Academic literature on the topic 'Signaling nanoplatforms'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Signaling nanoplatforms.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Signaling nanoplatforms"

1

Cambi, A., M. Lakadamyali, D. S. Lidke, and M. F. Garcia-Parajo. "Meeting Report - Visualizing signaling nanoplatforms at a higher spatiotemporal resolution." Journal of Cell Science 126, no. 17 (August 30, 2013): 3817–21. http://dx.doi.org/10.1242/jcs.137901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Hyosuk, Eun Hye Kim, Gijung Kwak, Sung-Gil Chi, Sun Hwa Kim, and Yoosoo Yang. "Exosomes: Cell-Derived Nanoplatforms for the Delivery of Cancer Therapeutics." International Journal of Molecular Sciences 22, no. 1 (December 22, 2020): 14. http://dx.doi.org/10.3390/ijms22010014.

Full text
Abstract:
Exosomes are cell-secreted nanovesicles that naturally contain biomolecular cargoes such as lipids, proteins, and nucleic acids. Exosomes mediate intercellular communication, enabling the transfer biological signals from the donor cells to the recipient cells. Recently, exosomes are emerging as promising drug delivery vehicles due to their strong stability in blood circulation, high biocompatibility, low immunogenicity, and natural targeting ability. In particular, exosomes derived from specific types of cells can carry endogenous signaling molecules with therapeutic potential for cancer treatment, thus presenting a significant impact on targeted drug delivery and therapy. Furthermore, exosomes can be engineered to display targeting moieties on their surface or to load additional therapeutic agents. Therefore, a comprehensive understanding of exosome biogenesis and the development of efficient exosome engineering techniques will provide new avenues to establish convincing clinical therapeutic strategies based on exosomes. This review focuses on the therapeutic applications of exosomes derived from various cells and the exosome engineering technologies that enable the accurate delivery of various types of cargoes to target cells for cancer therapy.
APA, Harvard, Vancouver, ISO, and other styles
3

Rahbar Saadat, Yalda, and Jaleh Barar. "Exosomes as versatile nanoscaled biocompartments in cancer therapy and/or resistance." BioImpacts 12, no. 2 (January 29, 2022): 87–88. http://dx.doi.org/10.34172/bi.2022.24253.

Full text
Abstract:
Cancer remains to be a major hurdle to global health. Exosomes as a versatile bio-derived platform, hold a bright prospect in nano-scaled delivery/targeting strategies. Shreds of evidence indicate that exosomes have a critical role in drug resistance in cancer cells through various mechanisms including shuttling of miRNAs, drug efflux transporters, and anti-apoptotic signaling. Exosomes’ cargo, particularly miRNAs, may exert both resistance and in a few cases sensitivity to the anticancer agents in targeted cells. Therefore, the source and components of the exosomes should be carefully considered before any application. Our aim in this editorial is to further highlight the role of exosomes in the development of resistance to therapy in cancer cells. As a new chapter for drug delivery, the challenges should be elucidated before exosomes emerge as novel nanoplatforms for cancer therapy.
APA, Harvard, Vancouver, ISO, and other styles
4

Tang, Yongquan, Yan Chen, Zhe Zhang, Bo Tang, Zongguang Zhou, and Haining Chen. "Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective." Pharmaceutics 13, no. 12 (December 8, 2021): 2116. http://dx.doi.org/10.3390/pharmaceutics13122116.

Full text
Abstract:
Cancer stem cells (CSCs) are characterized by intrinsic self-renewal and tumorigenic properties, and play important roles in tumor initiation, progression, and resistance to diverse forms of anticancer therapy. Accordingly, targeting signaling pathways that are critical for CSC maintenance and biofunctions, including the Wnt, Notch, Hippo, and Hedgehog signaling cascades, remains a promising therapeutic strategy in multiple cancer types. Furthermore, advances in various cancer omics approaches have largely increased our knowledge of the molecular basis of CSCs, and provided numerous novel targets for anticancer therapy. However, the majority of recently identified targets remain ‘undruggable’ through small-molecule agents, whereas the implications of exogenous RNA interference (RNAi, including siRNA and miRNA) may make it possible to translate our knowledge into therapeutics in a timely manner. With the recent advances of nanomedicine, in vivo delivery of RNAi using elaborate nanoparticles can potently overcome the intrinsic limitations of RNAi alone, as it is rapidly degraded and has unpredictable off-target side effects. Herein, we present an update on the development of RNAi-delivering nanoplatforms in CSC-targeted anticancer therapy and discuss their potential implications in clinical trials.
APA, Harvard, Vancouver, ISO, and other styles
5

Hattab, Dima, and Athirah Bakhtiar. "Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements." Pharmaceutics 12, no. 10 (September 29, 2020): 929. http://dx.doi.org/10.3390/pharmaceutics12100929.

Full text
Abstract:
Triple negative breast cancer (TNBC) is one of the most aggressive types of breast cancer. Owing to the absenteeism of hormonal receptors expressed at the cancerous breast cells, hormonal therapies and other medications targeting human epidermal growth factor receptor 2 (HER2) are ineffective in TNBC patients, making traditional chemotherapeutic agents the only current appropriate regimen. Patients’ predisposition to relapse and metastasis, chemotherapeutics’ cytotoxicity and resistance and poor prognosis of TNBC necessitates researchers to investigate different novel-targeted therapeutics. The role of small interfering RNA (siRNA) in silencing the genes/proteins that are aberrantly overexpressed in carcinoma cells showed great potential as part of TNBC therapeutic regimen. However, targeting specificity, siRNA stability, and delivery efficiency cause challenges in the progression of this application clinically. Nanotechnology was highlighted as a promising approach for encapsulating and transporting siRNA with high efficiency-low toxicity profile. Advances in preclinical and clinical studies utilizing engineered siRNA-loaded nanotherapeutics for treatment of TNBC were discussed. Specific and selective targeting of diverse signaling molecules/pathways at the level of tumor proliferation and cell cycle, tumor invasion and metastasis, angiogenesis and tumor microenvironment, and chemotherapeutics’ resistance demonstrated greater activity via integration of siRNA-complexed nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
6

Tavakol, Ashrafizadeh, Deng, Azarian, Abdoli, Motavaf, Poormoghadam, et al. "Autophagy Modulators: Mechanistic Aspects and Drug Delivery Systems." Biomolecules 9, no. 10 (September 25, 2019): 530. http://dx.doi.org/10.3390/biom9100530.

Full text
Abstract:
Autophagy modulation is considered to be a promising programmed cell death mechanism to prevent and cure a great number of disorders and diseases. The crucial step in designing an effective therapeutic approach is to understand the correct and accurate causes of diseases and to understand whether autophagy plays a cytoprotective or cytotoxic/cytostatic role in the progression and prevention of disease. This knowledge will help scientists find approaches to manipulate tumor and pathologic cells in order to enhance cellular sensitivity to therapeutics and treat them. Although some conventional therapeutics suffer from poor solubility, bioavailability and controlled release mechanisms, it appears that novel nanoplatforms overcome these obstacles and have led to the design of a theranostic-controlled drug release system with high solubility and active targeting and stimuli-responsive potentials. In this review, we discuss autophagy modulators-related signaling pathways and some of the drug delivery strategies that have been applied to the field of therapeutic application of autophagy modulators. Moreover, we describe how therapeutics will target various steps of the autophagic machinery. Furthermore, nano drug delivery platforms for autophagy targeting and co-delivery of autophagy modulators with chemotherapeutics/siRNA, are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Bracamonte, Angel Guillermo. "Current Advances in Nanotechnology for the Next Generation of Sequencing (NGS)." Biosensors 13, no. 2 (February 12, 2023): 260. http://dx.doi.org/10.3390/bios13020260.

Full text
Abstract:
This communication aims at discussing strategies based on developments from nanotechnology focused on the next generation of sequencing (NGS). In this regard, it should be noted that even in the advanced current situation of many techniques and methods accompanied with developments of technology, there are still existing challenges and needs focused on real samples and low concentrations of genomic materials. The approaches discussed/described adopt spectroscopical techniques and new optical setups. PCR bases are introduced to understand the role of non-covalent interactions by discussing about Nobel prizes related to genomic material detection. The review also discusses colorimetric methods, polymeric transducers, fluorescence detection methods, enhanced plasmonic techniques such as metal-enhanced fluorescence (MEF), semiconductors, and developments in metamaterials. In addition, nano-optics, challenges linked to signal transductions, and how the limitations reported in each technique could be overcome are considered in real samples. Accordingly, this study shows developments where optical active nanoplatforms generate signal detection and transduction with enhanced performances and, in many cases, enhanced signaling from single double-stranded deoxyribonucleic acid (DNA) interactions. Future perspectives on miniaturized instrumentation, chips, and devices aimed at detecting genomic material are analyzed. However, the main concept in this report derives from gained insights into nanochemistry and nano-optics. Such concepts could be incorporated into other higher-sized substrates and experimental and optical setups.
APA, Harvard, Vancouver, ISO, and other styles
8

Liang, Xinqiang, Mekhrdod S. Kurboniyon, Yuanhan Zou, Kezong Luo, Shuhong Fang, Pengle Xia, Shufang Ning, Litu Zhang, and Chen Wang. "GSH-Triggered/Photothermal-Enhanced H2S Signaling Molecule Release for Gas Therapy." Pharmaceutics 15, no. 10 (October 10, 2023): 2443. http://dx.doi.org/10.3390/pharmaceutics15102443.

Full text
Abstract:
Traditional treatment methods for tumors are inefficient and have severe side effects. At present, new therapeutic methods such as phototherapy, chemodynamic therapy, and gasodynamic therapy have been innovatively developed. High concentrations of hydrogen sulfide (H2S) gas exhibit cancer-suppressive effects. Herein, a Prussian blue-loaded tetra-sulfide modified dendritic mesoporous organosilica (PB@DMOS) was rationally constructed with glutathione (GSH)-triggered/photothermal-enhanced H2S signaling molecule release properties for gas therapy. The as-synthesized nanoplatform confined PB nanoparticles in the mesoporous structure of organosilica silica due to electrostatic adsorption. In the case of a GSH overexpressed tumor microenvironment, H2S gas was controllably released. And the temperature increases due to the photothermal effects of PB nanoparticles, further enhancing H2S release. At the same time, PB nanoparticles with excellent hydrogen peroxide catalytic performance also amplified the efficiency of tumor therapy. Thus, a collective nanoplatform with gas therapy/photothermal therapy/catalytic therapy functionalities shows potential promise in terms of efficient tumor therapy.
APA, Harvard, Vancouver, ISO, and other styles
9

Pennisi, Rosamaria, Maria Musarra-Pizzo, Tania Velletri, Antonino Mazzaglia, Giulia Neri, Angela Scala, Anna Piperno, and Maria Teresa Sciortino. "Cancer-Related Intracellular Signalling Pathways Activated by DOXorubicin/Cyclodextrin-Graphene-Based Nanomaterials." Biomolecules 12, no. 1 (January 1, 2022): 63. http://dx.doi.org/10.3390/biom12010063.

Full text
Abstract:
In the last decade, nanotechnological progress has generated new opportunities to improve the safety and efficacy of conventional anticancer therapies. Compared with other carriers, graphene nanoplatforms possess numerous tunable functionalities for the loading of multiple bioactive compounds, although their biocompatibility is still a debated concern. Recently, we have investigated the modulation of genes involved in cancer-associated canonical pathways induced by graphene engineered with cyclodextrins (GCD). Here, we investigated the GCD impact on cells safety, the HEp-2 responsiveness to Doxorubicin (DOX) and the cancer-related intracellular signalling pathways modulated by over time exposure to DOX loaded on GCD (GCD@DOX). Our studies evidenced that both DOX and GCD@DOX induced p53 and p21 signalling resulting in G0/G1 cell cycle arrest. A genotoxic behaviour of DOX was reported via detection of CDK (T14/Y15) activation and reduction of Wee-1 expression. Similarly, we found a cleavage of PARP by DOX within 72 h of exposure. Conversely, GCD@DOX induced a late cleavage of PARP, which could be indicative of less toxic effect due to controlled release of the drug from the GCD nanocarrier. Finally, the induction of the autophagy process supports the potential recycling of DOX with the consequent limitation of its toxic effects. Together, these findings demonstrate that GCD@DOX is a biocompatible drug delivery system able to evade chemoresistance and doxorubicin toxicity.
APA, Harvard, Vancouver, ISO, and other styles
10

Yan, Huimin, Ying Hu, Antonina Akk, Muhammad Farooq Rai, Hua Pan, Samuel A. Wickline, and Christine T. N. Pham. "Induction of WNT16 via Peptide-mRNA Nanoparticle-Based Delivery Maintains Cartilage Homeostasis." Pharmaceutics 12, no. 1 (January 17, 2020): 73. http://dx.doi.org/10.3390/pharmaceutics12010073.

Full text
Abstract:
Osteoarthritis (OA) is a progressive joint disease that causes significant disability and pain and for which there are limited treatment options. We posit that delivery of anabolic factors that protect and maintain cartilage homeostasis will halt or retard OA progression. We employ a peptide-based nanoplatform to deliver Wingless and the name Int-1 (WNT) 16 messenger RNA (mRNA) to human cartilage explants. The peptide forms a self-assembled nanocomplex of approximately 65 nm in size when incubated with WNT16 mRNA. The complex is further stabilized with hyaluronic acid (HA) for enhanced cellular uptake. Delivery of peptide-WNT16 mRNA nanocomplex to human cartilage explants antagonizes canonical β-catenin/WNT3a signaling, leading to increased lubricin production and decreased chondrocyte apoptosis. This is a proof-of-concept study showing that mRNA can be efficiently delivered to articular cartilage, an avascular tissue that is poorly accessible even when drugs are intra-articularly (IA) administered. The ability to accommodate a wide range of oligonucleotides suggests that this platform may find use in a broad range of clinical applications.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Signaling nanoplatforms"

1

Maayouf, Hasna. "Développement de plateformes de signalisation dérivées de particules pseudo-virales pour contrôler les fonctions cellulaires." Electronic Thesis or Diss., Mulhouse, 2024. http://www.theses.fr/2024MULH7387.

Full text
Abstract:
Diverses stratégies de fonctionnalisation de surface visent à améliorer la biocompatibilité des matériaux pour les dispositifs implantables, notamment en ingénierie tissulaire. Par exemple, le polydiméthylsiloxane (PDMS), bien qu’utilisé dans de nombreux domaines, présente des propriétés de surface défavorables à l’adhérence cellulaire. La fonctionnalisation par des protéines de la matrice extracellulaire (MEC) ou des peptides synthétiques dérivés de celles-ci permet d’améliorer l'adhérence des cellules. Bien que ces approches offrent certaines solutions, des défis tels que le coût de production et le contrôle de la présentation en 3D entravent leur manipulation. Pour répondre à ces défis, nous avons développé des particules pseudo-virales (VLPs) présentant des peptides bioactifs à leur surface. La protéine d’enveloppe CP3, dérivée du bactériophage à ARN AP205, a été modifiée génétiquement à ses extrémités N- et C-terminales pour produire des VLPs présentant des peptides d’adhésion (RGD et YIGSR) et ostéogéniques (BMP2). La bioactivité des VLPs a été testée sur du PDMS avec des cellules de myoblastes C2C12, montrant une stimulation de l'adhérence, de la migration, de la prolifération et de la différenciation cellulaires. Des VLPs hétéromériques co-exprimant les peptides RGD et YIGSR ou BMP2 ont montré une bioactivité combinée. Des comparaisons entre la fibronectine et les VLP-RGD ont révélé des similarités et des différences dans les interactions cellulaires et la formation des adhésions focales. Ces résultats démontrent que les VLPs d’AP205 peuvent servir de nano-plateformes de signalisation, avec des applications potentielles en nanomédecine et dans les biomatériaux
Scientists have explored various surface functionalization strategies to improve the biocompatibility of materials used in implantable devices, particularly in tissue engineering. For example, polydimethylsiloxane (PDMS), although used in many fields, has surface properties that are unfavorable for cell adhesion. Functionalization with extracellular matrix (ECM) proteins or synthetic peptides derived from ECM components improves cell adhesion. While these approaches offer some solutions, challenges such as production cost and control over 3D presentation limit their use. To overcome these challenges, we developed virus-like particles (VLPs) displaying bioactive peptides on their surface. The coat protein CP3, derived from the RNA bacteriophage AP205, was genetically modified at both its N- and C-termini to produce VLPs displaying adhesion peptides (RGD and YIGSR) and an osteogenic peptide (BMP2). The bioactivity of the VLPs was tested on PDMS with C2C12 myoblast cells, demonstrating enhanced cell adhesion, migration, proliferation, and differentiation. Heteromeric VLPs co-expressing RGD and YIGSR or BMP2 peptides showed combined bioactivity. By comparing focal adhesions formed by RGD VLPs and those formed by fibronectin, we elucidate both the similarities and the differences in cell interactions. These results demonstrate that AP205 VLPs can be used as nanoscale signaling platforms to stimulate multiple cell functions, with promising applications in nanomedicine and biomaterials
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography