Academic literature on the topic 'Silica fibers laser'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Silica fibers laser.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Silica fibers laser"
Cozic, Solenn, Simon Boivinet, Christophe Pierre, Johan Boulet, Samuel Poulain, and Marcel Poulain. "Splicing fluoride glass and silica optical fibers." EPJ Web of Conferences 215 (2019): 04003. http://dx.doi.org/10.1051/epjconf/201921504003.
Full textKhotiaintsev, S., and A. N. Castro-Martinez. "Thermal treatment of silica optical fibers with CO2-laser radiation." Electronics and Communications 16, no. 4 (March 31, 2011): 172–76. http://dx.doi.org/10.20535/2312-1807.2011.16.4.246655.
Full textХрамов, И. О., and О. А. Рябушкин. "Исследование разогрева кварцевых волоконных световодов с металлической спиралью проходящим по сердцевине лазерным излучением." Письма в журнал технической физики 49, no. 14 (2023): 31. http://dx.doi.org/10.21883/pjtf.2023.14.55823.19601.
Full textLim, Ki-Dong, Hun-Kook Choi, Ik-Bu Sohn, Byeong-Ha Lee, and Jin-Tae Kim. "Fabrication of Lensed Optical Fibers for Biosensing Probes Using CO2 and Femtosecond Lasers." Applied Sciences 11, no. 9 (April 21, 2021): 3738. http://dx.doi.org/10.3390/app11093738.
Full textLu, Jiafeng, Ye Dai, Qin Li, Yali Zhang, Chunhua Wang, Fufei Pang, Tingyun Wang, and Xianglong Zeng. "Fiber nanogratings induced by femtosecond pulse laser direct writing for in-line polarizer." Nanoscale 11, no. 3 (2019): 908–14. http://dx.doi.org/10.1039/c8nr06078a.
Full textWójcik, Grzegorz Michał. "Optimization of silica glass capillary and rods drawing process." Photonics Letters of Poland 11, no. 1 (April 3, 2019): 19. http://dx.doi.org/10.4302/plp.v11i1.891.
Full textGoates, Andrew J., Raymond W. Kung, Chad R. Tracy, and Henry T. Hoffman. "Intraductal Laser Fiber Tip Fracture and Retrieval During Sialendoscopic Laser-Assisted Lithotripsy." Annals of Otology, Rhinology & Laryngology 126, no. 11 (September 12, 2017): 774–77. http://dx.doi.org/10.1177/0003489417728736.
Full textKoptev, Maksim Yu, Olga N. Egorova, Oleg I. Medvedkov, Sergey L. Semjonov, Boris I. Galagan, Sergey E. Sverchkov, Boris I. Denker, Alexander E. Zapryalov, and Arkady V. Kim. "Narrow-Linewidth Single-Frequency Ytterbium Laser Based on a New Composite Yb3+-Doped Fiber." Photonics 9, no. 10 (October 12, 2022): 760. http://dx.doi.org/10.3390/photonics9100760.
Full textRomano, Valerio, Soenke Pilz, and Dereje Etissa. "Sol-gel-based doped granulated silica for the rapid production of optical fibers." International Journal of Modern Physics B 28, no. 12 (April 7, 2014): 1442010. http://dx.doi.org/10.1142/s0217979214420107.
Full textBourdine, Anton V., Alexey Yu Barashkin, Vladimir A. Burdin, Michael V. Dashkov, Vladimir V. Demidov, Konstantin V. Dukelskii, Alexander S. Evtushenko, et al. "Twisted Silica Microstructured Optical Fiber with Equiangular Spiral Six-Ray Geometry." Fibers 9, no. 5 (May 2, 2021): 27. http://dx.doi.org/10.3390/fib9050027.
Full textDissertations / Theses on the topic "Silica fibers laser"
Holmberg, Patrik. "Laser processing of Silica based glass." Doctoral thesis, KTH, Laserfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173929.
Full textHuvudtemana i denna avhandling är fotokänslighet och fotostrukturering av optiska fibrer och bulk glas. Trots att forskning inom fotokänslighet i glas och optiska fibrer har pågått under mer än tre decennier är de bakomliggande mekanismerna ännu inte klarlagda. Syftet var att få en bättre förståelse för fotoresponsen genom att studera fotokäsligheten ur ett termodynamiskt perspektiv, i motsats till etablerad forskning med fokus på punktdefekter och strukturförändringar, samt mekaniska spännings effekter i optiska fibrer. Optiska fibrer användes för flertalet av de experimentella studierna av två skäl; för det första är fotokänsligheten i fibrer större och dessutom vet man mindre om bakomliggande mekanismer jämfört med motsvarande bulk glas, och för det andra kan fibrer vara enklare att studera eftersom de experimentellt kan ses som en endimensionell struktur.Inledningsvis utfördes ablaherings experiment på bulk glas med en infraröd laser med pikosekund pulser. Raka kanaler med ett designtvärsnitt på 40x40 μm tillverkades på ovansidan (mot infallande ljus) och bottensidan av provet och de resulterande geometrierna analyserades. Resultaten visar en högre känslighet för variationer i experimentella parametrar vid ablahering på undersidan vilket kan förklaras av inkubations effekter i materialet. Dessutom är den resulterande geometrin på ovansidan V-formad, oavsett experimentella parametrar, vilket kunde relateras till den numeriska aperturen hos den fokuserande linsen, vilket förklaras av skuggningseffekter.Efter detta arbete flyttades fokus mot optiska fibrer, UV inducerade fiber Bragg gitter (FBG), och termisk bearbetning med konventionell ugn samt även med en CO2-laser som källa för strålningsvärme.Först konstruerades ett system för CO2-laservärmning av fibrer. För mätning av temperaturen hos bearbetade fibrer användes en speciell sorts FBG med hög temperaturstabilitet, kallade ”Chemical Composition Gratings” (CCG). En grundlig karaktärisering och temperaturkalibrering utfördes och temperaturdynamiken mättes med en tidsupplösning på under en millisekund. Temperaturprofilen i fibern, och laserns strålprofil, kunde mätas med en spatiell upplösning begränsad av gitterlängden och fiberns diameter. Temperaturer upp till ~1750 °C, vilket är högre än mjukpunktstemperaturen, kunde mätas med korresponderande uppvärmnings- och avsvalningshastighet på 10.500 K/s och 6.500 K/s.Därefter gjordes en omfattande undersökning av värmebearbetning och termisk regenerering av FBG:er i telekomfiber. Resultaten visar att termisk gitter-regenerering aktiveras av flera olika mekanismer. Värmebearbetning vid en temperatur omkring 900 °C resulterade i starka gitter efter en regenerering vid en temperatur på 1100 °C. Två olika aktiveringsenergier kunde extraheras från en Arrhenius plot avseende brytningsindexmodulation och Braggvåglängd, med en skärningspunkt tillika runt 900 °C, vilket indikerar en avvägning mellan två motverkande mekanismer vid denna temperatur.Slutligen undersöktes temperaturdynamiken och de spektrala egenskaperna under tillverkning av långperiodiga fibergitter (LPG). Gittren tillverkades med CO2-vi iilasersystemet genom att skapa en periodisk urgröpning medelst termisk ablahering. Transmissionsförluster kunde reduceras med noggrant valda processparametrar. Dessa parametrar identifierades genom mätningar av ablaherat djup och transmissionsförlust som funktion av laserintensitet och exponeringstid.
QC 20150924
Barnini, Alexandre. "Mise au point et caractérisation de nouvelles compositions de verres de silice dopée ytterbium par méthode plasma (SPCVD) pour application en tant que fibre laser." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066392/document.
Full textYtterbium-doped silica optical fibers are widely used for high power laser applications for several years. These powers keep on increasing due to continuous improvements in optical fibers fabrication processes. The aim of this PhD is to synthesize ytterbium-doped silica optical fibers’ cores using a plasma process named SPCVD. This method has been created in 1986 for telecommunications optical fibers synthesis, and we have adapted it to fit the fabrication of rare earth-doped large-mode-area optical fiber cores. We first present the development of ways of evaporating low vapor pressure reagents. All the synthesized optical fiber cores are silica-rich, and slightly doped with both aluminum, fluorine and ytterbium. Radial and longitudinal homogeneities are discussed, and we propose several options in order to improve them. Then, the glassy network structure of the fabricated cores and also the neighborhood and dispersal of Yb3+ ion in the silicate network are studied. Thus, we used several spectroscopic studies: nuclear magnetic resonance enables to focus on non-zero nuclear spin nucleus (29Si, 27Al, 19F) whereas electronic paramagnetic resonance is used to probe the neighborhood and the dispersal of Yb3+ ions. We also based our study on optical characterizations as absorption and luminescence of Yb3+ ions. Finally, the fibers’ cores we synthesized using the SPCVD process have been characterized in a laser cavity. We present the power conversion efficiency, the beam quality and the resistance to photodarkening of several ytterbium and fluorine-co-doped aluminosilicate cores
Delevaque, Eric. "Contribution à l'étude de composants actifs à fibre de silice dopée aux ions de terres rares." Lille 1, 1993. http://www.theses.fr/1993LIL10040.
Full textAlcock, Ian Peter. "Laser action in neodymium doped silica fibre." Thesis, University of Southampton, 1988. https://eprints.soton.ac.uk/404730/.
Full textKalita, Mridu P. "Development of bismuth doped silica fibres for high power sources & long wavelength generation from ytterbium doped fibre lasers." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/185965/.
Full textBaz, Assaad. "Modélisation et réalisation de fibres à bandes interdites photoniques pour la génération et le transport des faisceaux laser puissants." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10100/document.
Full textThese works concern the design and realization of micro-structured optical fibers, in particular, large mode area, active and passive, photonic bandgap fibers for high power laser beams generation and delivery. The first part of the work focused on the study of a new geometry of micro-structured fiber - so called "pixilated Bragg fiber" - in order to obtain a large, practically singlemode, core. For that geometry, the fiber is made singlemoded by optimizing the distances between the high index rings (Half wave stack condition). A first realization allowed to report a mode field diameter of 26μm measured at 1400nm wavelength in a passive fiber. The second aspect of this work included theoretical and experimental studies, of photonic bandgap fibers having a hetero-structured cladding. Specially designed resonators are added to the cladding of these fibers in order to eliminate higher order modes. Thus, 19μm to 65μm mode field diameters have been obtained in a singlemode regime at 1050nm wavelength for several passive fibers used in different bandgaps. An active fiber with hetero-structured cladding was also presented: the core was made of pure silica, ytterbium doped, synthesized using the Sol-Gel technique. The realized fiber allowed the observation of a laser emission with an efficiency of 62.5% and a mode field diameter of 36μm
Sinha, Supriyo. "Power scaling long-wavelength Yb³⁺-doped silica fiber lasers for frequency doubling to yellow /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textPerry, Ian Richard. "Investigations into ytterbium, ytterbium-erbium and thulium-doped silica-based fibre lasers." Thesis, University of Southampton, 1991. https://eprints.soton.ac.uk/427927/.
Full textLi, Kun. "Laser micro-processing of silicon using nanosecond pulse shaped fibre laser at 1 μm wavelength." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/245313.
Full textPommarede, Xavier. "Circuits photoniques intégrés III-V/Si pour les applications en télécommunications optiques." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC020/document.
Full textIn order to follow the new needs in terms of optical bandwidth, optical fiber communications require the elaboration of numerous building blocks: laser, modulator, photo-detector...and their integration with signal processing circuits. This thesis has for objective the conception and caracterisation of various active and passive building blocks using the hybrid III-V/Si technology. These building blocks are then used in photonic integrated circuits (PIC) with all the necessary emission and reception functions. This enables a reduced footprint, a lower power consumption and fabrication cost.After an introduction section, several passive elements are studied in detail in the second part: waveguides, bends, power splitters, waveguide crossings and hybrid 90°. All these designs present good performances compatible with their integration in PICsThe third part treats the problem of wavelength (de)-multiplexing. Three types of device were studied: a demultiplexer based on ring resonators, echelle gratings and arrayed waveguide gratings (AWG). For the echelle gratings, state-of-the-art performances were demonstrated, first on a sample with 16 channels separated 100GHz and on the other hand a sample with 4 channels separated 20nm with a flettened profile. A simulation method for the AWG was presented with experimental and theoretical results to support the method.The last part is about "active" devices and the integration of all the previous designs in PICs. The studied active components are the lasers, semi-conductor optical amplifiers (SOA), electro-absorption modulators (EAM) and finally silicon PN junctions used as phase modulators. Two generations of a tunable laser integrated with an EAM were studied with a transmission at 10Gbit/s over 50km. The next section studied I/Q modulators with an integrated tunable laser source, using either PN silicon junction modulators or EAM with a target speed of 25Gbaud/s.A general conclusion is drawn at the end of the thesis. Short term and mid-term perspectives were also drawn
Book chapters on the topic "Silica fibers laser"
Efremov, V. P., V. E. Fortov, A. A. Frolov, E. M. Dianov, and I. A. Bufetov. "Laser Driven Burning and Detonation Waves in Silica-Based Optical Fibers." In 28th International Symposium on Shock Waves, 783–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25685-1_119.
Full textMeyer, Johan, Justice Sompo, and Sune von Solms. "Continuous-Wave Silica Fiber Lasers." In Fiber Lasers, 127–232. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003256380-5.
Full textSleiman, Khodor, Katharina Rettschlag, Peter Jäschke, Stefan Kaierle, and Ludger Overmeyer. "Experimental Investigation of Additive Manufacturing of Fused Silica Fibers for the Production of Structural Components in the Laser Glass Deposition Process." In Innovative Product Development by Additive Manufacturing 2021, 273–85. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05918-6_18.
Full textGheewala, Shailesh M. "Fabrication of Macro Porous Silicon Structures Using Pulsed Fiber Laser Technique for Capacitive Sensor Application." In Communications in Computer and Information Science, 68–79. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7219-7_7.
Full textAlaruri, Sami D. "A Step-Index Multimode Fiber-Optic Microbend Displacement Sensor Wavelength Dependent Loss." In Strategic Applications of Measurement Technologies and Instrumentation, 47–60. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-5406-6.ch003.
Full textTelbiz, G., O. Shvets, S. Boron, V. Vozny, M. Brodyn, and G. D. Stucky. "22-P-20-Laser dye doped mesoporous silica fibers: host-guest interaction and fluorescence properties." In Studies in Surface Science and Catalysis, 363. Elsevier, 2001. http://dx.doi.org/10.1016/s0167-2991(01)81854-1.
Full textWen, Jianxiang, Ying Wan, Yanhua Dong, Yi Huang, Yanhua Luo, Gang-Ding Peng, Fufei Pang, and Tingyun Wang. "Radiation Effect on Optical Properties of Bi-Related Materials Co-Doped Silica Optical Fibers." In Bismuth - Fundamentals and Optoelectronic Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93495.
Full textKoch, Brian R., Sudharsanan Srinivasan, and John E. Bowers. "Hybrid Silicon Lasers." In Optical Fiber Telecommunications, 461–500. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-396958-3.00013-5.
Full textDigonnet, Michel. "Continuous-Wave Silica Fiber Lasers." In Optical Science and Engineering. CRC Press, 2001. http://dx.doi.org/10.1201/9780203904657.ch3.
Full textHuang, Mengyuan, Kelly Magruder, Yann Malinge, Parastou Fakhimi, Hao-Hsiang Liao, David Kohen, Gregory Lovell, et al. "Germanium on Silicon Avalanche Photodiode for High-Speed fiber Communication." In Photodetectors - Recent Advances, New Perspectives and Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107971.
Full textConference papers on the topic "Silica fibers laser"
Snitzer, Elias. "Rare-earth-doped fibers." In Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.ma1.
Full textCamacho Rosales, Angeles L., Martin A. Núñez Velázquez, Xiao Zhao, and Jayanta K. Sahu. "Optical fibers fabricated from 3D printed silica preforms." In Laser 3D Manufacturing VII, edited by Henry Helvajian, Bo Gu, and Hongqiang Chen. SPIE, 2020. http://dx.doi.org/10.1117/12.2543210.
Full textLee, J. W., G. H. Sigel, and Jie Li. "Photosensitivity of oxygen deficient type bulk silica and fibers." In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.jma.5.
Full textJiang, Huawei, Lei Zhang, Xuezong Yang, and Yan Feng. "Efficient silica-based fiber laser source at > 2.1 μm." In Specialty Optical Fibers. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/sof.2016.sotu2g.2.
Full textMcCann, Brian P. "Comparison of silica-core optical fibers." In Optics, Electro-Optics, and Laser Applications in Science and Engineering, edited by Abraham Katzir. SPIE, 1991. http://dx.doi.org/10.1117/12.43872.
Full textSkutnik, Bolesh J. "Hard-plastic-clad silica optical fibers: the first decade." In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, edited by Abraham Katzir. SPIE, 1993. http://dx.doi.org/10.1117/12.146333.
Full textWoolsey, Gerry A., and D. W. Lamb. "Absorption of polarized 10.6-um CO2 laser radiation by fused silica optical fibers." In Fibers '92, edited by Eric Udd and Ramon P. DePaula. SPIE, 1993. http://dx.doi.org/10.1117/12.141251.
Full textJetschke, Sylvia, Volker Reichel, Klaus Moerl, Sonja Unger, Ulrich Roepke, and Hans-Rainer Mueller. "Nd:Yb-codoped silica fibers for high power fiber lasers: fluorescence and laser properties." In Lasers and Applications in Science and Engineering, edited by L. N. Durvasula, Andrew J. W. Brown, and Johan Nilsson. SPIE, 2005. http://dx.doi.org/10.1117/12.593408.
Full textKarlitschek, Peter, and Georg Hillrichs. "Characteristics of optical fibers for UV-laser sensor applications." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cmi4.
Full textFerraro, Mario, Fabio Mangini, Yifan Sun, Mario Zitelli, Rocco Crescenzi, Alioune Niang, Maria Caterina Crocco, et al. "Laser-induced damages in silica multimode optical fibers." In Fiber Lasers and Glass Photonics: Materials through Applications III, edited by Stefano Taccheo, Maurizio Ferrari, and Angela B. Seddon. SPIE, 2022. http://dx.doi.org/10.1117/12.2623746.
Full textReports on the topic "Silica fibers laser"
Monro, Tanya. Silica and Germanate Glass High Power Fiber Laser Sources. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada595231.
Full textDaly, C. H., Mark E. Tuttle, and William Kuykendall. Design and Analysis for the Carbon Fiber Composite Support Structure for Layer 0 of the D0 Silicon Micro Tracker. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/971000.
Full text