Academic literature on the topic 'Signal loss'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Signal loss.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Signal loss"
Jain, Amit, A. Jay Khanna, and Hamid Hassanzadeh. "Management of intraoperative neuromonitoring signal loss." Seminars in Spine Surgery 27, no. 4 (December 2015): 229–32. http://dx.doi.org/10.1053/j.semss.2015.04.009.
Full textHaller, Sven, Michael Burke, and Thomas L. Mueller. "MR skin signal loss effect/artifact." Neuroradiology 60, no. 6 (April 22, 2018): 661–62. http://dx.doi.org/10.1007/s00234-018-2025-1.
Full textJeong, Won Ho, Hong-Rak Choi, and Kyung-Seok Kim. "Empirical Path-Loss Modeling and a RF Detection Scheme for Various Drones." Wireless Communications and Mobile Computing 2018 (December 6, 2018): 1–17. http://dx.doi.org/10.1155/2018/6795931.
Full textAlapati, Yaswanth Kumar, and Suban Ravichandran. "An Efficient Signal Processing Model for Malicious Signal Identification and Energy Consumption Reduction for Improving Data Transmission Rate." Traitement du Signal 38, no. 3 (June 30, 2021): 837–43. http://dx.doi.org/10.18280/ts.380330.
Full textWACHTER, KERRI. "Facial Wrinkles May Signal Bone Mineral Loss." Family Practice News 41, no. 13 (August 2011): 70. http://dx.doi.org/10.1016/s0300-7073(11)70708-3.
Full text&NA;. "Sudden Hearing Loss Could Signal Future Stroke." Emergency Medicine News 31, no. 9 (September 2009): 35. http://dx.doi.org/10.1097/01.eem.0000360600.65677.4f.
Full textXiong, Qing Song, Zhao Hua Wu, Pin Chen, and Sheng Zhang. "Analysis of Characteristic of Microstrip Signal Loss in Course of Signal Transmission." Advanced Materials Research 194-196 (February 2011): 2229–32. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.2229.
Full textLazar, Sorin, Yang Shao, Lina Gunawan, Riad Nechache, Alain Pignolet, and Gianluigi A. Botton. "Imaging, Core-Loss, and Low-Loss Electron-Energy-Loss Spectroscopy Mapping in Aberration-Corrected STEM." Microscopy and Microanalysis 16, no. 4 (July 2, 2010): 416–24. http://dx.doi.org/10.1017/s1431927610013504.
Full textWang, Xiaoye, and Shufang Zhang. "Evaluation of multipath signal loss for AIS signals transmitted on the sea surface." Ocean Engineering 146 (December 2017): 9–20. http://dx.doi.org/10.1016/j.oceaneng.2017.09.022.
Full textAbdorahimi, Danial, and Ali M. Sadeghioon. "Comparison of Radio Frequency Path Loss Models in Soil for Wireless Underground Sensor Networks." Journal of Sensor and Actuator Networks 8, no. 2 (June 22, 2019): 35. http://dx.doi.org/10.3390/jsan8020035.
Full textDissertations / Theses on the topic "Signal loss"
Palekar, Trishul Ajit. "Signal optimization at isolated intersections using pre-signals." Texas A&M University, 2006. http://hdl.handle.net/1969.1/4279.
Full textKurtoglu, Levent. "Analysis of loss for inductive strips in finline." Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA239947.
Full textThesis Advisor(s): Knorr, Jeffrey B. Second Reader: Janaswamy, R. "September 1990." Description based on title screen as viewed on March 18, 2010. DTIC Identifier(s): Finlines, Inductive Strips, Ohmic Losses. Author(s) subject terms: Finline, Inductive Strip, Finline Discontinuity, Ohmic Losses. Includes bibliographical references (p. 61). Also available in print.
Dumenil, Arnaud. "Polarization dependent loss in next-generation optical networks : challenges and solutions." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAS006.
Full textLarge amounts of ever-increasing global data traffic require sound and reliable communication channels. Optical terrestrial networks and submarine links are at the very heart of the global telecom infrastructure, and carry hundreds of frequency channels modulated at very high rates. These links include not only kilometers of fiber but also optical elements such as Erbium-Doped Fiber-Amplifiers (EDFA) to amplify periodically the attenuated signals and Wavelength Selective Switches (WSS) to route the signals to their assigned destinations. In this thesis, we explore a specific rate-degrading impairment of the optical propagation that raises in those systems. Discrete optical elements often exhibit a polarization anisotropy that emerges as a gain or loss imbalance between the two polarization tributaries of the polarization-multiplexed optical signals. This non-unitary effect called Polarization Dependent Loss (PDL) impairs the quality of transmission in current and next-generation optical systems.In the context of polarization-multiplexed signals, we assess the capacity loss induced by PDL. First, channel models are carefully studied and two approaches are described: a channel with distributed PDL elements and distributed noise or a simplified single-element equivalent channel. Making use of these models, we then analyze their fundamental limits of communications. We show that the PDL channel capacity depends in practice on the state-of-polarization orientation of the incident signal. We then review the state-of-the art of PDL-mitigating modulation schemes and propose two new multi-dimensional signaling schemes that enhance worst-case and average performance. These two modulations are unitary transforms of M-QAM symbols and do not make use of additional degrees of freedom apart from the four already-used dimensions per wavelength (in-phase and quadrature channels of two polarization states). We briefly extend these first results to space-division-multiplexed optical communications impaired by mode dependent loss (MDL) that present a similar gain imbalance. Beyond signal shaping at the transmitter side, we study the performance loss of a conventional, sequential signal processing chain at the receiver side in presence of PDL, in comparison with a joint equalization-decoding scheme. The additional capacity loss due to the mismatch sequential processing is evaluated for several modulation formats and at different operating points. Finally, we report an experimental validation of the two proposed signaling schemes, both on a single PDL element and on a distributed PDL channel, demonstrating the predicted enhanced robustness to PDL
Pokorný, Rostislav. "Návrh programovatelného útlumového členu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413091.
Full textPidaparthi, Sahitya. "AN ASSESSMENT OF THE ACCURACY OF MAGENTIC RESONANCE PHASE VELOCITY MAPPING IN TURBULENT FLOW THROUGH ORIFICES." Cleveland State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=csu1297396841.
Full textStephens, Richard Brian Leonard. "A study and modelling of the propagation effects of vegetation on radio waves at centimetre-wavelength frequencies." Thesis, University of South Wales, 1998. https://pure.southwales.ac.uk/en/studentthesis/a-study-and-modelling-of-the-propagation-effects-of-vegetation-on-radio-waves-at-centimetrewavelength-frequencies(48d8248f-a287-45e4-96e5-fe8d8e56efae).html.
Full textCurran, Brian [Verfasser], and Herbert [Akademischer Betreuer] Reichl. "Loss Modeling in Non-Ideal Transmission Lines for Optimal Signal Integrity / Brian Curran. Betreuer: Herbert Reichl." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2012. http://d-nb.info/1024771911/34.
Full textLINARES, LUIS CARLOS BLANCO. "STUDY OF SIGNAL DISTORTION IN ANALOGICAL OPTICAL SYSTEMS: FOR COMBINED EFFECTS OF POLARIZATION MODE DISPERSION AND POLARIZATION DEPENDENT LOSS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1999. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7426@1.
Full textNeste trabalho é apresentado um estudo do formalismo matemático para a teoria da polarização da luz, da dispersão dos modos de polarização e das perdas dependentes da polarização e de seus efeitos combinados. Medidas experimentais para caracterização dos parâmetros dos dispositivos que compõe a montagem experimental são apresentados, sendo aqui abordadas as técnicas de medida utilizadas. Um novo modelamento teórico para os efeitos combinados da dispersão dos modos de polarização e das perdas dependentes da polarização em sistemas ópticos analógicos é apresentado. Curvas teóricas e experimentais de distorção harmônica em função dos vários parâmetros envolvidos no modelamento comprovam a natureza interferométrica dos fenômenos avaliados. Medidas experimentais comprovam o correto modelamento teórico e demonstram que o modelamento matemático apresentado em [6], não contempla corretamente os fenômenos envolvidos.
In this work is presented a study of mathematical formalism to polarization of light thory, of polarization mode dispersion and polarization dependent loss and of this effects combined. Experimental measurements to characterize the devices of experimental set-up are presented, and the measure technique are mentioned here. A new theorical model to combined effects of polarization mode dispersion and polarization dependent loss is presented. Theorical and experimental curves of hamonic distortion in function of many parameters involved in theorical model prove the interferometric nature of phenomenon. Experimental measurement demonstrate a perfect agreement with modeling developed and prove differences of 5 dB with modeling presented in [6].
Chhabra, Manish. "Source Characterization using an Experimental Method and Prediction of Insertion of the Exhaust System." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin154399673454236.
Full textDybäck, Matilda, and Johanna Wallgren. "Pupil dilation as an indicator for auditory signal detection : Towards an objective hearing test based on eye tracking." Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192703.
Full textEn tidig upptäckt av hörselnedsättning hos barn är viktig för barnets tal- och språkutveckling. För barn mellan 3-6 månader saknas det en tillförlitlig metod för att mäta hörsel och bestämma hörtrösklar. Ett hörseltest baserad på pupillreaktion på ljud som mäts med en eye tracker bygger på en automatisk fysiologisk reaktion och skulle kunna användas istället för de objektiva test som används idag. Hitintills har pupillreaktion på tal påvisats, men det saknas studier som studerat eventuella reaktioner på sinustoner. Syftet med denna uppsats var att undersöka om det finns en enhetlig pupillreaktion på de olika frekvenserna av sinustoner som vanligen används i hörseltest. Vidare var studiens syfte att fastställa ett tillförlitligt tidsfönster för pupillreaktion. Fyra olika typer av tester utfördes. Pupillreaktionen mot sinustoner med fyra olika frekvensnivåer (500 Hz, 1000 Hz, 2000 Hz och 4000 Hz), och fyra olika ljudnivåer (tystnad, 30 dB, 50 dB och 70 dB) undersöktes i ett test på vuxna deltagare (N=20, 15 kvinnor, 5 män). Olika ljusnivåer och distraktioner på eye tracker-skärmen undersöktes i tre test (N=5, 4 kvinnor, 1 man). Skillnaderna mellan ljudnivåer och frekvensnivåer testades med statistiska tester. Resultaten visade att pupillreaktion på sinustoner inträffade konsekvent mellan 300 ms och 2000 ms med individuella variationer. Denna reaktionstid inträffar tidigare än för taljud. En statistisk signifikant skillnad mellan tystnad och olika ljudnivåer kunde endast ses för frekvensnivån 4000 Hz. Ingen statistisk skillnad uppmättes mellan olika ljudnivåer eller om det fanns distraktioner på eye tracker-skärmen. De i studien framkomna resultaten tyder på att pupillreaktioner mot rena sinustoner hos vuxna är en möjlig metod för att identifiera hörseltrösklar för åtminstone 4000 Hz. Större studier behöver göras för att fastställa detta och en noggrannare undersökning behöver genomföras för de andra frekvenserna.
Books on the topic "Signal loss"
Geiger, Bernhard C., and Gernot Kubin. Information Loss in Deterministic Signal Processing Systems. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-59533-7.
Full text1939-, North Gail, ed. The body-signal secret: You know diets don't work, here's what does! Emmaus, Pa: Rodale Press, 1991.
Find full textUrchuk, Steven Neil. Mechanisms of flow-induced signal loss in magnetic resonance angiography. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Find full textO'Leary, Paul Robert. The impact of cell loss on VBR video signal quality in ATM networks. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Find full textLane, Helen W., Philip C. Stepaniak, and Jeffrey R. Davis. Loss of signal: Aeromedical lessons learned from the STS-107 Columbia Space Shuttle mishap. Edited by United States. National Aeronautics and Space Administration. Washington, District of Columbia: National Aeronautics and Space Administration, 2014.
Find full textStewart, W. Kenneth. A preliminary study of shallow-water sonar issues: Signal motion loss and reverberation noise. [Woods Hole, Mass: Woods Hole Oceanographic Institution, Massachusetts Institute of Technology, 1993.
Find full textSignal Hill: Stories. San Francisco, USA: City Lights Books, 2003.
Find full textRestoration of lost samples in digital signals. New York: Prentice Hall, 1990.
Find full textGreen, J. A. Building penetration loss measurements for DAB signals at 211 MHz. Tadworth: Research Department, Engineering Division, British Broadcasting Corporation, 1992.
Find full textLost sounds: The story of coast fog signals. Latheronwheel: Whittles, 2000.
Find full textBook chapters on the topic "Signal loss"
Weik, Martin H. "signal loss." In Computer Science and Communications Dictionary, 1582. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17384.
Full textSedlacik, Jan, Alexander Rauscher, Jürgen R. Reichenbach, and E. Mark Haacke. "Understanding T2*-Related Signal Loss." In Susceptibility Weighted Imaging in MRI, 73–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470905203.ch5.
Full textLyons, Richard. "Reducing FFT Scalloping Loss Errors without Multiplication." In Streamlining Digital Signal Processing, 215–25. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118316948.ch22.
Full textFlorentine, Mary, Søren Buus, and Mindy Rosenberg. "Reaction-time data support the existence of Softness Imperception in cochlear hearing loss." In Auditory Signal Processing, 30–39. New York, NY: Springer New York, 2005. http://dx.doi.org/10.1007/0-387-27045-0_5.
Full textHovem, Jens M. "Mechanisms of Bottom Loss in Underwater Acoustics." In Acoustic Signal Processing for Ocean Exploration, 21–40. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1604-6_2.
Full textSpongr, Vlasta P., Joseph P. Walton, Robert D. Frisina, Ann Marie Kazee, Dorothy G. Flood, and Richard J. Salvi. "Hair Cell Loss and Synaptic Loss in Inferior Colliculus of C57BL/6 MICE." In Acoustical Signal Processing in the Central Auditory System, 535–42. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8712-9_49.
Full textHeinz, Michael G., Danilo Scepanovic, John Issa, Murray B. Sachs, and Eric D. Young. "Normal and impaired level encoding: Effects of noise-induced hearing loss on auditory-nerve responses." In Auditory Signal Processing, 40–49. New York, NY: Springer New York, 2005. http://dx.doi.org/10.1007/0-387-27045-0_6.
Full textSuzuki, Taiji, and Masashi Sugiyama. "Estimating Squared-Loss Mutual Information for Independent Component Analysis." In Independent Component Analysis and Signal Separation, 130–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00599-2_17.
Full textRelan, D., L. Ballerini, E. Trucco, and T. MacGillivray. "Retinal Vessel Classification Based on Maximization of Squared-Loss Mutual Information." In Machine Intelligence and Signal Processing, 77–84. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2625-3_7.
Full textNuzillard, Danielle, and Noël Bonnet. "BSS for Series of Electron Energy Loss Spectra." In Independent Component Analysis and Blind Signal Separation, 1150–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30110-3_145.
Full textConference papers on the topic "Signal loss"
"NETWORK-AWARE BIOMEDICAL SIGNAL PROCESSING - Loss Concealment or Loss Awareness." In International Conference on Health Informatics. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0003876503180325.
Full textGeng, Zhe, and Hai Deng. "Wireless signal propagation path loss estimation." In 2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2014. http://dx.doi.org/10.1109/aps.2014.6904805.
Full textStein, Manuel, Friederike Wendler, Amine Mezghani, and Josef A. Nossek. "Quantization-loss reduction for signal parameter estimation." In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638776.
Full textVityazeva, T. A., and A. A. Mikheev. "Information Loss in Measurement Signal Filtering Systems." In 2019 8th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2019. http://dx.doi.org/10.1109/meco.2019.8759995.
Full textAl-Kuwaiti, M., N. Kyriakopoulos, and S. Hussein. "QoS Mapping: A Framework Model for Mapping Network Loss to Application Loss." In 2007 IEEE International Conference on Signal Processing and Communications. IEEE, 2007. http://dx.doi.org/10.1109/icspc.2007.4728551.
Full textQuinn, Barry. "Phase-only information loss." In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5495779.
Full textAboketaf, Abdelsalam A., Liang Cao, Stefan F. Preble, and Paul Ampadu. "On-chip OTDM Signal Generator with Minimal Loss." In Frontiers in Optics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/fio.2012.ftu2a.6.
Full textRaghavan, Srini H., and L. Williams. "Modulation loss analysis for amplitude modulated FSK signal." In 2012 IEEE Aerospace Conference. IEEE, 2012. http://dx.doi.org/10.1109/aero.2012.6187125.
Full textMaxwell, S. C., D. Raymer, M. Williams, and P. Primiero. "Tracking Microseismic Signal Loss From Reservoir to Surface." In 75th EAGE Conference and Exhibition incorporating SPE EUROPEC 2013. Netherlands: EAGE Publications BV, 2013. http://dx.doi.org/10.3997/2214-4609.20130393.
Full textBuffin, Paul B., and C. C. Sung. "Excess Signal Loss In Precision-Wound Optical Fiber." In Technical Symposium Southeast, edited by Edward M. Granger. SPIE, 1987. http://dx.doi.org/10.1117/12.940454.
Full textReports on the topic "Signal loss"
Siegmann, William L., and Wendell J. Saintval. Transmission Loss and Signal Coherence in Shallow Water Waveguides. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada526548.
Full textJT Evans. Testing Results of Magnetostrictive Ultrasonic Sensor Cables for Signal Loss. Office of Scientific and Technical Information (OSTI), May 2005. http://dx.doi.org/10.2172/883695.
Full textGeller, L. B., and G. Rousseau. An evaluation of the EM instruments' Loss-of-Metallic-Area (LMA) signals. Natural Resources Canada/CMSS/Information Management, 1992. http://dx.doi.org/10.4095/328744.
Full textJones, E. M., F. N. App, and R. W. Whitaker. Ground motions and the infrasound signal: A new model and the discovery of a significant cavity rebound signal. Los Alamos Source Region Program. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10165578.
Full textSiekhaus, W., J. Go, M. Biener, S. Jensen, M. Havstad, J. Cheng, C. Hrousis, Z. Chiba, M. Oldaker, and W. McLean. Reaction of Gold with Indium Below 50C: Radius Loss Delta R and Standard Deviation Sigma of Soldered 4 mil Wires at 100 Years Predicted from Measured Delta R and Sigma at 30 Years. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1084699.
Full textBlackman, Allen, and Laura Villalobos. ¿Usar o perder los bosques?: Extracción regulada de madera y pérdida de cobertura forestal en México. Inter-American Development Bank, March 2021. http://dx.doi.org/10.18235/0003095.
Full textLópez Boo, Florencia, María de la Paz Ferro, and Pedro Carneiro. ¿Funciona integrar servicios de primera infancia con los servicios de salud?: Evidencia experimental del programa de visitas domiciliarias Cresça Com Seu Filho. Inter-American Development Bank, April 2021. http://dx.doi.org/10.18235/0003230.
Full textBarreix, Alberto, and Fernando Velayos. Incentivos tributarios, compromisos internacionales y suficiencia recaudatoria: Otra trilogía imposible. Inter-American Development Bank, April 2021. http://dx.doi.org/10.18235/0003231.
Full textGroves, David G., Michelle Miro, James Syme, Alejandro U. Becerra-Ornelas, Edmundo Molina-Pérez, Valentina Saavedra, and Adrien Vogt-Schilb. Planificación de infraestructura hídrica para el futuro incierto en América Latina: un enfoque eficiente en costos y tiempo para tomar decisiones robustas de infraestructura, con un estudio de caso en Mendoza, Argentina. Inter-American Development Bank, February 2021. http://dx.doi.org/10.18235/0003030.
Full textTarko, Andrew P., Thomas Hall, Cristhian Lizarazo, and Fernando España-Monedero. Speed Management in Small Cities and Towns—Guidelines for Indiana. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317122.
Full text