Dissertations / Theses on the topic 'Silica monolith'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Silica monolith.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Smith, Jennifer Houston. "Chromatographic Properties of Silica-Based Monolithic HPLC Columns." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/29953.
Full textPh. D.
El-Debs, Racha. "Synthèse de colonnes capillaires de monolithes de silice et développement d’un procédé photochimique simple, localisable et polyvalent de fonctionnalisation de leur chimie de surface." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10254.
Full textThis manuscript is dedicated to the development and functionalization of monolithic silica stationary phases for miniaturized separation techniques. The bibliographic section first summarizes the interest of monolithic phases for the development of miniaturized separation techniques and their advantages over their particulate counterparts (small particles or core shell ones). The state of the art on the use of silica monolithic columns in separation techniques is then established, with a focus on their use in the analysis of biological and/or environmental samples (coupling sample preparation with an analysis method or using long columns). Then a detailed description of the sol gel synthesis of monolithic silica is presented. Finally, a study of different established methods of functionalization of silica monoliths is presented and the potential of photofunctionalization is highlighted for the rapid and homogeneous in-situ functionalization of monolithic capillaries. The experimental part focuses first on the development and optimization of a robust process of synthesis of monolithic silica capillary columns (efficiencies around 160 000-200 000 plates/m). The work is then focused on the improvement of classical functionnalization processes and on the development of new photofunctionalization ways (photopolymerization and photo click chemistry) of silica monolithic columns. The results obtained after photofonctionnalisation in various chromatographic modes (from ion exchange to reversed phase and HILIC) mode with different monomers show that these methods are versatile and that the control of the parameters allows keeping the chromatographic performances of the starting material. Besides its simplicity and speed, this approach allows to define and to locate different surface chemistries in the same column. This specificity has been exploited to the in-line coupling a preconcentration step with a separation step in a single column, for the separation of model neuropeptides
Khattab, Amin Khalid. "Fabrication, functionalization and characterization of silica monolith for forensic chemistry applications." Thesis, University of Hull, 2014. http://hydra.hull.ac.uk/resources/hull:10112.
Full textCALDAROLA, DARIO. "Silica beds and silica monoliths for pollutants removal and HPLC." Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2506223.
Full textRoux, Richard. "Synthèse de phase stationnaires monolithiques de silice hybrides pour les techniques séparatives miniaturisées." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10208.
Full textThis manuscript is dedicated to the synthesis (via sol-gel process) and caracterization of hybrid monolithic silica for miniaturized separation techniques : nano-liquid chromatography (nano-LC), capillary electrochromatography (CEC) and microchips. The bibliography part deals with the recent axis of development of these separatives techniques : increase of efficiency per time unit, increase of peak capacity and miniaturisation of these techniques. After an overview of this evolution, the manuscript is focused on the silica monolithic stationnary phases. Finally, a detailed study on the different kinds of protocol fonctionnalization of these silica monoliths highlights the advantage of simplifying the synthesis using a single step protocol (« one pot »). The experimental part is also focused on this kind of single step protocol so as to synthesize hybrid silica monoliths dedicated to the reversed phase mode in chromatography. First, the synthesis of hybrid C3 silica monoliths shows the ability to synthesize a functionnalized silica monolith via a single step sol gel process (« one pot »). Then, this kind of process is used and optimized in order to synthesize a hybrid C8 silica monolithic into capillaries. These stationary phases allowed reaching performances similar to those synthesized in two steps (sol-gel process and grafting) and to the particulate columns (5 μm)
Zhang, Tong. "Preparation, characterization, modification and application of hybrid silica-based monolith in capillary electrochromatography." Thesis, University of Strathclyde, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487859.
Full textMarechal, Audrey. "Colonnes monolithiques multimodales photofonctionnalisées dédiées aux techniques séparatives miniaturisées." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10308/document.
Full textMiniaturization of analytical processes is a general trend in analytical chemistry. Such trend is driven by the development of new experimental approaches based, for example, on hyphenated analytical steps or techniques. The in-line coupling of different and generally orthogonal/complementary separation mechanisms at the microscale, is dependent on the capability to define functional segments (open column segments and/or filled with stationary phase). Preparation of such "multimodal" capillary columns is based on (1) the in-capillary synthesis of a "generic" porous silica monolith and (2) on its localized chemical surface modification to define specific functional segments. Herein, two innovative photo-functionalization processes have been investigated for the preparation of multimodal miniaturized columns. The former, called photopolymerization is based on acrylate free radical polymerization reactions while the latter, called photografting, implements the thiol-ene "photoclick chemistry" reaction. These photo-initiated processes, after optimization, prove to be rapid (within few minutes), versatile (adapted to the grafting of various monomers) and localizable. Photopolymerization of acrylate monomers on activated silica monolith (using ?-methacryloxypropyltrimethoxysilane) gives rise to highly retentive columns due to the polymeric nature of the layer obtained. Photografting of octadecanethiol on vinylized silica columns leads to monolayer-like coating. The preparation of dedicated multimodal columns using such approaches was then successfully applied to the in-line preconcentration / separation of neuropeptides and preconcentration / fractionation of various neutral and charged compounds. The "click chemistry" approach which allows a better control of the reaction, has been extended to the grafting of biomolecules for the preparation of immunoaffinity supports. Thus, a multimodal column composed a 1-cm length aptamer-functionalized monolith at the entrance of a CZE open capillary has been prepared and successfully applied to the in-line preconcentration/electrokinetic separation of Ochratoxin A in white wine and beer
Izaak, T. I., D. О. Martynova, V. V. Maas, E. М. Slavinskaya, А. I. Boronin, and Y. W. Chen. "Synthesis and Properties of Ag / CuO / SiO2 Nanocomposites." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35611.
Full textSouza, Israel Donizéti de. "Desenvolvimento de fases monolíticas de sílica híbrida para microextração em sorvente empacotado (MEPS) de fármacos em amostras de plasma e análise por cromatografia líquida acoplada a espectrometria de massas em tandem (LC-MS/MS)." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/59/59138/tde-02092015-093155/.
Full textAccording to World Health Organization (WHO), schizophrenia is recognizably a devastating neuropsychiatric disorder that affects more than 21 million people worldwide. To lessen the symptoms associated with the disease, most schizophrenic patients use other classes of drugs such as antidepressants, anxiolytics, and anticonvulsants concomitantly with antipsychotics. Developing analytical methods to quantify these drugs in biological fluids is important in therapeutic drug monitoring (TDM) to adjust doses, minimize adverse effects, and check patient adherence to the therapy. Regarding miniaturization and automation, microextraction by packed sorbent (MEPS) is a promising sample preparation technique. Sample preparation of biological matrixes is an important step in analytical processes: it removes endogenous components from the sample and pre-concentrates trace-level analytes. The development of new phases for MEPS such as the hybrid silica monoliths allows selective pre-concentration of the analytes. The present study reports on the synthesis of two hybrid silica monoliths functionalized with aminopropyl or cyanopropyl groups by the solgel process; evaluates these monoliths as selective stationary phase for MEPS to determine drugs in plasma samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS); and discusses important factors (influence of pH on the sorption of analytes, number of draw/eject cycles, washing step, and elution solvent) related to the optimization of MEPS efficiency. The prepared hybrid silica monoliths consisted of a uniform, porous, and continuous silica monolithic network, as shown by scanning electron microscopy (MEV) images. The Fourier-transform infrared spectroscopy (FTIR) spectra of the hybrid silica monoliths displayed readily identifiable peaks, characteristic of the cyanopropyl and aminopropyl groups. Compared with the aminopropyl hybrid silica phase, the cyanopropyl hybrid silica phase exhibited higher binding capacity for most of the target drugs. The developed method, MEPS/LC-MS/MS, afforded adequate linearity at concentrations ranging from the lower limit of quantification (0.05 to 1.00 ng.mL-1) to the upper limit of quantification (40 to 10500 ng.mL-1); the coefficients of determination (R2) were higher than 0.9955. The precision of the method presented coefficients of variation (CV) lower than 14%; the relative standard error (RSE) of the accuracy ranged from -12 to 14%. The developed MEPS/LC-MS/MS method allowed for simultaneous analysis of five antipsychotics (olanzapine, quetiapine, clozapine, haloperidol, and chlorpromazine) in combination with seven antidepressants (mirtazapine, paroxetine, citalopram, sertraline, imipramine, clomipramine, fluoxetine), two anticonvulsants (carbamazepine and lamotrigine), and two anxiolytics (diazepam and clonazepam) in plasma samples from schizophrenic patients, which should be valuable for TDM purposes.
Fleury, Joachim. "Développement de phases stationnaires monolithiques pour la chromatographie en phase gazeuse miniaturisée ultra-rapide." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066652.
Full textThe miniaturization of conventional gas chromatography (GC) systems is of major interest for many applications. The aim is to achieve improvements in existing systems, in terms of portability and autonomy, but also in terms of analysis time and cost. Ultimately, these miniaturized GC systems could be field-portable for near real-time continuous monitoring. In this context, this PhD project consisted in developing silica-based monolithic stationary phases in order to obtain ultra-fast separation of very volatile compounds such as C1-nC5 light alkanes. First of all, in situ synthesis of a silica monolith in capillaries of 75 μm i.d. has been optimized via a sol-gel approach in order to adapt the permeability, and therefore the macroporous structure of the materials, for gas flows. For the first time, fast C1-nC5 separations were obtained at conventional column inlet pressures (Pin < 4 bar). The second part of this PhD project consisted in optimizing and controlling the surface state of the monoliths by the development of two different post-synthesis treatments with the objective of eliminating the residual organic porogen. Ultra-fast C1-nC5 separations (at a few seconds) at high temperature and isothermal conditions were achieved due to the high retention and efficiency of the materials. Finally, the yield, repeatability and reproducibility of silica monoliths synthesis were studied in order to evaluate their potential large-scale production
Courtois, Julien. "Monolithic separation media synthesized in capillaries and their applications for molecularly imprinted networks." Doctoral thesis, Umeå : Department of Chemistry, Umeå Univ, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-923.
Full textGutiérrez, Ponce María de Jesús Santa. "Síntese e caracterização de nova fase monolítica para eletrocromatografia capilar usando método sol-gel." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/249684.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Química
Made available in DSpace on 2018-08-19T09:05:26Z (GMT). No. of bitstreams: 1 GutierrezPonce_MariadeJesusSanta_D.pdf: 3412773 bytes, checksum: 0fb510ed608f7a239752ee164a4215ad (MD5) Previous issue date: 2011
Resumo: Monolitos à base de sílica têm sido usados como fases estacionárias em eletrocromatografia capilar e apresentam vantagens em relação aos materiais particulados tais como: melhor homogeneidade; controle do tamanho dos poros; alta estabilidade mecânica e térmica; minimização da formação de bolhas e diminuição de problemas com filtros. O presente trabalho teve como objetivo a síntese e caracterização de uma nova fase estacionária monolítica à base de sílica com grupos carboxílicos em sua estrutura, os quais ajudam a sustentar o fluxo eletrosmótico e conferem características de troca catiônica à fase. A fase estacionária monolítica foi sintetizada empregando o processo sol-gel. A síntese do agente sililante foi feita a partir de ácido 4-aminobenzóico e trietóxipropilisocianatossilano. A derivatização da fase estacionária monolítica foi feita adicionando-se ao monolito uma solução de 10% do silano em DMF e deixando reagir por 6 horas a 60 °C. A fase estacionária monolítica funcionalizada foi avaliada por microscopia eletrônica de varredura, espectroscopia no infravermelho e análise elementar. A fase estacionária também foi testada com um equipamento de eletroforese capilar construído no laboratório com detecção condutométrica sem contato (CD) e um equipamento de eletroforese capilar Agilent com detecção UV. Os resultados da microscopia eletrônica confirmaram a formação do monolito dentro do capilar e a espectroscopia no infravermelho, bem como a análise elementar permitiram caracterizar tanto o monolito como o silano empregado na funcionalização do monolito. Na avaliação com detector CD foram separados cátions e aminoácidos, evidenciando a característica de troca catiônica da fase. Na avaliação com detector UV foi confirmada a falta de seletividade da fase para compostos apolares, mas, foram separados alguns fármacos básicos com boa resolução e formato de pico o que indica a possibilidade de aplicação da nova fase em separações de compostos básicos
Abstract: Monoliths are used as stationary phases in capillary electrochromatography since they can effectively overcome the difficulties associated with packed capillary column technology. A remarkable advantage of monolithic columns is the elimination of the end frits required to retain particulate stationary phases. The aim of the present study was to synthesize and characterize a new silica-based monolithic stationary phase with carboxylic groups in its structure, which help to support the electroosmotic flow and confer characteristics of cation-exchange to the phase. The formation of the monolith inside the capillary was achieved using the sol-gel method. The silylant agent was made from 3-(triethoxysilyl)propylisocyanate and 4-aminobenzoic acid. The surface modification of the monolith with the silylant agent used a 10% solution in DMF, left to react for 6 h at 60 °C. The modified monolithic column was evaluated by scanning electron microscopy, infrared spectroscopy and elemental analysis. The column was tested using a homemade capillary electrophoresis system with a capacitively coupled contactless conductivity detector (CD) and with Agilent capillary electrophoresis equipment with UV detection. The results of scanning electron microscopy confirmed the formation of the monolith while infrared spectroscopy and elemental analysis characterized the synthesized silylant agent used in the modification of the monolithic column as well as the modified monolith. In evaluations with the CD cations and amino acids were separated, showing the characteristics of a cation-exchange phase. With UV detection the lack of phase selectivity for apolar compounds was confirmed, but some basic drugs were separated with good resolution and peak shape, which indicates the possibility of applying the new phase in separations of basic compounds
Doutorado
Quimica Analitica
Doutor em Ciências
Venet, Saphir. "Stockage du CO2 et séparation CO2/CH4 par des matériaux de silice à porosité et fonctionnalité contrôlées : étude expérimentale et modélisation de dynamique moléculaire." Thesis, Pau, 2018. http://www.theses.fr/2018PAUU3027/document.
Full textThis work aims to evaluate the performance of silica-based materials and to rationalize their synthesis according to their desired adsorption properties (capacity and/or selectivity) by combining experimental approaches and the management of the molecular animal. These materials are ideally suited for CO2 adsorption capacity but also CO2/ CH4 selectivity. The different stages of this work were:- the synthesis and functionalization of the silica materials,- their textural and chemical characterization,- the determination of CO2 adsorption capacities, of their CO2/ CH4 selectivity.- the characterizations by various spectroscopic and microscopic techniques of tests to try to locate the adsorption of CO2 and to measure its mobility,- microscopic identification by the factor of physic-Factors influence the preferential adsorption of CO2 and its diffusivity in the role of hydrophilic / hydrophobic character in silica by functional.These objectives required the preparation of high specific surface materials through a simple sol-gel process. These materials have been modified in order to obtain a degree of functionalization with -CH3 groups sufficient to modify the hydrophilic nature of the material while maintaining a sufficient specific surface area. The influence of pore size was also probed.The adsorption capacities of the gases under pressure were carried out for pure gases but also on CO2/ CH4 mixtures in different proportions. The CH4/ CO2 selectivity, often estimated from the pure body isotherms and / or the IAST method, was in this case determined from the direct measurement of the isotherms of the gas mixtures. It has become apparent that water plays a crucial role in adsorption capacity and selectivity. This parameter is one of those studied through molecular dynamics simulations. The influence of the introduction of hydrophobic groups has also been explored.The results obtained by molecular dynamics are on the whole in good agreement with the experimental data. These two parallel experience / theory approaches have highlighted the selectivity of one of the materials for applications where the gaseous effluent is little loaded with CO2
Lynch, John. "Encapsulation of Bacterial Endospores in Silica Aerogel Monoliths." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1385114520.
Full textAhmad, Sher. "Traitement des eaux contenant de la tétracycline avec la laccase de Trametes Versicolor immobilisée sur des monolithes de silice macroporeux." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTG034.
Full textIn this research work, silica monoliths with high porosity (83 %), double pore size distribution (20 μm and 20 nm macro- and mesopores diameters, respectively) and high surface area (370 m2 g-1) have been used as solid supports to immobilize a laccase from Trametes versicolor by covalent grafting with glutaraldehyde. Enzymatic monoliths were applied to degrade tetracycline (TC) in aqueous solutions in a tubular “Flow Through Reactor” configuration with recycling. During the first 5h of reaction at pH 7, 40–50% of TC was degraded, and then a threshold was reached. One of the hypotheses explaining this behaviour is a possible co-substrate lack (oxygen) near catalytic sites. Enzymatic monoliths were used during 75 h of sequential operation without losing activity. A mathematical model built coupling the Michaelis-Menten reaction kinetics with a dynamic mass balance allowed computing TC degradation efficiency. Simulation results revealed that the global process is controlled by the enzymatic kinetics but the monolith size could be adapted to degrade 100 % TC in a single pass
Smått, Jan-Henrik. "Hierarchically porous silica, carbon, and metal oxide monoliths : synthesis and characterization /." Turku : Åbo akademi University, 2006. http://catalogue.bnf.fr/ark:/12148/cb409697351.
Full textKhadra, Ibrahim A. "Preparation, characterization and evaluation of silica based monoliths in capillary electrochromatography." Thesis, University of Strathclyde, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432083.
Full textWehring, Markus, Jan-Henrik Smått, Mika Lindén, Frank Stallmach, and Jörg Kärger. "NMR studies on silica monoliths - diffusion in a hierarchical pore structure." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-194114.
Full textWehring, Markus, Jan-Henrik Smått, Mika Lindén, Frank Stallmach, and Jörg Kärger. "NMR studies on silica monoliths - diffusion in a hierarchical pore structure." Diffusion fundamentals 6 (2007) 71, S. 1-2, 2007. https://ul.qucosa.de/id/qucosa%3A14251.
Full textCao, Shengli. "Preparation, characterization and applications of monolithic titania-silica aerogels /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?EVNG%202007%20CAO.
Full textAhmed, Adham Saleh. "Morphology control on porous monoliths and silica microspheres and applications in chromatography." Thesis, University of Liverpool, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569199.
Full textIapichella, Julien. "Structuration hiérarchique des particules et des monolithes siliciques pour la chromatographie." Montpellier 2, 2006. http://www.theses.fr/2006MON20180.
Full textEpelde, Elezcano Nerea. "Matériaux Hybrides nanostructures photoactifs pour des applications optiques et biomédicales." Thesis, Pau, 2016. http://www.theses.fr/2016PAUU3007/document.
Full textAlong this manuscript different hybrid materials are synthesized and extensively characterized for several uses: from optical to therapeutic applications. First, by the intercalation of different dyes, styryl 722 and pyronine-Y into several smectite clay films, macroscopically ordered system are obtained. Clay films are elaborated by spin-coating technique and the dyes are intercalated by the immersion of clay thin films into dye solutions. The effect of clay on the dye properties is deeply analyzed and its preferential orientation in the interlayer space of the clay is studied by the anisotropic response of the films to the linear polarized light. Second, large silica monoliths with embedded laser dyes with strong absorption and fluorescence bands in different region of the Visible spectrum are attained by sol-gel chemistry to obtain solid-state dye laser (SSDL) with good photo, thermal and chemical stabilities. Third, silica nanoparticles (NP) with suitable size (50 nm) and functionalized external surface are also synthesised by sol-gel chemistry. Through the encapsulation of fluorescent dye molecules in their core and by the grafting of photosensitizers on their shell, biocompatible nanoparticles for bio-imaging and Photodynamic Therapy (PDT) applications are prepared. In order to optimize their properties, a careful investigation of the photophysical properties and mainly the singlet oxygen generation of a large range of new photosensitizers based on chromophores known as BODIPYs, is previously carried out. Based on these results, some efficient BODIPYs are selected for grafting on silica nanoparticles in order to use them for PDT. The photophysical properties of all these hybrid materials are analyzed by absorption and fluorescence (steady-state and time correlated) spectroscopies, and the singlet oxygen measurements are monitored by direct method (recording the singlet oxygen luminescence at 1270 nm) and by indirect method (using selective chemical probe). Moreover, the hybrid materials are fully characterized by several techniques such as, SEM, TEM, XRD, XPS, IR, DLS, BET
Ishizuka, Norio. "Studies on structure control and chromatographic properties of monolithic silica column." 京都大学 (Kyoto University), 2002. http://hdl.handle.net/2433/149779.
Full textSaito, Haruko. "Formation Process and Liquid Transport of Sol-gel Derived Monolithic Porous Silica." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/57273.
Full textFeng, Airong. "Monolithe polymérique ou à base de silice pour la préconcentration couplée à l'électrophorèse capillaire pour l'analyse de biomolécules." Paris 11, 2010. http://www.theses.fr/2010PA114823.
Full textCapillary electrophoresis (CE) is increasingly important for biomolecular analysis with the advantages of high resolution, short separation time, minimal sample and reagent requirement. However, because of the complexity of real biological sample in which matrices (e. G. , salts, lipids) interfere with the injection and assay, it remains difficult to analyze biological sample directly by CE without pretreatment. Moreover, in the case of low concentration levels of analytes in real samples, CE is limited by its detection sensitivity. The in situ prepared monolithic materials, which have the advantages of easy preparation, excellent permeability, were proposed for the preconcentration purpose in CE. In this thesis, an amino silica monolith was developed for efficient DNA extraction and in-line coupling with CE for DNA separation. In addition, the polymerization and application of an affinity polymer monolithic capillary for immunopreconcentration-CE of protein were included in this work
Ozcan, Aysenur. "Investigating The Extrusion Of Alumina Silicate Pastes For Synthesis Of Monolith Zeolite A." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606469/index.pdf.
Full text#956
m, while the macropores of the tubes are 3-4 &
#956
m. The BET surface area of the bars was 411 m2/g and of tubes was 439 m2/g, which are comparable with the commercial zeolite A beads. Bars had a crushing strength of 0.42 MPa, which is sufficiently high to handle. In conclusion, zeolite A bars and tubes, with their high purity, macroporous structure and high mechanical strength, can be used in adsorption and ion exchange processes. The developed synthesis method can be scaled up to prepare honeycomb monoliths that provide higher surface are per unit volume with an appropriate extruder die.
Abi, Jaoudé Maguy. "Développement de phases monolithiques à base de dioxyde de titane pour la séparation et l’enrichissement des produits phosphorylés." Thesis, Lyon 1, 2011. http://www.theses.fr/2011LYO10310.
Full textThis manuscript is dedicated to the development of monolithic titania phases for chromatographic analysis of phosphorylated compounds. The bibliography section first summarizes the interest of monolithic phases for the development of separation techniques while emphasizing on the problem of miniaturization. The state of the art on the use of titanium dioxide in liquid chromatography techniques is established. In this subject, the physico-chemical and chromatographic behaviour of this material are reviewed for particle beds. Then a detailed description of the sol-gel synthesis of monolithic titania is presented with a final illustration of the potential use of this support in separation techniques. The experimental part concentrates first on the analysis of the chromatographic behaviour of particulate titania in the hydrophilic interaction mode (HILIC). The work is then focused on the development of a repeatable sol-gel process that enables the formation of monolithic titania. The monolithic phase is first synthesized at a large scale, and its potential use, after column cladding, is illustrated with the purification and enrichment of phosphorylated amino acids. The elaboration process is also adapted to meet with the miniaturized separation techniques by performing an in situ synthesis route within capillary columns. These columns are characterized in HILIC by comparison with the chromatographic properties observed for titania particulate beds. The original behaviour of native titania observed also for the synthesized monolithic phases is finally applied to the separation and sample treatment of mixtures of phosphorylated products
Malkin, Douglas Scott, and Douglas Scott Malkin. "An Investigation of a Novel Monolithic Chromatography Column, Silica Colloidal Crystal Packed Columns." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/193936.
Full textPark, Seok Chan. "Single molecule tracking studies of flow-aligned mesoporous silica monoliths: pore order and pore wall permeability." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/35731.
Full textDepartment of Chemistry
Daniel A. Higgins
This dissertation describes single-molecule tracking (SMT) studies for the quantitative characterization of one-dimensional (1D) nanostructures in surfactant-templated mesoporous silica monoliths prepared within microfluidic channels. Single molecule diffusion of fluorescent probe molecules within the cylindrical mesopores reflects microscopic morphologies and mass-transport properties of the materials with high temporal and spatial resolution. The pore organization and materials order are initially investigated as a function of sol aging prior to loading into the microfluidic channels. Mesopores in these materials are templated by Cetyltrimethylammonium bromide (CTAB). Wide-field fluorescence videos depict 1D motion of the dyes within the individual mesopores. Orthogonal regression analysis of these motions provides a measure of the mesopore orientation. Channels filled prior to gelation of the sol produce monoliths incorporating large monodomains with highly aligned mesopores. In contrast, channels filled close to or after gelation yield monoliths with misaligned pores that are also more disordered. Two-dimensional (2D) small angle X-ray scattering (SAXS) experiments support the results obtained by SMT. These studies help to identify conditions under which highly aligned mesoporous monoliths can be obtained and also demonstrate the utility of SMT for characterization of mesopore order. The non-ionic surfactant Pluronic F127 is also utilized as the structural-directing agent. The diffusive motions of PDI dyes that are uncharged, cationic and anionic are explored by SMT and fluorescence correlation spectroscopy (FCS). The SMT studies for the uncharged dye show development of 1D diffusion along the flow direction while charged dyes exhibit predominant isotropic diffusion, with each of these behaviors becoming more prevalent as a function of aging time after filling of the microfluidic channels. SMT studies from silica-free F127 gels suggest that partitioning plays a important role in governing the diffusion behavior of the PDI dyes within the surfactant-filled mesopores. FCS results exhibit similar mean diffusion coefficients for all three dyes that suggest these dyes diffuse through similar sample regions. These studies demonstrate that the silica pore walls in the mesoporous silica monoliths remain permeable after gelation and that partitioning of solute species to different regions within the pores plays an important role in restricting the dimensionality of their diffusive motion
Macedo, José A. "Monolithic silicon receiver front-ends for portable radio." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0004/NQ32343.pdf.
Full textDanesh, Mina. "Monolithic inductors for silicon radio frequency integrated circuits." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0007/MQ45607.pdf.
Full textHaque, Talha. "Silicon-based Microwave/Millimeter-wave Monolithic Power Amplifiers." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/31174.
Full textMaster of Science
Schaub, Jeremy Daniel. "Photodetectors and monolithic optical receivers in silicon technologies /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Full textBernardin, Evans K. "Demonstration of Monolithic-Silicon Carbide (SiC) Neural Devices." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7474.
Full textMcNaughton, Adam L. "High Temperature Compression Testing of Monolithic Silicon Carbide (SiC)." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/McNaughtonAL2007.pdf.
Full textMirabelli, Alessandro James. "Highly efficient monolithic Perovskite/Silicon bifacial tandem solar cells." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20369/.
Full textKohns, Richard [Verfasser], and Ulrich [Akademischer Betreuer] Tallarek. "Understanding sol–gel processing: Hierarchical silica monoliths towards applications in chemical reaction engineering / Richard Kohns ; Betreuer: Ulrich Tallarek." Marburg : Philipps-Universität Marburg, 2021. http://d-nb.info/1227580118/34.
Full textMcGiveron, James Kevin. "Aspects of sol-gel chemistry : the adsorption properties of silica sol-gel monoliths and the preparation of indium(III) oxide and indium(III)/tin(IV) oxide thin films by the inorganic sol-gel process." Thesis, Brunel University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294504.
Full textWeller, Harald. "CMOS monolithic pyroelectric infrared focal plane arrays using PVDF thin films." Thesis, Edinburgh Napier University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323080.
Full textDávila, Pineda Diana. "Monolithic integration of VLS silicon nanowires into planar thermoelectric microgenerators." Doctoral thesis, Universitat Autònoma de Barcelona, 2011. http://hdl.handle.net/10803/83966.
Full textThe increasing demand for portable power required by miniaturized systems is driving the development of new technologies and materials to achieve efficient energy generation at the microscale. Apart from removing heat from electronic devices, thermoelectric microgenerators offer an attractive opportunity to harvest waste heat converting it into power. The low thermoelectric conversion efficiency of current bulk microelectronics semiconductor materials has limited their implementation for energy harvesting purposes. However, recent studies have proven, at single nanowire level, that nanostructuring of silicon into nanowires greatly enhances the thermoelectric properties of this material, opening up the opportunity for the integration of thermoelectric generators into silicon microtechnology. In this thesis, dense and well-ordered arrays of silicon nanowires (Si NWs) have been monolithically integrated into a silicon micromachined device. The VLS-CVD technique has been used for the controlled lateral growth of nanowires. The microstructure has been appropriately designed to adapt the tridimensional growth of the Si NWs arrays to a planar architecture, and to assure electrical accessibility to the nanowires. Additionally, the device allows an internal in-plane temperature gradient to be established when placed in contact with a heat source, giving rise to a complete thermoelectric microgenerator in which the Si NWs act as the nanostructured thermoelectric material. This thesis is intended to bring new background in thermoelectric materials integration, characterization techniques and fabrication technologies to the IMB-CNM (CSIC), paving the way for the development of future generations of thermoelectric microgenerators. The work presented in this thesis is divided into four chapters. The first chapter introduces thermoelectricity and its underlying physics, reviewing the state-of-the-art of thermoelectric materials and devices. The second chapter focuses on the experimental and technological tools employed along this study. The third chapter describes the process followed for the design, simulation and fabrication of the building block of the proposed planar thermoelectric microgenerators based on a single Si NWs array. Finally, chapter four studies the enhanced performance of thermoelectric microgenerator structures by means of transversally linked Si NWs arrays, further adapting and exploiting the 3D lateral growth of VLS Si NWs.
Comeau, Jonathan P. "Integration Issues Associated with Monolithic Silicon-Germanium Microwave Radar Systems." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/13990.
Full textHu, Chen. "Surface Optimization of the Silicon Templates for Monolithic Photonics Integration." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-37226.
Full textHuang, Kevin T. Y. "Expandable monolithic silicon network for cost-effective large-area electronics /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textHudson, Melanie. "Studies of the formation of homogeneous mixed silicon-titanium/zirconium oxides by the sol-gel route." Thesis, Brunel University, 1994. http://bura.brunel.ac.uk/handle/2438/5371.
Full textSu, Yinmei [Verfasser]. "Multi-functional Monolithic ICs for 94GHz Transmitters on Silicon / Yinmei Su." Ulm : Universität Ulm. Fakultät für Ingenieurwissenschaften und Informatik, 2015. http://d-nb.info/1065309724/34.
Full textTing, Steve M. (Steve Ming) 1973. "Monolithic integration of III-V semiconductor materials and devices with silicon." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9537.
Full textCai, Yan Ph D. Massachusetts Institute of Technology. "Materials science and design for germanium monolithic light source on silicon." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92958.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis. "September 2014."
Includes bibliographical references (pages 190-197).
Germanium (Ge) is an optically active material with the advantages of Si-CMOS compatibility and monolithic integration. It has great potential to be used as the light emitter for Si photonics. Tensile strain and n-type doping are two key properties in Ge to achieve optical gain. This thesis mainly focuses on: (1) physical understandings of the threshold behavior of Ge-on-Si bulk laser and the temperature dependent performance; (2) process developments to grow and planarize the epitaxial Ge on Si in oxide trenches and corners; (3) introduction of n-type dopant into Ge-on-Si thin films while studying the threading dislocation behavior in n-Ge during annealing; (4) Design an external cavity Ge laser integrated with Si waveguides for a low threshold current and single mode operation. Heavy n-type doping was observed to change the Ge electronic band structure by band gap narrowing effect. We also found a failure of using a simple Drude model to explain free carrier absorption in n-Ge. We modified the optical gain simulation based on the above two observations in Ge. We found a broad gain bandwidth of ~ 200 nm from 1550 nm to 1750 nm and a higher net materials gain. We predicted a theoretical lasing threshold current density of 5~10 kA/cm² in the bulk Ge laser device with the n-type doping of mid-10¹⁹ cm-³ at room temperature. We also predicted the Ge laser device would have better temperature stability regarding the threshold current compared to the III-V laser. Single crystalline Ge was epitaxial grown on Si in oxide trenches using ultra high vacuum chemical vapor deposition. The selective growth lead to the faceting in Ge because of the different growth rates of crystal orientations. We developed a suitable photolithography and oxide etch process to get the vertical oxide sidewall for Ge trench filling. We also tested the Ge growth in the T-shape corners to improve the reflectivity at the waveguide end. The T-shape structure was also useful for the Ge/Si waveguide coupling in the external cavity laser. Furthermore, we developed a chemical mechanical polishing (CMP) process for the over-grown Ge waveguides. The Ge CMP process was selective to oxide, flexible to change in the CMP rate by DI water dilution and controllable for a minimum dishing of Ge in the oxide trenches. N-type doping helped to increase the direct band transition in Ge for light emission. We developed a delta-doping method to grow a dopant source called "delta doping layer" on the single crystalline Ge layer without introducing extra defects. We then used rapid thermal annealing to drive the dopant into the underlying Ge layer. The dopant enhanced diffusion was discovered to speed up the drive-in process. The active n-type concentration in Ge could reach up to 5×10¹⁹ cm-3 using the delta doping source and annealing process. Since the dopant source layer had a disrupted Ge growth, we used the developed CMP process to remove it after the dopant drive-in. A comprehensive dopant diffusion simulation was developed to predict the annealing temperature and time to achieve high n-type doping and uniform distribution. We used plan-view transmission electron microscopy to examine the threading dislocation density (TDD) in n-Ge for both blanket films and trench grown waveguides. We found a high TDD of ~ 1×10⁸cm-² in 1 [mu]m thick blanket Ge with doping of 3×10¹⁸ cm-³ after high temperature annealing at 850 °C for 40 min. The TDD is 1×10⁹ cm-² in the 300 nm thick and 1 [mu]m wide Ge waveguide. We examined the effects of annealing temperature, Ge thickness, Si/Ge inter-diffusion and trench width on the threading dislocation behavior. However, we have not found the exact reason causing the high TDD and therefore, further study is required on the TDD reduction for the Ge waveguide. Finally, we designed an external cavity Ge laser using distributed Bragg reflector (DBR) gratings on Si waveguides. A detailed discussion on the cross section design was presented to mitigate the internal optical loss from claddings and metal layers and to improve the current injection uniformity across the Ge waveguide. The aim of the DBR grating design was to achieve a single mode operation by controlling the full width half maximum of the grating reflectance spectrum. We also discussed the coupling between Ge and Si waveguides and different designs were presented to increase the coupling efficiency.
by Yan Cai.
Ph. D.
Lei, Yi-Shu Vivian 1979. "Post assembly process development for Monolithic OptoPill integration on silicon CMOS." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28548.
Full textIncludes bibliographical references (leaves 108-110).
Monolithic OptoPill integration by means of recess mounting is a heterogeneous technique employed to integrate III-V photonic devices on silicon CMOS circuits. The goal is to create an effective fabrication process that enables the volume production of high performance optoelectronic integrated circuits (OEICs). This thesis focuses on the development of post-assembly processes and technologies, in which InGaAs/InP P-i-N photodiodes were integrated as long wavelength photodetectors with an optical clock receiver circuit. Fabrication procedures, challenges experienced, and results accomplished are presented for each process step including the formation of alloyed and non-alloyed ohmic contacts on n-type and p-type InGaAs contact layers, active area definition by dry-etching InGaAs/InP with ECR-enhanced RIE, BCB passivation and planarization, via opening by dry-etching BCB with RIE, and top contact metallization. In conjunction, an InP-based test heterostructure was fabricated into discrete photodiodes. Decoupling the fabrication and benchmarking of III-V photonic device from the Si-CMOS electronic circuit allowed for the independent electrical and optical characterization of the photodetectors. Measurements and analysis of the P-i-N photodiodes will assist the forthcoming analysis of the final OEIC. Preliminary results and discussions of the calibration sample are presented in this thesis.
by Yi-Shu Vivian Lei.
S.M.
Wang, Jianfei Ph D. Massachusetts Institute of Technology. "Resonant-cavity-enhanced multispectral infrared photodetectors for monolithic integration on silicon." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62682.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 162-172).
Multispectral infrared (IR) detection has been widely employed for numerous applications including hyperspectral imaging, IR spectroscopy, and target identification. Traditional multispectral detection technology is based on the combination of broadband focal plane arrays (FPA) and spectral filters, grating spectrometers, or Fourier transform spectrometers, which requires bulky, high-cost mechanical scanning instruments and have a slow response. Hybrid structures integrating FPA and silicon readout integrated circuits (Si ROIC) greatly limit the yield and result in extremely expensive devices. Single photodetectors capable of detecting multiple wavebands simultaneously and monolithic integration with Si ROIC, however, enable dramatically simplified system design with superior mechanical robustness, and thus attract a lot of interest around the world today. In this thesis, we focus on the development of novel IR sensitive material and resonant-cavity- enhanced (RCE) photodetector devices that address the emerging need in the field of IR radiation detection. Polycrystalline PbTe films have been identified as the IR absorbing layers due to their high photosensitivity and fabrication flexibility; on the device side, we have established a universal design theory for multispectral detection and demonstrated fully functional mid-IR RCE photodetectors capable of monolithic integration with Si ROIC. We have developed room-temperature-sensitized, polycrystalline PbTe films using single source thermal evaporation for detecting IR light up to 5 pm in wavelength. Thinner PbTe layers yields enhanced performance than thicker layers due to strong thickness dependence of both photo-responsivity and detectivity. Structural, electrical, and optical property studies reveal photoconductivity mechanism in the films and point out directions of further material optimization. We have established a versatile and scalable design theory for cavity-enhanced multispectral photodetectors using phase-tuned propagation. Critical coupling condition is identified as the prerequisite to achieve near unity quantum efficiency in RCE photodetectors. Coupling-matching layers are positioned between cascaded planar resonant cavities for controlling optical phase and coupling strength between incident light and resonant modes to obtain critical coupling condition. After developing another two IR transparent layers as low and high index materials, evaporated As2S3 and sputtered Ge, we design and fabricate distributed Bragg reflectors (DBR) for mid-IR resonant cavities. In our design example of dual waveband RCE photodetectors, peak quantum efficiencies over 80% have been realized in both wavebands (1.55 pm and 3.6 pm) with only 50 nm and 100 nm thick PbTe IR absorbers, and spectral cross talk as low as 0.1% is obtained. Preliminary results on our first attempt of fabricated dual waveband RCE photodetectors demonstrate the two resonant cavity modes at 1.61 pm and 3.70 pm. And quantum efficiencies as high as 92% and 68% have been achieved in two wavebands respectively. We have developed and optimized a multi-step lift-off patterning technique to fabricate RCE photodetectors on a Si platform. Single waveband RCE photodetectors for mid-IR (3.5 pm) have been designed according to critical coupling condition to achieve near unity quantum efficiency. The fabricated devices show high quantum efficiency (90%) and peak responsivity at the resonant wavelength of 3.5 pm, which is 13.4 times higher than blanket PbTe film of the same thickness. We demonstrate detectivity as high as 0.72x0 cmHzmW~l, comparable with commercial polycrystalline mid-IR photodetectors. As low temperature processing (150 'C) is accomplished in the entire fabrication process, this demonstration paves the way for monolithic integration of RCE photodetectors with Si ROIC. Lastly, for the first time, we fabricate and test integrated devices of single waveband (3.6 pm) RCE photodetectors and Si ROIC. Both hybrid and monolithic integration structures are investigated. We have developed the fabrication process to accommodate Si ROIC chips of only 3 mm x 5 mm in area, and successfully integrated RCE photodetectors on Si ROIC directly. Our preliminary results show high promise for monolithic integration of RCE photodetectors and Si ROIC in the future.
by Jianfei Wang.
Ph.D.