Academic literature on the topic 'Siamese Neural Models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Siamese Neural Models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Siamese Neural Models"
Kurniasari, Dian, Mustofa Usman, Warsono Warsono, and Favorisen Rosyking Lumbanraja. "Comparative analysis of deep Siamese models for medical reports text similarity." International Journal of Electrical and Computer Engineering (IJECE) 14, no. 6 (December 1, 2024): 6969. http://dx.doi.org/10.11591/ijece.v14i6.pp6969-6980.
Full textAnanthakrishnan, Balasundaram, Ayesha Shaik, Shivam Akhouri, Paras Garg, Vaibhav Gadag, and Muthu Subash Kavitha. "Automated Bone Marrow Cell Classification for Haematological Disease Diagnosis Using Siamese Neural Network." Diagnostics 13, no. 1 (December 29, 2022): 112. http://dx.doi.org/10.3390/diagnostics13010112.
Full textXiao, Wanghui, and Yuting Ding. "A Two-Stage Siamese Network Model for Offline Handwritten Signature Verification." Symmetry 14, no. 6 (June 12, 2022): 1216. http://dx.doi.org/10.3390/sym14061216.
Full textCha, Byung-Rae, and Binod Vaidya. "Enhancing Human Activity Recognition with Siamese Networks: A Comparative Study of Contrastive and Triplet Learning Approaches." Electronics 13, no. 9 (May 1, 2024): 1739. http://dx.doi.org/10.3390/electronics13091739.
Full textAharchaou, Mehdi, Michael Matheney, Joe Molyneux, and Erik Neumann. "Edge-aware filtering with Siamese neural networks." Leading Edge 39, no. 10 (October 2020): 711–17. http://dx.doi.org/10.1190/tle39100711.1.
Full textGao, Peng, Xiao Liu, Hong-Chuan Sang, Yu Wang, and Fei Wang. "Efficient and Lightweight Visual Tracking with Differentiable Neural Architecture Search." Electronics 12, no. 17 (August 27, 2023): 3623. http://dx.doi.org/10.3390/electronics12173623.
Full textMelnychenko, Artem, and Kostyantyn Zdor. "EFFICIENCY OF SUPPLEMENTARY OUTPUTS IN SIAMESE NEURAL NETWORKS." Advanced Information Systems 7, no. 3 (September 20, 2023): 49–53. http://dx.doi.org/10.20998/2522-9052.2023.3.07.
Full textContreras, Jhonatan, Sara Mostafapour, Jürgen Popp, and Thomas Bocklitz. "Siamese Networks for Clinically Relevant Bacteria Classification Based on Raman Spectroscopy." Molecules 29, no. 5 (February 28, 2024): 1061. http://dx.doi.org/10.3390/molecules29051061.
Full textBilotserkovskyy, V. V., S. G. Udovenko, and L. E. Chala. "Method of neural network recognition of falsified images." Bionics of Intelligence 2, no. 95 (December 2, 2020): 32–42. http://dx.doi.org/10.30837/bi.2020.2(95).05.
Full textXie, Chunli, Xia Wang, Cheng Qian, and Mengqi Wang. "A Source Code Similarity Based on Siamese Neural Network." Applied Sciences 10, no. 21 (October 26, 2020): 7519. http://dx.doi.org/10.3390/app10217519.
Full textDissertations / Theses on the topic "Siamese Neural Models"
Gu, Jian. "Multi-modal Neural Representations for Semantic Code Search." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279101.
Full textUnder de senaste decennierna har olika programvarusystem gradvis blivit basen i vårt samhälle. Programmerare söker i befintliga kodavsnitt från tid till annan i deras dagliga liv. Det skulle vara fördelaktigt och meningsfullt att ha bättre lösningar för uppgiften att semantisk kodsökning, vilket är att hitta de mest semantiskt relevanta kodavsnitten för en given fråga. Vår metod är att introducera trädrepresentationer genom multimodal inlärning. Grundidén är att berika semantisk information för kodavsnitt genom att förbereda data med olika modaliteter och samtidigt ignorera syntaktisk information. Vi designar en ny trädstruktur med namnet Simplified Semantic Tree och extraherar sedan RootPath-representationer från det. Vi använder RootPath-representation för att komplettera den konventionella sekvensrepresentationen, nämligen kodsekvensens symbolsekvens. Vår multimodala modell får kodfrågeställningar som inmatning och beräknar likhetspoäng som utgång efter den pseudo-siamesiska arkitekturen. För varje par, förutom den färdiga kodsekvensen och frågesekvensen, extrager vi en extra trädsekvens från Simplified Semantic Tree. Det finns tre kodare i vår modell, och de kodar respektive tre sekvenser som vektorer av samma längd. Sedan kombinerar vi kodvektorn med trädvektorn för en gemensam vektor, som fortfarande är av samma längd som den multimodala representationen för kodavsnittet. Vi introducerar tripletförlust för att säkerställa att vektorer av kod och fråga i samma par är nära det delade vektorn. Vi genomför experiment i ett storskaligt flerspråkigt korpus, med jämförelser av starka baslinjemodeller med specificerade prestandametriker. Bland baslinjemodellerna är den enklaste Neural Bag-of-Words-modellen med den mest tillfredsställande prestanda. Det indikerar att syntaktisk information sannolikt kommer att distrahera komplexa modeller från kritisk semantisk information. Resultaten visar att vår multimodala representationsmetod fungerar bättre eftersom den överträffar basmodellerna i de flesta fall. Nyckeln till vår multimodala modell är att den helt handlar om semantisk information, och den lär sig av data om flera modaliteter.
Menad, Safaa. "Enrichissement et alignement sémantique d'οntοlοgies biοmédicales par mοdèles de langue." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR104.
Full textThe first part of this thesis addresses the design of siamese neural models trained for semantic similarity between biomedical texts and their application to NLP tasks on biomedical documents. The training of these models was performed by embedding the titles and abstracts from the PubMed corpus along with the MeSH thesaurus into a common space. In the second part, we use these models to align and enrich the terminologies of UMLS (Unified Medical Language System) and automate the integration of new relationships between similar concepts, particularly from diseases (DOID), drugs (DRON), and symptoms. These enriched relationships enhance the usability of these ontologies, thereby facilitating their application in various clinical and scientific domains. Additionally, we propose validation approaches using resources such as LLMs, OpenFDA, the UMLS Metathesaurus, and the UMLS semantic network, supplemented by manual validation from domain experts
Gong, Rong. "Automatic assessment of singing voice pronunciation: a case study with Jingju music." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/664421.
Full textEl aprendizaje en línea ha cambiado notablemente la educación musical en la pasada década. Una cada vez mayor cantidad de estudiantes de interpretación musical participan en cursos de aprendizaje musical en línea por su fácil accesibilidad y no estar limitada por restricciones de tiempo y espacio. Puede considerarse el canto como la forma más básica de interpretación. La evaluación automática de la voz cantada, como tarea importante en la disciplina de Recuperación de Información Musical (MIR por sus siglas en inglés) tiene como objetivo la extracción de información musicalmente significativa y la medición de la calidad de la voz cantada del estudiante. La corrección y calidad del canto son específicas a cada cultura y su evaluación requiere metodologías con especificidad cultural. La música del jingju (también conocido como ópera de Beijing) es una de las tradiciones musicales más representativas de China y se ha difundido a muchos lugares del mundo donde existen comunidades chinas.Nuestro objetivo es abordar problemas aún no explorados sobre la evaluación automática de la voz cantada en la música del jingju, hacer que las propuestas eurogenéticas actuales sobre evaluación sean más específicas culturalmente, y al mismo tiempo, desarrollar nuevas propuestas sobre evaluación que puedan ser generalizables para otras tradiciones musicales.
Štarha, Dominik. "Meření podobnosti obrazů s pomocí hlubokého učení." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377018.
Full textTorti, López Rubén Ezequiel. "Entrenamiento de modelos de aprendizaje profundo mediante autosupervisión." Bachelor's thesis, 2017. http://hdl.handle.net/11086/6082.
Full textDentro del campo del aprendizaje automático, una clase de técnicas conocidas como Deep Learning (DL) han cobrado particular relevancia, ya que mediante su utilización se han conseguido mejoras muy significativas respecto de métodos tradicionales. Una desventaja de los modelos basados en DL es que usualmente cuentan con más parámetros que cantidad de elementos en los conjuntos de datos de entrenamiento. En el caso particular de la clasificación de imágenes por contenido, si bien existen grandes conjuntos de datos anotados disponibles, su generación para problemas en otros dominios es muy costosa. Se propone en este trabajo una manera alternativa al entrenamiento de esta clase de modelos inspirada en cómo los organismos vivientes desarrollan habilidades de percepción visual: moviéndose e interactuando con el mundo que los rodea. Partiendo de la hipótesis de que un agente puede usar la información del movimiento propio (rotación y traslación en los ejes X,Y,Z) como método de supervisión, Agrawal et al. ya han demostrado que es posible obtener buenos resultados entrenando con menos imágenes anotadas que lo usual. Se validan experimentalmente los resultados de este método de entrenamiento con respecto a los del estado del arte en tareas de clasificación en distintos dominios.
Within the field of machine learning, a class of techniques known as Deep Learning (DL) have become particularly relevant since their use have achieved significant improvements compared to traditional methods. A disadvantage of DL-based models is that they usually have much more parameters than elements in the training datasets. Despite the fact that there exist large annotated datasets for the task of image classification by content, the generation of new datasets for problems in other domains is very costly. There is an alternative way to train this kind of models inspired by how the living organisms develop visual perception skills: by moving and interacting with the world that surrounds them. By hypothesizing that an agent can use its own movement information (rotation and translation in the X, Y, Z axes) as a method of supervision, Agrawal et al. have already shown that it is possible to obtain good results when training with fewer annotated images than usual. In this work, the results of this method are validated with respect to the state of the art algorithms in tasks of classification in different domains.
Book chapters on the topic "Siamese Neural Models"
Huang, Junrong, and Chenwei Wang. "VFIQ: A Novel Model of ViT-FSIMc Hybrid Siamese Network for Image Quality Assessment." In Neural Information Processing, 162–74. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8073-4_13.
Full textLi, Guangshuo, Lingling Cui, Yue Song, Xiaoxia Chen, and Lingxiao Zheng. "Small-Sample Coal-Rock Recognition Model Based on MFSC and Siamese Neural Network." In Green, Pervasive, and Cloud Computing, 238–47. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9893-7_18.
Full textHu, Haiyan, Chang Su, and Jiaqi Ju. "Identification of Pests and Diseases Based on Cascaded Convolutional Neural Network." In Advances in Transdisciplinary Engineering. IOS Press, 2024. http://dx.doi.org/10.3233/atde231208.
Full textSvensson, Karl Fabian, and Carlos Guerrero-Mosquera. "OPNet: A One-Shot Image Similarity Algorithm for Production Systems." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230665.
Full textMenad, Safaa, Saïd Abdeddaïm, and Lina F. Soualmia. "Merging Biomedical Ontologies with BioSTransformers." In Studies in Health Technology and Informatics. IOS Press, 2024. http://dx.doi.org/10.3233/shti240526.
Full textTrappey, Amy J. C., Charles V. Trappey, and Sam C. C. Lin. "Detecting Trademark Image Infringement Using Convolutional Neural Networks." In Advances in Transdisciplinary Engineering. IOS Press, 2019. http://dx.doi.org/10.3233/atde190155.
Full textFonseca, Nayara, and Veronica Guidetti. "Generalizing Similarity in Noisy Setups: The DIBS Phenomenon." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230339.
Full textConference papers on the topic "Siamese Neural Models"
Liang, Jianqiang, Yuanhang Zhu, Hu Long, Shulan Jiang, Tielin Shi, and Jian Duan. "An Intelligent Tool Wear Prediction Model Based on an Improved Regressive Siamese Neural Network with Various Sample Sizes." In 2024 Global Reliability and Prognostics and Health Management Conference (PHM-Beijing), 1–7. IEEE, 2024. https://doi.org/10.1109/phm-beijing63284.2024.10874460.
Full textPark, Donghyeon, Keonwoo Kim, Yonggyu Park, Jungwoon Shin, and Jaewoo Kang. "KitcheNette: Predicting and Ranking Food Ingredient Pairings using Siamese Neural Network." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/822.
Full textAliane, Ahmed Amine, and Hassina Aliane. "Evaluating SIAMESE Architecture Neural Models for Arabic Textual Similarity and Plagiarism Detection." In 2020 4th International Symposium on Informatics and its Applications (ISIA). IEEE, 2020. http://dx.doi.org/10.1109/isia51297.2020.9416550.
Full textTrad, Fouad, Ali Hussein, and Ali Chehab. "Assessing the Effectiveness of Siamese Neural Networks to Mitigate Frequent Retraining in IoT Device Identification Models." In 2023 International Conference on Platform Technology and Service (PlatCon). IEEE, 2023. http://dx.doi.org/10.1109/platcon60102.2023.10255208.
Full textNagaraj, Guru, Prashanth Pillai, and Mandar Kulkarni. "Deep Similarity Learning for Well Test Model Identification." In SPE Middle East Oil & Gas Show and Conference. SPE, 2021. http://dx.doi.org/10.2118/204675-ms.
Full textHuang, Shuting, Zefeng Liu, and Zhenyu Liu. "Multimodal Siamese Model for Breast Cancer Survival Prediction." In 2024 4th International Conference on Neural Networks, Information and Communication (NNICE). IEEE, 2024. http://dx.doi.org/10.1109/nnice61279.2024.10498910.
Full textSivkova, Tatyana, Aleksandr Gusev, and Artem Syropyatov. "Technology for Cast Iron Microstructure Analysis in SIAMS Software Using Neural Networks." In 31th International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2021. http://dx.doi.org/10.20948/graphicon-2021-3027-772-780.
Full textLiu, Yuxing, Geng Chang, Guofeng Fu, Yingchao Wei, Jie Lan, and Jiarui Liu. "Self-Attention based Siamese Neural Network recognition Model." In 2022 34th Chinese Control and Decision Conference (CCDC). IEEE, 2022. http://dx.doi.org/10.1109/ccdc55256.2022.10034228.
Full textZhou, Xinxin, Zhaohui Zhang, Lizhi Wang, and Pengwei Wang. "A Model Based on Siamese Neural Network for Online Transaction Fraud Detection." In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852295.
Full textChen, Donghang, Xiang Zhang, Ran Tian, Yingqi Tang, Yujie Hu, and Shaozhi Wu. "Online Multi-Object Tracking with United Siamese Network and Candidate-Refreshing Model." In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9533479.
Full textReports on the topic "Siamese Neural Models"
Slone, Scott Michael, Marissa Torres, Nathan Lamie, Samantha Cook, and Lee Perren. Automated change detection in ground-penetrating radar using machine learning in R. Engineer Research and Development Center (U.S.), October 2024. http://dx.doi.org/10.21079/11681/49442.
Full text