To see the other types of publications on this topic, follow the link: SiGe islands.

Journal articles on the topic 'SiGe islands'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'SiGe islands.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Takaki, Tomohiro, and Yoshihiro Tomita. "Phase-Field Simulation of Surface Morphology Evolution during Epitaxial Growth of SiGe/Si System." Key Engineering Materials 340-341 (June 2007): 1073–78. http://dx.doi.org/10.4028/www.scientific.net/kem.340-341.1073.

Full text
Abstract:
We have developed a phase-field model which can simulate the growth process of self-assembled SiGe/Si islands during deposition. The novel feature of this model is that it can reproduce the morphological transitions of islands, i.e., from single-faceted pyramid to multifaceted dome and from dome to barn, by taking a high anisotropy and a sixteen-fold anisotropy of surface energy into account. Two-dimensional simulations have been performed on a large computational model. As a result, island nucleation on the surface of a wetting layer, island morphological change and Ostwald ripening due to an interaction between two neighbor islands were well reproduced. The bimodal distribution of island size, which is a very important phenomenon in self-assembled quantum dots, could also be generated. Furthermore, it has been clarified that the bimodal distributions are largely affected by island morphological change from pyramid to dome. Furthermore, in order to discuss the mechanism of island growth, a simulation of single-island growth has been conducted and the variations of island size and energies have been estimated in detail. As a result, it is concluded that the island morphological transitions occur so as to reduce the elastic strain energy.
APA, Harvard, Vancouver, ISO, and other styles
2

YU, JINZHONG, CHANGJUN HUANG, BUWEN CHENG, YUHUA ZUO, LIPING LUO, and QIMING WANG. "TYPE-II SiGe/Si MQWS (MULTI-QUANTUM WELLS) AND SELF-ORGANIZED Ge/Si ISLANDS GROWN BY UHV/CVD SYSTEM." International Journal of Modern Physics B 16, no. 28n29 (November 20, 2002): 4228–33. http://dx.doi.org/10.1142/s0217979202015145.

Full text
Abstract:
Type-II SiGe/Si MQWs (Multi-Quantum Wells) and Self-Organized Ge/Si Islands were successfully grown by a homemade ultra-high vacuum/chemical vapor deposition (UHV/CVD) system. Growth characteristics and PL (photoluminescence) spectra at different temperature were measured. It demonstrated that some accumulation of carriers in the islands results in the increase of the integrated PL intensity of island-related at a certain temperature range.
APA, Harvard, Vancouver, ISO, and other styles
3

Capellini, G., M. De Seta, and F. Evangelisti. "SiGe intermixing in Ge/Si(100) islands." Applied Physics Letters 78, no. 3 (January 15, 2001): 303–5. http://dx.doi.org/10.1063/1.1339263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yin, Haizhou, K. D. Hobart, F. J. Kub, S. R. Shieh, T. S. Duffy, and J. C. Sturm. "High-germanium-content SiGe islands formed on compliant oxide by SiGe oxidation." Applied Physics Letters 84, no. 18 (May 3, 2004): 3624–26. http://dx.doi.org/10.1063/1.1738514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yin, H., R. Huang, K. D. Hobart, Z. Suo, T. S. Kuan, C. K. Inoki, S. R. Shieh, T. S. Duffy, F. J. Kub, and J. C. Sturm. "Strain relaxation of SiGe islands on compliant oxide." Journal of Applied Physics 91, no. 12 (2002): 9716. http://dx.doi.org/10.1063/1.1479757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mateeva, E., P. Sutter, and M. G. Lagally. "Spontaneous self-embedding of three-dimensional SiGe islands." Applied Physics Letters 74, no. 4 (January 25, 1999): 567–69. http://dx.doi.org/10.1063/1.123147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Groenen, J., R. Carles, S. Christiansen, M. Albrecht, W. Dorsch, H. P. Strunk, H. Wawra, and G. Wagner. "Phonons as probes in self-organized SiGe islands." Applied Physics Letters 71, no. 26 (December 29, 1997): 3856–58. http://dx.doi.org/10.1063/1.120525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yin, Haizhou, R. Huang, K. D. Hobart, J. Liang, Z. Suo, S. R. Shieh, T. S. Duffy, F. J. Kub, and J. C. Sturm. "Buckling suppression of SiGe islands on compliant substrates." Journal of Applied Physics 94, no. 10 (November 15, 2003): 6875–82. http://dx.doi.org/10.1063/1.1621069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baribeau, J. M., and X. Wu. "Advances in self-assembled SiGe islands and nanostructures." physica status solidi (c) 6, S1 (April 8, 2009): S17—S22. http://dx.doi.org/10.1002/pssc.200881273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Merdzhanova, T., A. Rastelli, M. Stoffel, S. Kiravittaya, and O. G. Schmidt. "Island motion triggered by the growth of strain-relaxed SiGe/Si(001) islands." Journal of Crystal Growth 301-302 (April 2007): 319–23. http://dx.doi.org/10.1016/j.jcrysgro.2006.11.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Fagiani, Luca, Nicoletta Granchi, Attilio Zilli, Chiara Barri, Francesco Rusconi, Michele Montanari, Erfan Mafakheri, et al. "Linear and nonlinear optical properties of dewetted SiGe islands." Optical Materials: X 13 (January 2022): 100116. http://dx.doi.org/10.1016/j.omx.2021.100116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wu, Y. Q., F. H. Li, J. Cui, J. H. Lin, R. Wu, J. Qin, C. Y. Zhu, Y. L. Fan, X. J. Yang, and Z. M. Jiang. "Shape change of SiGe islands with initial Si capping." Applied Physics Letters 87, no. 22 (November 28, 2005): 223116. http://dx.doi.org/10.1063/1.2137307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bollani, M., E. Bonera, D. Chrastina, A. Fedorov, V. Montuori, A. Picco, A. Tagliaferri, G. Vanacore, and R. Sordan. "Ordered Arrays of SiGe Islands from Low-Energy PECVD." Nanoscale Research Letters 5, no. 12 (September 7, 2010): 1917–20. http://dx.doi.org/10.1007/s11671-010-9773-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Huang, R., H. Yin, J. Liang, J. C. Sturm, K. D. Hobart, and Z. Suo. "Mechanics of relaxing SiGe islands on a viscous glass." Acta Mechanica Sinica 18, no. 5 (October 2002): 441–56. http://dx.doi.org/10.1007/bf02486570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

FROMHERZ, T., J. STANGL, R. T. LECHNER, E. WINTERSBERGER, G. BAUER, V. HOLY, C. DAIS, et al. "3D SiGe QUANTUM DOT CRYSTALS: STRUCTURAL CHARACTERIZATION AND ELECTRONIC COUPLING." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2836–41. http://dx.doi.org/10.1142/s0217979209062414.

Full text
Abstract:
We report on the growth of SiGe quantum dot crystals which are realized by depositing Ge on a two-dimensionally pit-patterned Si substrate and subsequent growth of Si spacer and Ge island layers. Lateral periods of 100 nm are obtained by employing deep UV lithography using synchrotron radiation. The vertical period of the typically 10 period dot superlattices was of the order of 10 nm. Ordering of the islands was investigated by atomic force microscopy as well as by high resolution x-ray diffraction studies. From the quantitative evaluation of the x-ray diffraction data a mean Ge content of about 60% in the quantum dots was obtained and an rms. deviation from ideal lattice sites of about 3 nm was found. A simulation of the eigenenergies based on the nextnano3 simulation package was used to interpret the measured photoluminescence data.
APA, Harvard, Vancouver, ISO, and other styles
16

Deng, Ning, Peiyi Chen, and Zhijian Li. "Self-assembled SiGe islands with uniform shape and size by controlling Si concentration in islands." Journal of Crystal Growth 263, no. 1-4 (March 2004): 21–24. http://dx.doi.org/10.1016/j.jcrysgro.2003.10.091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Stangl, J., T. Roch, G. Bauer, I. Kegel, T. H. Metzger, O. G. Schmidt, K. Eberl, O. Kienzle, and F. Ernst. "Vertical correlation of SiGe islands in SiGe/Si superlattices: X-ray diffraction versus transmission electron microscopy." Applied Physics Letters 77, no. 24 (December 11, 2000): 3953–55. http://dx.doi.org/10.1063/1.1333683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ke, Shaoying, Shuang Ye, Jie Yang, Zhaoqing Wang, Chong Wang, and Yu Yang. "Morphological evolution of self-assembled SiGe islands based on a mixed-phase pre-SiGe island layer grown by ion beam sputtering deposition." Applied Surface Science 328 (February 2015): 387–94. http://dx.doi.org/10.1016/j.apsusc.2014.11.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zinov’ev, V. A. "Dislocation nucleation in SiGe nanoscale islands formed during heteroepitaxial growth." Optoelectronics, Instrumentation and Data Processing 45, no. 4 (August 2009): 332–36. http://dx.doi.org/10.3103/s8756699009040086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ning, Deng, Zhang Lei, and Chen Pei-Yi. "Investigation of Composition in Nano-Scaled Self-Assembled SiGe Islands." Chinese Physics Letters 22, no. 7 (June 16, 2005): 1761–63. http://dx.doi.org/10.1088/0256-307x/22/7/055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Floro, J. A., E. Chason, M. B. Sinclair, L. B. Freund, and G. A. Lucadamo. "Dynamic self-organization of strained islands during SiGe epitaxial growth." Applied Physics Letters 73, no. 7 (August 17, 1998): 951–53. http://dx.doi.org/10.1063/1.122049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, F. H., Y. L. Fan, X. J. Yang, Z. M. Jiang, Y. Q. Wu, and J. Zou. "Atomic composition profile change of SiGe islands during Si capping." Applied Physics Letters 89, no. 10 (September 4, 2006): 103108. http://dx.doi.org/10.1063/1.2345589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sutter, P., and M. G. Lagally. "Embedding of Nanoscale 3D SiGe Islands in a Si Matrix." Physical Review Letters 81, no. 16 (October 19, 1998): 3471–74. http://dx.doi.org/10.1103/physrevlett.81.3471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Brehm, M., T. Suzuki, Z. Zhong, T. Fromherz, J. Stangl, G. Hesser, S. Birner, F. Schäffler, and G. Bauer. "Bandstructure and photoluminescence of SiGe islands with controlled Ge concentration." Microelectronics Journal 39, no. 3-4 (March 2008): 485–88. http://dx.doi.org/10.1016/j.mejo.2007.07.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chiang, K. N., C. H. Chang, and C. T. Peng. "Local-strain effects in Si∕SiGe∕Si islands on oxide." Applied Physics Letters 87, no. 19 (November 7, 2005): 191901. http://dx.doi.org/10.1063/1.2119430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Katsaros, G., M. Stoffel, A. Rastelli, O. G. Schmidt, K. Kern, and J. Tersoff. "Three-dimensional isocompositional profiles of buried SiGe∕Si(001) islands." Applied Physics Letters 91, no. 1 (July 2, 2007): 013112. http://dx.doi.org/10.1063/1.2752730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Krasilnik, Z. F., A. V. Novikov, D. N. Lobanov, K. E. Kudryavtsev, A. V. Antonov, S. V. Obolenskiy, N. D. Zakharov, and P. Werner. "SiGe nanostructures with self-assembled islands for Si-based optoelectronics." Semiconductor Science and Technology 26, no. 1 (December 9, 2010): 014029. http://dx.doi.org/10.1088/0268-1242/26/1/014029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhang, Jianjun, Armando Rastelli, Oliver G. Schmidt, and Günther Bauer. "Compositional evolution of SiGe islands on patterned Si (001) substrates." Applied Physics Letters 97, no. 20 (November 15, 2010): 203103. http://dx.doi.org/10.1063/1.3514239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sutter, P., P. Zahl, and E. Sutter. "Continuous formation and faceting of SiGe islands on Si(100)." Applied Physics Letters 82, no. 20 (May 19, 2003): 3454–56. http://dx.doi.org/10.1063/1.1577386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Barucca, G., L. Lucchetti, G. Majni, P. Mengucci, R. Murri, and N. Pinto. "Strain relaxation through islands formation in epitaxial SiGe thin films." Applied Surface Science 102 (August 1996): 73–77. http://dx.doi.org/10.1016/0169-4332(96)00023-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yablonskiy, A. N., N. A. Baidakova, A. V. Novikov, and D. N. Lobanov. "Time-resolved photoluminescence from self-assembled Ge(Si) islands in multilayer SiGe/Si and SiGe/SOI structures." Semiconductors 47, no. 11 (November 2013): 1496–99. http://dx.doi.org/10.1134/s1063782613110249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Seiss, Birgit, Georges Brémond, and Didier Dutartre. "Instability formation in epitaxial SiGe lines under hydrogen annealing." MRS Proceedings 1551 (2013): 87–92. http://dx.doi.org/10.1557/opl.2013.1041.

Full text
Abstract:
ABSTRACTThe influence of film thickness and line width on the morphology of epitaxial SiGe was studied after an annealing step. The morphology of 5 nm and 19 nm thick SiGe was characterized in 60-490 nm wide lines which were oriented along <100> on Si (001) substrates. We have shown that the annealed SiGe morphology changed significantly as a function of line width and film thickness. Wide lines of 19 nm thick SiGe showed ridge formation; as the line width was decreased the morphology stabilized and then became unstable with the formation of bulges. The morphology of 5 nm thick SiGe consisted of ridges in wide lines, changed to faceted islands in narrower lines and was stable in the narrowest lines.
APA, Harvard, Vancouver, ISO, and other styles
33

Hanke, M., T. Boeck, A. K. Gerlitzke, F. Syrowatka, and F. Heyroth. "Unidirectional self-assembling of SiGe Stranski-Krastanow islands on Si(113)." Applied Physics Letters 86, no. 22 (May 30, 2005): 223109. http://dx.doi.org/10.1063/1.1943490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Uchino, T., K. N. Bourdakos, C. H. de Groot, P. Ashburn, M. E. Kiziroglou, G. D. Dilliway, and D. C. Smith. "Metal catalyst-free low-temperature carbon nanotube growth on SiGe islands." Applied Physics Letters 86, no. 23 (June 6, 2005): 233110. http://dx.doi.org/10.1063/1.1946191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hrauda, N., J. J. Zhang, H. Groiss, T. Etzelstorfer, V. Holý, G. Bauer, C. Deiter, O. H. Seeck, and J. Stangl. "Strain relief and shape oscillations in site-controlled coherent SiGe islands." Nanotechnology 24, no. 33 (July 26, 2013): 335707. http://dx.doi.org/10.1088/0957-4484/24/33/335707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mateeva, E., P. Sutter, J. C. Bean, and M. G. Lagally. "Mechanism of organization of three-dimensional islands in SiGe/Si multilayers." Applied Physics Letters 71, no. 22 (December 1997): 3233–35. http://dx.doi.org/10.1063/1.120300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Cazayous, M., J. Groenen, F. Demangeot, R. Sirvin, M. Caumont, T. Remmele, M. Albrecht, et al. "Strain and composition in self-assembled SiGe islands by Raman spectroscopy." Journal of Applied Physics 91, no. 10 (2002): 6772. http://dx.doi.org/10.1063/1.1469200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhang, J. J., N. Hrauda, H. Groiss, A. Rastelli, J. Stangl, F. Schäffler, O. G. Schmidt, and G. Bauer. "Strain engineering in Si via closely stacked, site-controlled SiGe islands." Applied Physics Letters 96, no. 19 (May 10, 2010): 193101. http://dx.doi.org/10.1063/1.3425776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Katsaros, G., A. Rastelli, M. Stoffel, G. Isella, H. von Känel, A. M. Bittner, J. Tersoff, et al. "Investigating the lateral motion of SiGe islands by selective chemical etching." Surface Science 600, no. 12 (June 2006): 2608–13. http://dx.doi.org/10.1016/j.susc.2006.04.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hesse, A., J. Stangl, V. Holý, G. Bauer, O. Kirfel, E. Müller, and D. Grützmacher. "Influence of capping on strain, composition and shape of SiGe islands." Materials Science and Engineering: B 101, no. 1-3 (August 2003): 71–76. http://dx.doi.org/10.1016/s0921-5107(02)00655-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Stoffel, M., A. Rastelli, T. Merdzhanova, G. S. Kar, and O. G. Schmidt. "Morphological evolution and lateral ordering of uniform SiGe/Si(001) islands." Microelectronics Journal 37, no. 12 (December 2006): 1528–31. http://dx.doi.org/10.1016/j.mejo.2006.05.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Huang, Jingyun, Zhizhen Ye, Weihua Chen, Zhen Qi, Huanming Lu, Wang Lei, Binghui Zhao, and Duanlin Que. "The growth and investigation of SiGe films on buried Ge islands." Journal of Crystal Growth 206, no. 4 (November 1999): 294–98. http://dx.doi.org/10.1016/s0022-0248(99)00338-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Becker, M., S. Christiansen, M. Albrecht, H. P. Strunk, and H. Wawra. "Energetic and kinetic aspects of the growth of pseudomorphic SiGe islands." Journal of Crystal Growth 310, no. 14 (July 2008): 3261–67. http://dx.doi.org/10.1016/j.jcrysgro.2008.03.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhong, Z., H. Lichtenberger, G. Chen, M. Mühlberger, C. Schelling, J. Myslivecek, A. Halilovic, et al. "Ordered SiGe islands on vicinal and pre-patterned Si(001) substrates." Microelectronic Engineering 83, no. 4-9 (April 2006): 1730–35. http://dx.doi.org/10.1016/j.mee.2006.01.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rastelli, A., M. Stoffel, T. Merdzhanova, and O. G. Schmidt. "Intermixing and composition profiles of strained SiGe islands on Si(001)." Journal of Physics: Condensed Matter 20, no. 45 (October 23, 2008): 454214. http://dx.doi.org/10.1088/0953-8984/20/45/454214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Cho, M. H., Y. J. Cho, M. K. Lee, S. A. Park, Y. S. Roh, Y. K. Kim, K. Jeong, et al. "Investigation of Ge profile on SiGe islands by scanning photoelectron microscopy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 22, no. 3 (2004): 1012. http://dx.doi.org/10.1116/1.1736643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Żak, M., J.-Y. Laval, P. A. Dłużewski, S. Kret, V. Yam, D. Bouchier, and F. Fossard. "Influence of the Si cap layer on the SiGe islands morphology." Micron 40, no. 1 (January 2009): 122–25. http://dx.doi.org/10.1016/j.micron.2008.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Balasubramanian, Prabhu, Jerrold A. Floro, Jennifer L. Gray, and Robert Hull. "Nano-scale Chemistry of Complex Self-Assembled Nanostructures in Epitaxial SiGe Films." MRS Proceedings 1551 (2013): 75–80. http://dx.doi.org/10.1557/opl.2013.1019.

Full text
Abstract:
ABSTRACTHeteroepitaxy of SiGe alloys on Si (001) under certain growth conditions has previously been shown to cause self-assembly of nanostructures called Quantum Dot Molecules, QDMs, where pyramidal pits and 3D islands cooperatively form. QDMs have potential applications to nanologic device architectures such as Quantum Cellular Automata that relies on localization of charges inside islands to create bi-stable logic states. In order to determine the applicability of QDMs to such structures it is necessary to understand the nano-scale chemistry of QDMs because the chemistry affects local bandgap which in turn affects a QDM’s charge confinement property. We investigate the nanoscale chemistry of QDMs in the Si0.7Ge0.3/Si (100) system using Auger Electron Spectroscopy (AES). Our AES analysis indicates that compressively strained QDM pit bases are the most Ge rich regions in a QDM. The segregation of Ge to these locations cannot be explained by strain energy minimization.
APA, Harvard, Vancouver, ISO, and other styles
49

Grydlik, M., M. Brehm, F. Hackl, H. Groiss, T. Fromherz, F. Schäffler, and G. Bauer. "Inverted Ge islands in {111} faceted Si pits—a novel approach towards SiGe islands with higher aspect ratio." New Journal of Physics 12, no. 6 (June 2, 2010): 063002. http://dx.doi.org/10.1088/1367-2630/12/6/063002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wiebach, Th, M. Schmidbauer, M. Hanke, H. Raidt, R. Köhler, and H. Wawra. "Strain and composition in SiGe nanoscale islands studied by x-ray scattering." Physical Review B 61, no. 8 (February 15, 2000): 5571–78. http://dx.doi.org/10.1103/physrevb.61.5571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography