Dissertations / Theses on the topic 'Silicon nitride'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Silicon nitride.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Razzell, Anthony Gordon. "Silicon carbide fibre silicon nitride matrix composites." Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/110559/.
Full textDurham, Simon J. P. "Carbothermal reduction of silica to silicon nitride powder." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74221.
Full textSol-gel processing was found to provide superior mixing conditions over dry mixing, which allowed for complete conversion to silicon nitride at optimum carbon:silica ratios of 7:1. The ideal reaction temperature was found to be in the range of 1500$ sp circ$C to 1550$ sp circ$C. Suppression of silicon oxynitride and silicon carbide was achieved by ensuring that: (a) the nitrogen gas was gettered of oxygen, and (b) that the gas passed through the reactants. Thermodynamic modelling of the Si-O-N-C system showed that ordinarily the equilibrium conditions for the formation of silicon nitride are very delicate. Slight deviations away from equilibrium leads to the formation of non-equilibrium species such as silicon carbide caused by the build-up of carbon monoxide. Reaction conditions such as allowing nitrogen gas to pass through the reactants beneficially moves the reaction equilibrium well away from the silicon carbide and silicon oxynitride stability regions.
The particle size of silicon nitride produced from carbon and silica precursors was of the order of 2-3 $ mu$m and could only be reduced to sub-micron range by seeding with ultra-fine silicon nitride. It was shown that the mechanism of nucleation and growth of unseeded reactants was first nucleation on the carbon by the reaction between carbon, SiO gas and nitrogen (gas-solid reaction), and then growth of the particles by the gas phase reaction (CO, SiO, N$ sb2$).
Hadian, Ali Mohammad. "Joining of silicon nitride-to-silicon nitride and to molybdenum for high-temperature applications." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41370.
Full textThis study deals with the application of brazing for the fabrication of $ rm Si sb3N sb4/Si sb3N sb4$ and $ rm Si sb3N sb4/Mo$ joints using Ni-Cr-Si brazing alloys based on AWS BNi-5 (Ni-18Cr-19Si atom%). Thermodynamic calculations were performed to predict wetting at $ rm Si sb3N sb4$/Ni-Cr-Si alloys interfaces. By using some simplifying assumptions and suitable scaling of the reaction, the model predicted that Ni-Cr-Si alloys with Ni/Cr = 3.5 and X$ sb{ rm Si}$ $<$ 0.25 would react chemically with and wet $ rm Si sb3N sb4$. Good agreement was found between the theoretical calculations and experimental results.
Brazing experiments were carried out to study the joinability of $ rm Si sb3N sb4$ with various Ni-Cr-Si filler metals which had already shown good wetting characteristics on $ rm Si sb3N sb4$. The $ rm Si sb3N sb4/Si sb3N sb4$ joints formed with a 10 atom% Si brazing alloy exhibited the highest strength ($ approx$120 MPa) which was mainly due to the presence of a CrN reaction layer at the ceramic/filler metal interface. The high temperature four-point bend strengths of $ rm Si sb3N sb4/Si sb3N sb4$ joints were markedly higher than the room temperature values. A high strength of about 220 MPa was achieved when the joints were tested at 900$ sp circ$C.
From the results of the $ rm Si sb3N sb4/Mo$ joining experiments it was found that the joint quality and microstructure were strongly influenced by the composition of the filler metal and such brazing variables as time and temperature. Of all the $ rm Si sb3N sb4$/Mo joints, those made with the S10 brazing alloy at 1300$ sp circ$C for 1 min. exhibited the highest strength of 55 MPa.
Finally, in all the cases, the shear strength of all the joints was found to be lower than their four-point bend values.
Yi, Jae Hyung. "Silicon rich nitride for silicon based laser devices." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44315.
Full textPage 214 blank.
Includes bibliographical references.
Silicon based light sources, especially laser devices, are the key components required to achieve a complete integrated silicon photonics system. However, the fundamental physical limitation of the silicon material as light emitter and the limited understanding of tli~ excitation mechanism of Er in dielectric media by optical and electrical pumping methods impedes the progress of the research activities in this area. Silicon rich nitride (SRN) has been investigated as a strong candidate for silicon based laser devices. SRN has many advantages over other Si-based materials systems. These advantages include a high electrical injection level at low voltages, a low annealing temperature for Si nanocluster (Si-nc) formation and a large refractive index for strong optical confinement. Strong light emission from localized states in Si-nc embedded in SRN was demonstrated with a PLQE (Photoluminescence Quantum Efficiency) of 7%. This effect was confirmed through several experiments and first principle calculations. Thue Morse aperiodic structures were fabricated with light emitting SRN and SiO2 materials, for the first time. Through the resonance phenomena achieved using this approach an emission enhancement of a factor of 6 was demonstrated experimentally. A sequential annealing technique was investigated to enhance the light emission from the Si-nc based light emitter. Electrical injection was greatly improved with annealing treatments of SRN based devices. In particular, bipolar electrical injection into SRN led to electroluminescence which was comparable to photoluminescence in peak shape and spectral position. Er doped SRN (Er:SRN) was fabricated through a co-sputter technique to achieve light emission at the wavelength of 1.54 [mu]m.
(cont.) Energy transfer from SRN td Er was confirmed and shown to have a strong dependence on Si content. Si racetrack resonator structures with a low loss value of 2.5 dB/cm were fabricated through a Local Oxide (LOCOS) process and coupled with an Er:SRN layer to investigate gain behavior. Electrical injection properties into the Er:SRN layer were investigated and the electroluminescent device was fabricated. A detailed discussion on optical and electrical excitation of Er is provided to clarify the difference of the Er excitation mechanisms. A comparison of key simulation parameters used within the two level equations for optical and electrical excitation of Er atoms is provided to explain how the parameters contribute to each excitation mechanism. The most significant differences between the parameters and excitation mechanisms are also explained. Finally a summary of important factors to achieve a silicon based laser is provided and discussed for future investigation based on the experimental data and the investigation presented in this work.
by Jae Hyung Yi.
Ph.D.
Li, Wenyu. "The fabrication of silicon nitride-titanium nitride composite materials." Thesis, University of Leeds, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305875.
Full textSaxena, Pawan. "Slip casting of silicon nitride." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=56974.
Full textThis method, however, has received little attention in the field of engineering ceramics especially with regard to silicon nitride. Commercial fabrication of silicon nitride, a major contender for high temperature applications due to its excellent thermomechanical properties, has been confined to hot pressing. This is an expensive process and has geometrical limitations.
Slip casting, followed by sintering, has been identified as a potentially economical alternative fabrication method, however a number of parameters have to be optimized before a good slip cast silicon nitride body can be made. The aim of the present work is to control parameters such as pH, viscosity and deflocculation in order to form dense, homogeneous, slip cast silicon nitride bodies.
A detailed investigation of the rheological properties of Si$ sb3$N$ sb4$ and careful control of processing parameters, made it possible to produce slip cast Si$ sb3$N$ sb4$ bodies having up to 97% TD on sintering. Mechanical strength values obtained by slip casting were compared with those obtained by die-pressing. Strength values of the slip cast material was limited by iron inclusions entrained in processing.
Ovri, J. E. O. "Diametral-compression of silicon nitride." Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378585.
Full textKnight, Patrick J. "Nitride formation at silicon surfaces." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238903.
Full textRockett, Chris H. "Flexural Testing of Molybdenum-Silicon-Boron Alloys Reacted from Molybdenum, Silicon Nitride, and Boron Nitride." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16293.
Full textMartinelli, Antonio Eduardo. "Diffusion bonding of silicon carbide and silicone nitride to molybdenum." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40191.
Full textSiC was solid-state bonded to Mo at temperatures ranging from 1000$ sp circ$C to 1700$ sp circ$C. Diffusion of Si and C into Mo resulted in a reaction layer containing two main phases: $ rm Mo sb5Si sb3$ and Mo$ sb2$C. At temperatures higher than 1400$ sp circ$C diffusion of C into $ rm Mo sb5Si sb3$ stabilized a ternary phase of composition $ rm Mo sb5Si sb3$C. At 1700$ sp circ$C, the formation of MoC$ rm sb{1-x}$ was observed as a consequence of bulk diffusion of C into Mo$ sb2$C. A maximum average shear strength of 50 MPa was obtained for samples hot-pressed at 1400$ sp circ$C for 1 hour. Higher temperatures and longer times contributed to a reduction in the shear strength of the joints, due to the excessive growth of the interfacial reaction layer. $ rm Si sb3N sb4$ was joined to Mo in vacuum and nitrogen, at temperatures between 1000$ sp circ$C and 1800$ sp circ$C, for times varying from 15 minutes to 4 hours. Dissociation of $ rm Si sb3N sb4$ and diffusion of Si into Mo resulted in the formation of a reaction layer consisting, initially, of $ rm Mo sb3$Si. At 1600$ sp circ$C (in vacuum) Mo$ sb3$Si was partially transformed into $ rm Mo sb5Si sb3$ by diffusion of Si into the original silicide, and at higher temperatures, this transformation progressed extensively within the reaction zone. Residual N$ sb2$ gas, which originated from the decomposition of $ rm Si sb3N sb4,$ dissolved in the Mo, however, most of the gas escaped during bonding or remained trapped at the original $ rm Si sb3N sb4$-Mo interface, resulting in the formation of a porous layer. Joining in N$ sb2$ increased the stability of $ rm Si sb3N sb4,$ affecting the kinetics of the diffusion bonding process. The bonding environment did not affect the composition and morphology of the interfaces for the partial pressures of N$ sb2$ used. A maximum average shear strength of 57 MPa was obtained for samples hot-pressed in vacuum at 1400$ sp circ$C for 1 hour.
Chen, Wan Lam Florence Photovoltaics & Renewable Energy Engineering Faculty of Engineering UNSW. "PECVD silicon nitride for n-type silicon solar cells." Publisher:University of New South Wales. Photovoltaics & Renewable Energy Engineering, 2008. http://handle.unsw.edu.au/1959.4/41277.
Full textTatli, Zafer. "Silicon nitride and silicon carbide fabrication using coated powders." Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394640.
Full textTuran, Servet. "Microstructural characterisation of silicon nitride-silicon carbide particulate composites." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627653.
Full textQuinn, R. W. "Machining damage in silicon nitride ceramics." Thesis, University of Surrey, 1992. http://epubs.surrey.ac.uk/843210/.
Full textTurner-Adomatis, Bonnie L. "Shock-enhanced sintering of silicon nitride." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/18905.
Full textMuscat, Daniel. "Silicon nitridesilicon nitride whisker-reinforced composites." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60102.
Full textIn this work Si$ sb3$N$ sb4$ whiskers have been incorporated into a Si$ sb3$N$ sb4$ matrix and densified using pressureless sintering. An isotropic distribution of whiskers in the starting powder was seen to inhibit shrinkage of the bulk material as a result of whisker bridging.
An extrusion process was developed to align the whiskers such that they do not impinge on one another. This was done using a water soluble, cellulose based plasticizer. The process was sensitive to water content and mixing. Entrapped air caused problems in the extrudate, resulting in misaligned areas in the microstructure. Relative densities of 94.5% were obtained for composites having 15% whiskers. The toughness of this material was measured to be 13.5MPa.m$ sp{1/2}$ in the direction perpendicular to the direction of extrusion.
Wang, W. "Rolling contact fatigue of silicon nitride." Thesis, Bournemouth University, 2010. http://eprints.bournemouth.ac.uk/17764/.
Full textPettersson, Maria. "Silicon nitride for total hip replacements." Doctoral thesis, Uppsala universitet, Tillämpad materialvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-247800.
Full textKarecki, Simon Martin. "Alternative chemistries for etching of silicon dioxide and silicon nitride." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/43304.
Full textIncludes bibliographical references (p. 123-126).
by Simon Martin Karecki.
M.S.
Pooley, David Martin. "Vertical silicon single-electron devices with silicon nitride tunnel barriers." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621302.
Full textKim, Hyoun-Ee. "Gaseous corrosion of silicon carbide and silicon nitride in hydrogen /." The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487327695622538.
Full textKurra, Sri Harsha. "Nondestructive testing for finding out the displacement of crack in silicon nitride." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textWiseman, Charles R. "Production of silicon and silicon nitride powders by a flow reactor." Ohio : Ohio University, 1988. http://www.ohiolink.edu/etd/view.cgi?ohiou1182874102.
Full textGrove, Richard Sebastian. "Processing and properties of silicon and silicon nitride injection moulding formulations." Thesis, Brunel University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311263.
Full textHepburn, A. R. "Charge trapping instabilities in amorphous silicon/silicon nitride thin film transistors." Thesis, Open University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381605.
Full textBae, Dohyun. "Sputtering fabrication of silicon nitride and silicon oxide based dichroic mirrors." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98645.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 37).
Thin films in optical materials utilize the properties of multiple materials to obtain specific and fine-tuned transmission, absorption and reflectance at wavelengths. Dichroic mirrors exhibit very different reflectance and transmission rates at certain cut-off wavelengths, which can be adjusted using changes in layer materials and thickness. This is due to constructive optical interference between alternating layers of two thin films of different refractive indices. This study explored the sputtering methods of thin-film multilayers to form dichroic mirrors in the visible spectrum for future solar-cell applications. Silicon oxide and silicon nitride targets were selected as materials used in the sputtering process. The sputtered multilayers and films were then characterized and analyzed using spectrophotometry. The transmission spectrum of the initial multilayer depicted failure in transmission at wavelengths under 500nm. The components of the multilayer were then sputtered and analyzed to troubleshoot the problematic nitride films. Transmission spectra were utilized to select each following process, and both reactive sputtering and cosputtering were explored as means of creating nitride films with functional properties. Transmission spectra were analyzed using the Swanepoel method to quantify optical characteristics to assure reactive sputtering of the targets in a nitrogen environment as a viable direction of mirror construction. Possible further work include the use of other targets such as titanium oxide, and different chamber gas mixtures for finer control in the composition of the film layers.
by Dohyun Bae.
S.B.
Morgan, B. A. "Current transport in hydrogenated amorphous silicon nitride." Thesis, University of Surrey, 2000. http://epubs.surrey.ac.uk/842874/.
Full textTrivedi, Dhruti Mayur. "Fabrication and characterization of silicon nitride nanopores." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/7288.
Full textZarnon, Linda Christina. "Grain boundary control of silicon nitride ceramics." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55655.
Full textLemus-Ruiz, Jose. "Diffusion bonding of silicon nitride to titanium." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=37760.
Full textDiffusion bonding was carried out at temperatures ranging from 1200 to 1500ºC using different holding times, pressures, and surface roughness of the joining materials. The results showed that Si3N4 could not be bonded to Ti at temperatures lower than 1400ºC, however successful joining at higher temperatures. Joining occurred by the formation of a reactive interface on the Ti side of the joint. At temperatures greater than 1330ºC, liquid formation occurred by the interaction of Ti with Si promoting bonding, as well as the high affinity of Ti for Si resulted in rapid interface formation of silicides, initially Ti5Si3. EPMA and X-ray diffraction confirmed the presence of Ti5Si3, TiSi, and TiN at the interface. The surface roughness of the joining materials plays an important role since thicker interfaces were obtained for polished samples compared to as-ground samples. The interfaces grew in a parabolic fashion with the formation of various Ti-silicides (Ti5Si3 and TiSi) as well as Ti-nitride (TiN) at the interface.
Evaluation of joint strengths as a function of the experimental parameters such as, joining temperature and time was obtained by four-point bending test performed on Si3N4/Ti/Si3N4 joints. Strong joints were produced at joining temperatures greater than 1450ºC with average bend strength of more than 100 MPa. The maximum joint strength was obtained in samples hot-pressed at 1500ºC and 120 minutes reaching a value of 147 MPa.
Matsushita, Yoshiaki. "Diffusion bonding of silicon nitride to metals." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333487.
Full textBriggs, D. J. E. "The creep behaviour of silicon nitride ceramics." Thesis, Swansea University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636155.
Full textMurakami, T. "Predicting creep behaviour of silicon nitride ceramics." Thesis, Swansea University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638280.
Full textRahman, I. Ab. "Production of silicon nitride from rice husks." Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382871.
Full textAlhabill, Fuad N. F. "Dielectric behaviour of silicon nitride epoxy nanocomposites." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/419656/.
Full textHassan, Shereen Hassan Mohamed Gaber. "Sol-gel preparation of silicon nitride materials." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/72951/.
Full textNel, Jacqueline Margot. "Processing and properties of silicon nitride ceramics." Master's thesis, University of Cape Town, 1993. http://hdl.handle.net/11427/21682.
Full textSilicon nitride, Si₃N₄, ceramics were produced using either silicon or silicon nitride powder. The silicon was reaction bonded in nitrogen atmosphere to form reaction bonded Si₃N₄,which was then sintered between 1700°C and 1800°C to form a dense Si₃N₄ ceramic. The silicon nitride powder compacts were also sintered between 1700°C and 1800°C. In order to achieve densification Y₂O₃-A1₂O₃ additive combination was used in both processing routes. The physical and mechanical properties of the Si₃N₄ materials was found to be dependent on the processing conditions. The post sintered reaction bonded Si₃N₄ materials had the highest densities and hardness values, while the sintered Si3N4 materials had the highest strength and toughness values. The microstructure was also influenced to a great extent by the processing conditions, and this in tum influenced the mechanical properties of the ceramics.
Matović, Branko. "Low temperature sintering additives for silicon nitride." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10806387.
Full textLuginbühl, Reto. "Photobonding of biomacromolecules to Silicon Nitride surfaces /." [S.l.] : [s.n.], 1997. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Full textFallqvist, Amie. "Aberration-Corrected Analytical Electron Microscopy of Transition Metal Nitride and Silicon Nitride Multilayers." Licentiate thesis, Linköpings universitet, Tunnfilmsfysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102176.
Full textMcCann, Michelle Jane, and michelle mccann@uni-konstanz de. "Aspects of Silicon Solar Cells: Thin-Film Cells and LPCVD Silicon Nitride." The Australian National University. Faculty of Engineering and Information Technology, 2002. http://thesis.anu.edu.au./public/adt-ANU20040903.100315.
Full textSheldon, Brian William 1959. "The formation of reaction bonded silicon nitride from silane derived silicon powders." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14453.
Full textIncludes bibliographical references (leaves 222-227).
by Brian William Sheldon.
Sc.D.
Zhang, Xuefei. "Synthesis and Characterization of Zr1-xSixN Thin Film Materials." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/ZhangX2007.pdf.
Full textHenry, Frédéric. "Caractérisation de décharges magnétron Ar/NH3 et Ar/H2/N2 pour la synthèse de films minces de nitrure de silicium." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209837.
Full textLa combinaison des mesures de tension et XPS a permis de mettre en évidence l’empoisonnement de la surface de la cible, consécutif à la formation d’une couche de nitrure de silicium lors de la pulvérisation dans un mélange Ar/NH3. Dans le cas du mélange Ar/H2/N2, les mesures de tension ne permettent pas avec certitude de confirmer un empoisonnement de la cible, néanmoins les mesures XPS mettent en évidence, comme pour le mélange Ar/NH3, la présence d’une couche de nitrure de silicium. Les mesures OES ont permis de détecter les mêmes espèces dans les deux types de mélange gazeux, seule l’espèce NH n’a pas été détectée dans le mélange Ar/H2/N2. Parmi les espèces détectées, certaines sont directement pulvérisées de la cible; il a été possible de relier l’intensité de celles-ci avec l’état de surface de la cible dans le cas du plasma Ar/NH3.
Nous avons également étudié l’instabilité du processus de pulvérisation en combinant des mesures de tension, OES et XPS. Avec une vitesse de pompage de 230 l/s, nous avons observé une très faible hystérèse de la tension pour les deux types de mélange gazeux. Dans le cas du plasma Ar/NH3, nous avons pu mettre en évidence que la bande de l’espèce NH peut être utilisée comme paramètre de contrôle de la décharge. Finalement, nous avons caractérisé les films obtenus par XPS et spectroscopie infrarouge. La stoechiométrie des films déposés va dépendre de la quantité d’ammoniac ou d’azote injecté dans la décharge, les films déposés avec NH3 sont contaminés par quelques pourcents d’oxygène alors que ceux déposés avec le mélange Ar/H2/N2 en sont dépourvus.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Jackson, Helen C. "Effect of variation of silicon nitride passivation layer on electron irradiated aluminum gallium nitride/gallium nitride HEMT structures." Thesis, Air Force Institute of Technology, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3629786.
Full textSilicon nitride passivation on AlGaN\GaN heterojunction devices can improve performance by reducing electron traps at the surface. This research studies the effect of displacement damage caused by 1 MeV electron irradiation as a function of the variation of passivation layer thickness and heterostructure layer variation on AlGaN/GaN HEMTs. The effects of passivation layer thickness are investigated at thicknesses of 0, 20, 50 and 120 nanometers on AlGaN\GaN test structures with either an AlN nucleation layer or a GaN cap structures which are then measured before and immediately after 1.0 MeV electron irradiation at fluences of 1016 cm-2. Hall system measurements are used to observe changes in mobility, carrier concentration and conductivity as a function of Si3N4 thickness. Models are developed that relate the device structure and passivation layer under 1 MeV radiation to the observed changes to the measured photoluminescence and deep level transient spectroscopy. A software model is developed to determine the production rate of defects from primary 1 MeV electrons that can be used for other energies and materials. The presence of either a 50 or 120 nm Si 3N4 passivation layer preserves the channel current for both and appears to be optimal for radiation hardness.
Plucknett, Kevin. "Hot isostatic pressing of silicon nitride based ceramics." Thesis, University of Warwick, 1990. http://wrap.warwick.ac.uk/37879/.
Full textLiu, Junling. "Plasma spray deposition of silicon nitride composite coatings." Thesis, London South Bank University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288111.
Full textPugh, M. D. "Processing reaction bonded silicon nitride towards full density." Thesis, University of Leeds, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372578.
Full textHuang, Tzung-Shi. "Integration of III-nitride semiconductors with silicon technology." Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400229.
Full textScott, J. A. "Plane form grinding of silicon nitride ceramic materials." Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317964.
Full text