz for the integrated silicon pin. Bandwidth improvement without degradation of responsivity is attributed to the lateral collection of photocarriers transverse to the propagation direction, and low RC time-limited bandwidth due to the thin silicon. To enhance the photodetector responsivity further, we propose a SiN ring resonator enhanced silicon metal-semiconductor-metal (MSM) photodetector. Compact, cavity-enhanced silicon- MSM photodetector responsivity is estimated to be 0.81 A/W at 5 V, which is 100 times higher than the conventional waveguide photodetector. Moreover, the photodetector's compact size (6X6 m2) can o er high bandwidth due to reduced RC time-limited bandwidth. In this section, we also discuss the integration of SiN waveguide with a thin silicon-MSM photodetector (70 nm thick). In this con guration, the SiN waveguide is placed on top of the silicon-MSM. Since the silicon's thickness is low SiN, the waveguide does not su er from mode mismatch losses between silicon and SiN. Such con guration is attractive due to its high responsivity and bandwidth, along with ease of fabrication. We have shown the DC measurements with a maximum responsivity of 0.56 A/W at 10 V bias. Finally, we have demonstrated the integration of wavelength division multiplexer with silicon photodetector since the shortwave wavelength division multiplexing (SWDM) at 850 nm wavelength band is considered one of the viable solutions to attain 400 Gbps roadmap. We have realized the WDM using SiN Echelle gratings and integrated the output channel waveguides with a silicon-MSM photodetector. Experimentally, we have shown that the Echelle grating has the insertion loss of 4.3 dB and adjacent channel cross talk of 22 dB for the channels having wavelength separation of 10 nm. Future exploration of the demonstrated device can lead to precise wavelength ltering with on-chip detection useful for both high-speed short-reach datacom and lab-on-a-chip biosensors. In summary, we have demonstrated the capability of realizing a scalable, energy-e cient, and cost-e ective silicon nitride based integrated photonic receiver in the 850 nm wavelength band.
APA, Harvard, Vancouver, ISO, and other styles
22

Lai, Jian Ren, and 賴建任. "Porous Silicon Based Photonic-Sensor for High Sensitive Heavy Metal Ion Detecrtion." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/put9b8.

Full text
Abstract:
碩士
國立清華大學
工程與系統科學系
103
Water is essential to human life material, settlement of people's lives as much dependent on the water area and growth. Human society continues to progress from the first agricultural society through the industrial revolution until now, people with the growth of industry and technology have had a relatively affluent life than ever before. But in the booming industry it has been accompanied by a number of environmental pollution produced, such as carbon dioxide cause global warming caused by industrial waste water in various forms of water pollution and so on. This will gradually hurting the environment we live. The heavy metal pollution in water pollution in 70 to 80 years is relevant agricultural, fishery and animal husbandry against Taiwan, such as arsenic, cadmium, mercury, lead and heavy metal pollution. In view of this, the aim of this study is related to the manufacture of heavy metals in water pollution detection mechanism. The current detection mechanism mostly use the more expensive equipment or the use of complex chemical titration step approach to the analysis of heavy metals in aqueous solution. In this experiment, the first generation of wafer-dimensional photonic crystal having a characteristic and by a simple chemical synthesis and surface modification of it in Fourier infrared spectroscopy (FTIR) for detecting signals of heavy metals, and to achieve qualitative and quantitative results. The second generation of photonic crystal wafer as visible light with a wavelength of electrochemical reduction of metal ions to be measured directly in the porous silicon precipitates hole caused large refractive index change, to enhance the signal strength and the detection limit of the effect. The first two chapters illustrate the application of this study motive and related experiments. Today introduced the relevant heavy metal detection equipment, introduces the basic principles of photonic crystals with porous silicon etching works. The third and fourth chapters compared with experimental design processes and related process steps. Fifth and sixth chapters, compared with results of the discussions and conclusions. Literature review is included in Chapter VII.
APA, Harvard, Vancouver, ISO, and other styles
23

Zou, Yi active 21st century. "Near-infrared and mid-infrared integrated silicon devices for chemical and biological sensing." Thesis, 2014. http://hdl.handle.net/2152/28068.

Full text
Abstract:
Silicon has been the material of choice of the photonics industry over the last decade due to its easy integration with silicon electronics as well as its optical transparency in the near-infrared telecom wavelengths. Besides these, it has very high refractive index, and also a broad optical transparency window over the entire mid-IR till about 8[Mu]m. Photonic crystal is well known that it can slow down the speed of light. It also can provide a universal platform for microcavity optical resonators with high quality factor Q and small modal volumes. The slow light effect, high Q and small modal volumes enhance light-matter interaction, together with high refractive index of silicon can be utilized to build a highly sensitive, high throughput sensor with small footprint. In this research, we have demonstrated highly compact and sensitive silicon based photonic crystal biosensor by engineering the photonic crystal microcavity in both cavity size and cavity-waveguide coupling condition. We have developed solutions to increase biosensor throughput by integrating multimode interference device and improving the coupling efficiency to a slow light photonic crystal waveguides. We have also performed detailed investigations on silicon based photonic devices at mid-infrared region to develop an ideal platform for highly sensitive optical absorption spectroscopy on chip. The studies have led to the demonstration of the first slot waveguide, the first photonic crystal waveguide, and the first holey photonic crystal waveguide and first slotted photonic crystal waveguide in silicon-on-sapphire at mid-infrared. The solutions and devices we developed in our research could be very useful for people to realize an integrated photonic circuit for biological and chemical sensing in the future.
text
APA, Harvard, Vancouver, ISO, and other styles
24

Tsai, Wan-Ting, and 蔡宛庭. "Ultra-Low Detection-Limit of Portable Heavy Metal Sensor by Electrochemistry integrating Porous Silicon Photonic Structure and Platinum Porous Silicon." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/7shmb8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pal, Sohini. "Nanopore Based Single-molecule Sensors." Thesis, 2020. https://etd.iisc.ac.in/handle/2005/5457.

Full text
Abstract:
In the past two decades nanopores have been used as highly sensitive detection systems for exploring the properties of analytes at single molecule resolution. The small dimensions of a nanopore permit the molecule of interest to be confined within it, allowing for the extraction of valuable information relating to its physical and chemical properties. Single molecule analysis, as opposed to bulk measurements does not involve ensemble averaging. Hence, short-lived states such as an intermediate configuration during a conformational change can be observed directly, while such states would be masked in the bulk assay. The main project described in this thesis involves the design and fabrication of a hybrid silicon nitride-DNA origami nanopore system for use in biosensing of proteins. We used the nanopore system to experimentally observe the effect of forces between the translocating molecule and nanopore with a focus on the electro kinetics inside the pore and escape rate problem. These are further verified by finite element simulations and MATLAB simulations which enables us to investigate the physics behind the different types of events that we observe. The key findings from this work can be summarized as follows. We report on an operating regime of this nanopore sensor, characterized by attractive interactions between the nanoparticle and the pore, where the dwell time is exponentially sensitive to the target-pore interaction. We used negatively and positively charged gold nanoparticles to control the strength of their interaction with the negatively charged silicon nitride pore. Our experiments revealed how this modulation of the electrostatic force greatly affects the ionic current with an exponential dependance of dwell times. A stochastic model is developed for analyzing this analyte-pore interaction based on the well-known Kramer’s problem of escape from a barrier.Finally, the nitride nanopore was functionalized using DNA origami with thrombin binding aptamer (TBA15), a well studied 15-mer aptamer DNA sequence that binds selectively with thrombin protein. Consistent with our previous experiment, we observed current traces with large dwell time blockades for thrombin whereas for another protein the trace contained minimal dwell time current enhancements. The presence of TBA15 aptamer increased the interaction energy between the thrombin and the nanopore resulting in a blockage with comparatively larger dwell time and enabled us in sensing thrombin at concentrations as low as 20nM. Nanopore technology will remain an important field of science in the 21st century. We believe equipped with our understanding of nanopore analysis, in future we will be able to detect and unravel important physical phenomena in the single molecule world.
APA, Harvard, Vancouver, ISO, and other styles
26

Kumar, Sagnik. "AlGaN/GaN Heterojunction Based Hall Sensors for Magnetic Field Sensing over Wide Temperature Range." Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4590.

Full text
Abstract:
Hall sensor has proved to be an attractive solution for sensing requirements in electric machines for direct measurement of fields or indirect estimation of physical quantities such as current, speed and torque. Current probes, which measure terminal currents and switching currents in power converters for protection, monitoring and closed-loop current control, typically use Hall-effect sensors. Recently there has been a demand for electric machines with high operational speeds and high power densities for use in electric vehicles, power generation and precision machining applications. High speed machines operate with greater reliability using active magnetic bearings as they eliminate friction and guarantee longer machine life. Research in high-power and high-speed machines and active magnetic bearings can be aided by direct measurement of the internal magnetic field distribution. These electromechanical devices can operate in harsh environments and require stable Hall sensing operation at extreme temperatures. Most commercially available Hall sensors are based on silicon and have a limited operating temperature range. For field sensing at extreme temperatures, wide band gap-based materials offer a viable alternative. This work evaluates Hall-effect sensing using AlGaN/GaN hetero-junctions grown on Si substrates for extreme temperatures. Hall-effect sensors are fabricated using AlGaN/GaN heterojunctions grown on Si substrates. The square-shaped Hall-sensing element is realised by means of a simple fabrication methodology employing shadow masking. An array of greek-cross shaped Hall effect sensors is batch fabricated on a single GaN-on-Si wafer. A process flow for batch fabrication is proposed. In particular, an insulating layer of SixNy, deposited initially in the process, is shown to result in a lower sheet resistance of the Hallsensing elements. The fabricated samples are extensively characterised at temperatures ranging from 75 K to 500 K and at magnetic field strengths up to 2 Tesla. Notwithstanding wide fluctuations in sheet resistance and carrier mobility with the operating temperature, the plot of sensitivity against temperature is reasonably flat. The operating temperature range from 75 K to 500 K spans those of the military grade, industrial grade and commercial grade Hall sensors. Additionally, the fabricated sensors can also be used for field sensing in a cryogenic environment. Small variations in sensitivity, however exist. It is suggested that these variations can be compensated using the terminal measurements such as the transresistances. The geometrical correction factors of the fabricated sensors are also studied over the complete temperature range of interest. It is shown to be very close to unity and exhibit a variation as small as 2%. The offset voltage in the Hall sensor output and its dependence on the biasing currents and operating temperatures are of particular interest in this study. The offset voltage of each of the characterised samples shows a linear dependence on the bias current and a non-linear dependence on the sample temperature. For a given sample, the offset voltage is shown to vary with a change in its biasing configuration. The method of current spinning is shown to nullify the offset at any operating temperature, field or bias current. A micro-controller based electronic subsystem is developed to implement the current spinning scheme to cancel the offsets in the sensed Hall signal. The subsystem achieves the necessary signal amplification and filtering of the Hall voltage. In addition, the subsystem estimates the field and provides a visual read-out of the same. The square-shaped sensing element along with the electronic subsystem has been integrated into a suitable package for use as a magnetic field probe in the air-gap of an electromagnet or a magnetic circuit. A Helmholtz coil based magnetic field producing setup is used for testing and calibration of the electronic subsystem.
APA, Harvard, Vancouver, ISO, and other styles
27

Yeke, Yazdandoost Mohammad. "Photon Quantum Noise Limited Pixel and Array architectures in a-Si Technology for Large Area Digital Imaging Applications." Thesis, 2011. http://hdl.handle.net/10012/6220.

Full text
Abstract:
A Voltage Controlled Oscillator (VCO) based pixel and array architecture is reported using amorphous silicon (a-Si) technology for large area digital imaging applications. The objectives of this research are to (a) demonstrate photon quantum noise limited pixel operation of less than 30 input referred noise electrons, (b) theoretically explore the use of the proposed VCO pixel architecture for photon quantum noise limited large area imaging applications, more specifically protein crystallography using a-Si, (c) to implement and demonstrate experimentally a quantum noise limited (VCO) pixel, a small prototype of quantum noise limited (VCO) pixelated array and a quantum noise limited (VCO) pixel integrated with direct detection selenium for energies compatible with a protein crystallography application. Electronic noise (phase noise) and metastability performance of VCO pixels in low cost, widely available a-Si technology will be theoretically calculated and measured for the first time in this research. The application of a VCO pixel architecture in thin film technologies to large area imaging modalities will be examined and a small prototype a-Si array integrated with an overlying selenium X-ray converter will be demonstrated for the first time. A-Si and poly-Si transistor technologies are traditionally considered inferior in performance to crystalline silicon, the dominant semiconductor technology today. This work v aims to extend the reach of low cost, thin film transistor a-Si technology to high performance analog applications (i.e. very low input referred noise) previously considered only the domain of crystalline silicon type semiconductor. The proposed VCO pixel architecture can enable large area arrays with quantum noise limited pixels using low cost thin film transistor technologies.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography