Academic literature on the topic 'Silicate composite materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Silicate composite materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Silicate composite materials"
Senthil Kumar, B. R., M. Thiagarajan, and K. Chandrasekaran. "Investigation of Mechanical and Wear Properties of LM24/Silicate/Fly Ash Hybrid Composite Using Vortex Technique." Advances in Materials Science and Engineering 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/6728237.
Full textSavvova, O. V. "Protective impact resistant composite materials based on aluminium-silicate glass-ceramics." Functional materials 26, no. 1 (March 22, 2019): 182–88. http://dx.doi.org/10.15407/fm26.01.182.
Full textJelić, Aleksandra, Milica Sekulić, Milan Travica, Jelena Gržetić, Vukašin Ugrinović, Aleksandar D. Marinković, Aleksandra Božić, Marina Stamenović, and Slaviša Putić. "Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC)." Polymers 14, no. 6 (March 21, 2022): 1255. http://dx.doi.org/10.3390/polym14061255.
Full textYang, Zhijie, De Zhang, Chengyang Fang, Yang Jiao, Dong Kang, Changwang Yan, and Ju Zhang. "Hydration Mechanisms of Alkali-Activated Cementitious Materials with Ternary Solid Waste Composition." Materials 15, no. 10 (May 18, 2022): 3616. http://dx.doi.org/10.3390/ma15103616.
Full textKuatbayeva, T. К., Zh Т. Nashiraliyev, Z. М. Zhambakina, М. G. Bruyako, and А. Т. Orynova. "USE OF OIL AND BITUMINOUS ROCKS AND WASTE FROM THEIR PROCESSING IN CREATION OF COMPOSITE SILICATE MATERIALS." SERIES CHEMISTRY AND TECHNOLOGY 2, no. 440 (April 15, 2020): 83–91. http://dx.doi.org/10.32014/2020.2518-1491.27.
Full textPetit, P. O., P. Goldner, C. Boissière, C. Sanchez, and B. Viana. "New silicate bonding technique for composite laser materials." Optical Materials 32, no. 10 (August 2010): 1368–71. http://dx.doi.org/10.1016/j.optmat.2010.03.026.
Full textHopmann, Christian, Walter Michaeli, and Florian Puch. "Investigation of the processing, the mechanical properties, and the morphology of short glass fiber-reinforced polypropylene-layered silicate composites." Science and Engineering of Composite Materials 19, no. 4 (December 1, 2012): 331–38. http://dx.doi.org/10.1515/secm-2012-0035.
Full textIshartono, Bayu, Suyanta Suyanta, and Indriana Kartini. "Effect of Zeolite to Clay Ratios on the Formation of Zeolite-Clay-White Cement Composite Cylinder as an Encapsulant of Urea Fertilizer." Key Engineering Materials 884 (May 2021): 196–203. http://dx.doi.org/10.4028/www.scientific.net/kem.884.196.
Full textHúšťavová, Jana, Vít Černý, and Rostislav Drochytka. "Influence of Expansion on Properties and Microstructure of Calcium Silicate Composite Material." Key Engineering Materials 808 (June 2019): 136–42. http://dx.doi.org/10.4028/www.scientific.net/kem.808.136.
Full textZhou, Zifan, Guofu Tu, Feng Xu, Zhaofeng Song, and Na Li. "Preparation and properties of silicate inorganic exterior wall insulation based on thermal energy storage." Thermal Science 24, no. 5 Part B (2020): 3109–18. http://dx.doi.org/10.2298/tsci191104085z.
Full textDissertations / Theses on the topic "Silicate composite materials"
Izadifar, Mohammadreza [Verfasser], and P. [Akademischer Betreuer] Thissen. "Interaction in Calcium Silicate Hydrates and new Composite Materials / Mohammadreza Izadifar ; Betreuer: P. Thissen." Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1234063727/34.
Full textMATSUI, JEFERSON M. "Estudo de degradação a baixa temperatura de cerâmicas Y-TZP/Al2O3 sintetizadas por coprecipitação." reponame:Repositório Institucional do IPEN, 2017. http://repositorio.ipen.br:8080/xmlui/handle/123456789/28024.
Full textMade available in DSpace on 2017-11-17T17:43:50Z (GMT). No. of bitstreams: 0
A zircônia tetragonal estabilizada por ítria (Y-TZP) têm sido utilizada na área odontológica para próteses livres de metais devido à estética associada ao alto desempenho mecânico. Porém, a presença de ambiente úmido pode causar a transformação acelerada da fase tetragonal para monoclínica e consequente falha catastrófica deste material, processo este conhecido como degradação a baixa temperatura ou envelhecimento. A cinética desta transformação é função da composição química da cerâmica e sua microestrutura. Tendo em vista que métodos químicos permitem a síntese de pós cerâmicos à base de zircônia de dimensões nanométricas, cuja microestrutura da cerâmica sinterizada é constituída por grãos submicrométricos quimicamente homogêneos, e que a presença de alumina é indicada para evitar a degradação de fases da zircônia, o objetivo deste estudo foi verificar a degradação a baixa temperatura e ambiente úmido de cerâmicas de zircônia estabilizada com 3 mol% de ítria (Y-TZP) e do compósito Y-TZP/Al2O3, proveniente de pós sintetizados pela rota de coprecipitação. A concentração de alumina na Y-TZP foi estudada na faixa de 0,05 a 20% em massa. A eficiência do processo desenvolvido foi verificada pela avaliação das características físicas dos pós obtidos (granulometria, área de superfície específica, estado de aglomeração e estrutura cristalina). As amostras cerâmicas foram prensadas, sinterizadas e avaliadas quanto à densidade aparente e microestrutura. Após a caracterização inicial das cerâmicas a degradação das amostras foi estudada in vitro em reator hidrotérmico pressurizado a 150°C. As amostras (n=4) foram submetidas à análise de difração de raios X de acordo com o tempo de envelhecimento, acompanhando a curva cinética de transformação de fase. A porcentagem de cada fase cristalina foi determinada pelo Método de Rietveld. A relação entre o tempo de envelhecimento e a concentração de fase monoclínica foi determinada pela equação de Avrami modificada por Kolmogorow (Johnson-Mehl- Avrami-Kolmogorow JMAK). Após envelhecimento a 150°C por 70 horas, todas as amostras contendo alumina apresentaram menor concentração de fase monoclínica, comparativamente à cerâmica Y-TZP, que apresentou 66,5% dessa fase. Menores porcentagens de fase monoclínica após o envelhecimento hidrotérmico foram obtidas com a adição de 10 e 20% em massa de alumina na matriz de zircônia, sendo esses valores 59,1 e 52,9%, respectivamente. Deve-se considerar, no entanto, que a diminuição da degradação total é consequência da menor porcentagem de zircônia na matriz em função da adição de alumina. Neste contexto, o efeito benéfico da adição de alumina ocorre apenas no início do envelhecimento.
Dissertação (Mestrado em Tecnologia Nuclear)
IPEN/D
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
Işık, Kıvanç Tanoğlu Metin. "Layered silicate/polypropylene nanocomposites/." [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/makinamuh/T000532.pdf.
Full textAndrade, Gracielle Ferreira. "Funcionalização de sílica mesoporosa para aplicação em sistemas de liberação controlada de fármacos." CNEN - Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 2011. http://www.bdtd.cdtn.br//tde_busca/arquivo.php?codArquivo=145.
Full textMateriais mesoporosos ordenados tipo SBA-16 possuem uma rede de canais e poros de tamanho bem definido na escala nanométrica, com estrutura cúbica, elevada área superficial (400 1000 m2.g-1) e tamanho de poros usualmente em torno de 2 a 30 nm. Essa estrutura de poros torna esses materiais apropriados para incorporar e liberar uma grande variedade de moléculas na sua matriz. Dentre os diversos tipos de materiais SBA, o SBA-16 é considerado uma mesoestrutura muito interessante devido ao fato de possuir um ordenamento de mesoporos cúbico tridimensional correspondente ao grupo especial Im3m, podendo ser um material promissor para várias aplicações. Os materiais mesoporosos podem sofrer diversas modificações na sua superfície, devido à presença dos grupos silanóis, podendo produzir um material com uma funcionalidade direcionada. Neste trabalho, estudou-se a síntese e caracterização do material SBA-16 puro e após o processo de funcionalização para avaliar sua aplicação como sistema de liberação controlada de um fármaco modelo. O processo de modificação da superfície foi realizado pelo método pós-síntese, ou seja, após o obter o material SBA-16, esse passou por um segundo processo para se obter as amostras funcionalizadas. A caracterização do SBA-16 puro e funcionalizado foi feita por análise elementar (CHN), Espectroscopia na Região do Infravermelho com Transformada de Fourier (FTIR), Análise Termogravimétrica (TG), Adsorção de Nitrogênio, Microscopia Eletrônica de Varredura (MEV), Microscopia Eletrônica de Transmissão (MET), Espalhamento de Raios X a Baixos Ângulos (SAXS), e Ressonância Magnética Nuclear (RMN). Por meio da técnica de espectroscopia de absorção na região do infravermelho, foi possível observar, a partir dos espectros das amostras funcionalizadas, bandas características das vibrações da rede de sílica, bem como bandas referentes às vibrações dos grupos alquilas ancorados na estrutura da sílica. A presença do fármaco atenolol no material mesoporoso e nas amostras funcionalizadas também pode ser confirmada por meio das medidas de FTIR. A estabilidade térmica e as degradações que ocorrem nos componentes puros, bem como nas amostras modificadas na superfície, foram investigadas e estabelecidas pela análise termogravimétrica. Por meio da TG foi possível quantificar a presença dos grupos orgânicos ancorados nesse material. A presença dos grupos orgânicos conduziu a alterações na estrutura do material final, com a diminuição da área superficial e volume de poros. Porém, a distribuição de poros se mostrou semelhante em todas as amostras. Os resultados de MEV, MET e SAXS do SBA-16 e das amostras funcionalizadas revelaram uma estrutura bem ordenada de mesoporos, característica intrínseca desses materiais. Por meio das medidas de ressonância magnética nuclear de 29Si e 13C de estado sólido (RMN-MAS) nas amostras funcionalizadas, foi possível caracterizar e avaliar a forma de ligação desses grupos orgânicos na matriz de sílica. Através do ensaio de liberação, foi possível avaliar a quantidade de atenolol incorporado e verificar o comportamento da liberação desse nas amostras sintetizadas. Com os resultados de citotoxicidade foi possível determinar a viabilidade celular, obtendo-se resultados satisfatórios para uma futura aplicação clínica desse material.
Type ordered mesoporous materials SBA-16 have a network of channels and well defined pore size in nanometer scale. Cubic structure has a high surface area (400 - 1000m2.g-1) and pore size is usually around 20 to 30 nm. This porous structure makes these materials appropriate to incorporate and release a large variety of molecules in the matrix. Among these SBA-type silica materials, SBA-16 is considered a very interesting mesostructure due to the its 3D cubic arrangement of mesopores corresponding to the Im3m space group, a promising material for a large range of applications. The mesoporous materials may undergo several changes in its surface due to the presence of silanol groups, which can produce a material with a targeted feature. The materials were characterized by elemental analysis (CHN), Fourier Transform Infrared Spectroscopy (FTIR), Nitrogen Adsorption, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Small Angle X Ray Scattering (SAXS), Nuclear Magnetic Resonance (RMN), and Thermal Analysis. Through the FTIR analysis technique, it was possible to observe characteristic bands of the silica vibrations, as well as vibrations bands due the presence of alkyl groups anchored into the silica structure. The presence of the atenolol in the mesoporous material and functionalised samples was also confirmed by FTIR. The thermal stability and the degradation of the surface modified samples were determined by thermogravimetry. The incorporation of the organic groups into the mesoporous silica led to a significant change in the structural properties of the system, with the decrease of the specific surface area and pore volume, but the pore size distribuition was similar in all samples. The results obtained by SEM, TEM and SAXS for the samples reveal a well-defined cubic arrangement of uniform mesoporous structure, intrinsic characteristic of these materials. By measuring nuclear magnetic resonance of 29Si and 13C solid state (MAS-NMR) in the functionalized samples, it was possible to characterize and measure the extent of binding of organic groups in the silica matrix. Through the release assay was possible to evaluate the amount of embedded atenolol and verify the behavior of the drug release from the synthesized samples. Considering the results of cytotoxicity, it was possible to determine cell viability by obtaining satisfactory results for future clinical application of this material.
Tang, Youhong. "Microrheological study on polyethylene/thermotropic liquid crystalline polymer/layered silicates nanocomposites /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CENG%202007%20TANG.
Full textWu, Yuhong 1972. "Silicone resins and their composites." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29976.
Full textIncludes bibliographical references.
Addition cure (X1-2672) and condensation cure (4-3136) silicone resins have been studied for their mechanical property change with temperature. Properties include maximum flexural stress, flexural modulus and fracture toughness K[sub]IC. Temperature effect on mechanical properties of addition cure resin is substantial and also depends on the crosslinkers used. Generally the maximum stress and flexural modulus decrease with temperature, and the dependence upon crosslinkers in addition cure resin is obvious. Fracture toughness data of addition cure silicone resins have a peaking behavior with the peak appearing [approximately] 58-101CÌ (depending on the crosslinker) below their glass transition temperatures. This can be explained by the competing effect between network mobility and rigidity of the silicone polymer. Rate effect on fracture toughness of silylphenylene crosslinked 2672 has also been studied. It is concluded that the temperature effect on such a system is more dominant compared to the rate effect. The condensation resins also experience decrease in modulus and strength but the toughness changes little with temperature. This is due to its tight network structure. Silylphenylene crosslinked addition cure resin (2672B) and the toughened condensation cure resin (3136T) were used to make silicone fiberglass laminates. They have been successfully processed with a vacuum bagging technique. Silicone resin composites are proved to be thermally stable, moisture resistant and fire resistant. However, they have weak strength and modulus. Their temperature dependence of mechanical properties is also big and results in poor property retention at high temperatures. 2672B was used to produce hybrid composites with an organic resin-vinyl ester. The processes of curing the hybrid composites in both sequential cure and co-cure methods prove to be successful. The hybrid composites are stronger and their property retention at elevated temperatures is improved compared to silicone resin composites. They also have improved moisture resistance, thermal stability and fire resistance over vinyl ester composites. The co-cured V/B 8/4 structure has excellent strength and rigidity and also extraordinary property retention at high temperatures, which can be explained by the chemical reaction at the silicone resin and vinyl ester resin interface. The hybrid composites prove to be successful in having balanced mechanical and environmental properties.
by Yuhong Wu.
Ph.D.
Becker, Lars-Ole 1973. "High performance epoxy-layered silicate nanocomposites." Monash University, School of Physics and Materials Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/5747.
Full textYiu, Stephen Cheuk Bun. "Crystallization, structure and mechanical characteristics of polymer-silicate nanocomposites." access abstract and table of contents access full-text, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/dissert.pl?msc-ap-b21175329a.pdf.
Full textAt head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Sept. 4, 2006) Includes bibliographical references.
Kwok, Yee Shan. "Crystallization, structure and mechanical characteristics of polymer-silicate nanocomposites." access abstract and table of contents access full-text, 2005. http://libweb.cityu.edu.hk/cgi-bin/ezdb/dissert.pl?msc-ap-b21174386a.pdf.
Full textAt head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Sept. 1, 2006) Includes bibliographical references.
Mariappan, L. "In-Situ Synthesis Of A12O3_ZrO2_SiCw Ceramic Matrix Composites By Carbothermal Reduction Of Natural Silicates." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/215.
Full textBooks on the topic "Silicate composite materials"
Ke, Y. C. Polymer-layered silicate and silica nanocomposites. Boston, Mass: Elsevier, 2005.
Find full textPapailiou, Konstantin O. Silicone Composite Insulators: Materials, Design, Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textToturbiev, B. D. Stroitelʹnye materialy na osnove silikat-natrievykh kompozit͡s︡iĭ. Moskva: Stroĭizdat, 1988.
Find full text1961-, Liang Guozheng, and Lu Haijun, eds. Ju he wu / tian ran gui suan yan nian tu na mi fu he cai liao. Beijing: Ke xue chu ban she, 2009.
Find full textThermal history effects on electrical relaxation and conductivity for potassium silicate glass with low alkali concentrations. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textPapailiou, Konstantin O., and Frank Schmuck. Silicone Composite Insulators: Materials, Design, Applications. Springer, 2012.
Find full textPapailiou, Konstantin O., and Frank Schmuck. Silicone Composite Insulators: Materials, Design, Applications. Springer, 2016.
Find full textSilica and Clay Dispersed Polymer Nanocomposites: Preparation, Properties and Applications. Woodhead Publishing, 2018.
Find full textPandey, Jitendra K., Kummetha Raghunatha Reddy, Amar Kumar Mohanty, and Manjusri Misra. Handbook of Polymernanocomposites. Processing, Performance and Application : Volume A: Layered Silicates. Springer, 2016.
Find full textPandey, Jitendra K., Kummetha Raghunatha Reddy, Amar Kumar Mohanty, and Manjusri Misra. Handbook of Polymernanocomposites. Processing, Performance and Application : Volume A: Layered Silicates. Springer, 2014.
Find full textBook chapters on the topic "Silicate composite materials"
Shim, Jae Hun, Jae Hun Choi, Jung Hiuk Joo, and Jin San Yoon. "Influence of Silicate Surface Modification on Morphology and Mechanical Properties of Nylon6/Clay Nanocomposites." In Advances in Composite Materials and Structures, 877–80. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.877.
Full textXi, Xiao Qing, Jin Long Yang, Xin Yue Zhang, and Xiao Ouyang. "Effect of Micro-Pores after Sintering on Wear Behavior of Zirconium Silicate Composite Microbeads." In Key Engineering Materials, 1439–41. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.1439.
Full textRivas Murillo, J., R. Mohan, and A. Mohamed. "Constitutive Material Models for High Strain Rate Behavior of Cementitious Materials from Material Chemistry—Molecular Dynamics Modeling Methodology with Illustrative Application to Hydrated Calcium Silicate Hydrate Jennite." In Blast Mitigation Strategies in Marine Composite and Sandwich Structures, 423–42. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7170-6_22.
Full textPapailiou, Konstantin, and Frank Schmuck. "Material Selection and Manufacturing Processes for Composite Insulators with Silicone Rubber Housing." In Silicone Composite Insulators, 197–283. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-15320-4_7.
Full textShagwira, Harrison, Fredrick Madaraka Mwema, and Thomas Ochuku Mbuya. "Introduction to Composite Materials for Green Construction Industry." In Polymer-Silica Based Composites in Sustainable Construction, 1–14. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003231936-1.
Full textBlack, E. P., T. A. Ulibarri, G. Beaucage, D. W. Schaefer, Roger A. Assink, D. F. Bergstrom, P. A. Giwa-Agbomeirele, and G. T. Burns. "Sol—Gel-Derived Silica—Siloxane Composite Materials." In ACS Symposium Series, 237–46. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0585.ch018.
Full textZhou, Li Zhong, and De Chang Jia. "Rheological Properties of Boron Nitride-Silica Composite Suspensions." In Key Engineering Materials, 988–90. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.988.
Full textGrassi, Giulia, Bjorn Sparrman, Ingrid Paoletti, and Skylar Tibbits. "4D Soft Material Systems." In Proceedings of the 2021 DigitalFUTURES, 201–10. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5983-6_19.
Full textShagwira, Harrison, Fredrick Madaraka Mwema, and Thomas Ochuku Mbuya. "Processing, Testing, and Failure Modes in Polymer Materials." In Polymer-Silica Based Composites in Sustainable Construction, 15–26. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003231936-2.
Full textZhao, Jiu Peng, Deng Teng Ge, Sai Lei Zhang, and Xi Long Wei. "Studies on Thermal Property of Silica Aerogel/Epoxy Composite." In Materials Science Forum, 1581–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-432-4.1581.
Full textConference papers on the topic "Silicate composite materials"
Wei, Gaosheng, Yusong Liu, Xiaoze Du, and Xinxin Zhang. "Gaseous Conductivity Study on Silica Aerogel and Its Composite Insulation Materials." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22099.
Full textHúšťavová, Jana, Vít Černý, and Rostislav Drochytka. "Study of the influence of the secondary raw materials on microstructure and properties of calcium silicate composite." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.129.
Full textWei, Gaosheng, Yusong Liu, Xinxin Zhang, and Xiaoze Du. "Thermal Radiation in Silica Aerogel and its Composite Insulation Materials." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62632.
Full textAgourrame, Hind, Amine Belafhaili, Nisrine El Fami, Nacer Khachani, Mohamed Alami Talbi, Ali Boukhari, and Adeljebbar Diouri. "Stabilization of Dicalcium Silicate-Zn Composite Approaching Layered Double Hydroxide Structure for Bioactive Cement Applications." In 4th International Conference on Bio-Based Building Materials. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/www.scientific.net/cta.1.668.
Full textGo¨ring, Ju¨rgen, Bernd Kanka, Martin Schmu¨cker, and Hartmut Schneider. "A Potential Oxide/Oxide Ceramic Matrix Composite for Gas Turbine Applications." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38836.
Full textWu, Xiaorong, Yizhi Liu, and Weili Xie. "Development and characterization of novel light-curable composite resins with calcium phosphate silicate cement." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Nakhiah C. Goulbourne. SPIE, 2017. http://dx.doi.org/10.1117/12.2263167.
Full textOzbulut, Osman E., Zhangfan Jiang, and Guohua Xing. "Evaluation of Various Factors on Electrical Properties of GNP-Reinforced Mortar Composites." In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8062.
Full textSusilo, Macuk, Wijang Wisnu Raharjo, and Kuncoro Diharjo. "Inflammability of GFRP composite with the addition of aluminum tri-hydroxide, boric acid, and sodium silicate." In PROCEEDINGS OF THE 13TH AUN/SEED-NET REGIONAL CONFERENCE ON MATERIALS (RCM 2020) AND THE 1ST INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING AND MANUFACTURING (ICMEM 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0067006.
Full textKumar, Aravind S., Bharati Raj J, and Keerthy M. Simon. "Shear Strength of Steel Fiber Reinforced Reactive Powder Concrete & Geopolymer Concrete – A Comparison." In International Web Conference in Civil Engineering for a Sustainable Planet. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.112.43.
Full textSancaktar, E., and J. Kuznicki. "Stress-Dependent Water Uptake Behavior of Clay Reinforced Nanocomposite Epoxy." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80549.
Full textReports on the topic "Silicate composite materials"
Lee, Matthew Nicholson, Kyle James Cluff, and Matthew Douglass Crall. Advanced Manufacturing of Porous and Composite Silicone Materials. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1635503.
Full text